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Wave functions of several forms have been applied to the
treatment to the ground state of Li. It is found that errors
in the representation of the X shell have but little effect on
the computed ionization energy, and that a satisfactory
orbital for the L electron can be constructed in a very
simple form. The best wave function in which the relative
positions of the Z and L electrons are not taken into ac-
count gives an ionization energy in error by 0.05 ev. To take

account of inter-shell polarization effects the Hylleraas
method has been extended, and a wave function has been
constructed which depends on the relative positions of all
the electrons. A total energy in error by 0.068 ev (0.034
percent) has been computed, and the theoretical value of
the ionization energy is fixed as 5.363&0.007 ev against an
observed 5.364 ev.

INTRoDUcTIQN

HE lithium atom, a simple system with all
the essential characteristics of the other

more complicated and perhaps more interesting
alkali metal atoms, has been the subject of several
wave-mechanical investigations. ' All these treat-
ments have been characterized by the. con-
struction of the atomic wave function from
one-electron orbitals, and may accordingly be
considered as more or less satisfactory approxi-
mations to the Fock procedure. ' In each case the
computed atomic and ionic energies are in error
by some 2.0 ev, while the errors in ionization
energy (obtained as the difference of the com-
puted atomic and ionic energies) are of the order
of 0.1 ev. Wilson has reduced this error to
0.044 ev using for the X electrons the orbital
e '"",and for the I.electron 1.345re '"'"—e '-'"
That so simple a method of treatment should

yield such satisfactory values of the ionization
energy is a matter of considerable interest. The
reliability of these values must suffer, however,
from their having been obtained as the differ-
ence of two quantities, each of which was much
less accurately known; there is also no variation
principle to assure us that the true value of the
ionization energy is an upper limit monotonically
approached by the calculated values as the wave
functions improve.

We have therefore been interested in ex-

amining the effect on the ionization energy of

various approximations in the atom . and ion
wave functions, in determining the theoretical
ionization energy with considerable exactness,
and in improving the determination of the
energy and wave function of the complete three-
electron system. Various steps in the passage
from the Wilson function to the most Hexible

possible form readily suggest themselves. We.
have examined the following, which appear to
be the most important: (a) improvement of the
separate orbitals, for which Wilson. used func-
tions of somewhat limited flexibility, (b) im-

provement of the representation of the X
electrons by removal of the requirement that
they be represented by orbital functions, and

(c) complete abandonment of orbitals in the con-

struction of the wave functions of the systems.
In the last two stages of our work we have

employed the method of Hylleraas, which has
been eminently successful in the treatment of
the normal and first excited states of He, ' ' '
which have many features in common with the

ground state of Li. In principle the extension to
the more complicated system is quite simple,

but the practical difficulties encountered are
rather serious. A description of the way in which

these were overcome is reserved for later sections

of this paper; we proceed now to a presentation
and discussion of the results which we have

obtained.

* A preliminary notice of a portion of these
peared in Phys. Rev. 47', 700 (1935).

' E. B. Wilson, Jr. , J. Chem. Phys. 1, 210
references given there.' V. Fock, Zeits. f. Physik 61, 126 {1930).

results ap- ' E. A. Hylleraas, Zeits. f. Physik 54, 347 (1929).
4 E. A. Hylleraas and B. Undheim, Zeits. f. Physik 65,

(1933) and 759 (1930).
'A. S. Coolidge and H. M. James (see paper in this

issue, p. 676).
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IMPROVEMENT OF THE ORBITAL FUNCTIONS

The wave functions hitherto used in treating
Li have been of the -form

K(1)8 (cx/o g) K'(1) h (P/a g) L(1)8( o/o. ~)

p= K(2) h(~/o2) K'(2) 8(p/o2) I.(2) 8(~/o2),

K(3)5(n/o 3) K'(3)h(P/ag) L(3)b(n/o g)

where X; X' and L are the space parts of X and L
orbitals, while 6(n/a ~), etc. , are the spin functions
introduced by Slater. ' Actually K'(1} has always
been taken to be identical with K'(1), as would
be the case in the ion, but is not required in the
atom. Expanding the determinant above, we find

0 =K'(1) IK(2)L(3) K(—3)L(2) I ~(P/o~) ~(~/o~) &
8(n/o 3) +two similar terms which differ by
permutations which assign different spins to the
electrons. Because of the different spin factors,
no combination of two different terms can make
any contribution to the matrix element of energy
or unity corresponding to this function (so long
as the Hamiltonian is assumed independent of
the spin), so that these elements will be simply
three times the contribution arising from any
single term in combination with itself. Now this
property can easily be seen to be a general one,
possessed by any function having the symmetry
appropriate to Li. We may write such a function

P = ~(1, 2, 3)S(P/o, )S(u/o2)S(n/o3)
+ rp(2, 3, 1)5(P/a. g)8((x/03)8(n/og)

+p(3, 1 2) ~(P/o3) ~(~/«) ~(~/o2)

the only restriction upon y(1, 2, 3) being that it
must be antisymmetrical in the coordinates of
electrons 2 and 3, With this understanding, the
whole discussion can be carried out on the basis
of the function y(1, 2, 3).

For separate-orbital functions, we have

9 (1 2 3) =K'(1) IK(2)L(3) —K(3)L(2) I.

The Fock function is the best function of this
form, and it is clear that Wilson's function is not
a very close approximation to it. His X orbital
in particular was rather inHexible, and a treat-
ment of He using such orbitals gives decidedly
poorer results than the Hartree method, and,
a for(ion , the Fock metho'd. In the next section
we shall deal with even more radical changes of

' J. C. Slater, Phys. Rev. 34, 1293 (1929).

the core function than improvement of the
orbitals involved, and it will become apparent
that no appreciable change in the ionization
energy is to be expected from such a modification
of Wilson's function. We have therefore been
interested only in the effect of increasing the
flexibility of the L orbital, changes in which
will be more strongly reflected in ionization
energy. We find that with an L orbital of the form
L(l) —o&r&s

—0.665rg+ oms & 25r—l +. o3s
—1.5rl+ o4s

—'I "15t'1.
improvement of just 0.002 ev over Wilson's value
could be obtained. An attempt to make a similar
improvement in his function by replacing the
erm f1~ 0.665rl by &1fle, ~ " +$2fle ~ +$3f1~

gave no gain at all. Evidently Wilson's L orbital,
though of very simple form, is about as good as
any which might be used in functions of this
type; of the residual error in his ionization
energy only 0.002 ev can be attributed to lack
of flexibility in this orbital.

IMPROVEMENT IN INNER SHELL REPRESENTATION

In the description of Li, the use of orbitals in
connection with the E electrons is clearly in-
adequate, as it is in the treatment of the
analogous He. The representation may be im-
proved by similar methods, thus giving us a
function of the separate-shell type, for which the
general form is

y(1, 2, 3) =KK(1, 2)L(3) KK(1, 3)L(—2),

where KK(1, 2) is an unrestricted function of the
relative coordinates of the two electrons, having
the general nature of a wave function for Li+,
but not necessarily symmetrical in 1 and 2.

We have computed the energy of a number of
functions of this form, both with the simple
outer function L= fe ' "', and with the better
one L = 1.4fe ' ""—e "" which is nearly the
same as Wilson's. Table I contains the results,
as well as a description of the core functions
investigated. With the exception of E, the core
functions will be recognized as of the Hylleraas
type, modified as discussed in our paper on
excited He.

Function E is of a new type, which can be regarded as
derived from a Hylleraas function by expanding the powers
of r12 as functions of r1, r2., and cos 812, and then selecting
a 6nite number of the resulting terms, with coe%cients to
be varied independently. In these terms there are dis-
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TABLE I. Vario ti on of ionisati on energy with inner she/l
functi ons.

Energies in electron volts.

INNER FUNCTION ALONE

Sym- Ion
bol energy Error

COMBINED WITH P
Error in
ioniza-

Atom tion

COMBINED WITH 0
Error in
ioniza-

Atom tion

A —192,89 +4.22 —198,19
B —195.49 +1.62 —200.78
C —195.53 +1.57 —200.82
D —196.30 +0.81 —201.56
E —197.02 +0.09 —202.28—197.05 +0.05 —202.32

Ideal —197.10 0.00 ( —202.37)

—0.060—0.077—0.080—0.095—0.094—0.093
( —o.o93)

—198.27—200.83—200.85

—202.32

+0.019—0.028—0.048

—0.057

( —202.39) ( —0.056)

The functions used are as follows (not normalized):

A

C
0

e—3(rl+r 2)

e-3«1+r»[C1+C, (r, +r,)j.
e
—2.6875 (r1+r2)

e '(rl+"»)CI+C2(rl+r2) +C3rlr2+C4(r12+r2') j.
e "' +'"'Lcl+C2g12+c3s12 g12 +C4g12 +C5s12

+c6s12 cos 012+c7s12 cos 012j.
e "rl+r»[CI+C2(rI+r2)+C3rlr2+C4(rI'+r2')

+Cbrl2+C6r12 j

continuities of derivative when r1 ——r2 which make finite
contributions to the kinetic energy, but do not destroy
their usefulness. We have applied such a function to the
treatment of the ground state of He, and with the inclusion
of nine terms have reduced the error in the computed

/

energy to less than 0.02 ev. Since this error is some three
times that given by Hylleraas' six-term function and the
computations are no easier these functions are not recom-
mended as a substitute under such conditions. It was
found, however, that when it was desired to add a third
electron to the system and to neglect polarization terms
with this electron (as in the present case) the treatment was
more conveniently carried out with this than with the
Hylleraas function; hence the present computation. This
ceases to be true, however, when inter-shell polarization
effects must be included. Since functions of this type seem
to be restricted in usefulness and the methods of handling
them in the three-electron problem are quite complicated
we omit any further description of them.

It is apparent from Table I that, for the given
L orbitals, the ionization energy comes out
almost independent of the representation of the
inner shell, so long as the latter is not too bad,
and that the small changes which do occur are
similar with both orbitals. This would un-

doubtedly hold for any good L, orbital. An
obvious corollary is that when L has been given
the best form for use in conjunction with some

P r e
—0.65rg

Q 1.4r3e "'"&—e "r&

The coefficients c„were determined so as to minimize the ion energy.
In constructing the atomic function, the same values were used.

The symbols g12 and s&2 in function E represent, respectively, the
greater and the smaller of r& and r2.

The last row is an extrapolation, in which the error in the ion energy
has been made to vanish.

reasonably good core function, this will be very
nearly the best form for any other good repre-
sentation of the inner shell. As an example, we
note that the linear coefficient in function Q is
essentially the same whether it minimizes the
atomic energy with core C or with core K Now,
computation with core function C has shown
that' Wilson's L function gives a result better
than function Q by 0.004 ev, and that a further
0.002 ev can be gained by still further im-
proving the outer orbital. In view of the above
discussion we may confidently expect that the
values in the last column of Table I (at least
the last few entries, in which we are primarily
interested) would be likewise raised by 0.006 ev
if Q were replaced by the best possible L function.

The core functions from A to I' are pro-
gressively better approximations to the true ion
function. It is of interest. to attempt an extrapola-
tion to determine the energy which would be
obtained by combining this function with various
outer orbitals. The last row of Table I gives such
estimates. In particular, if the best possible L
function were used, the residual error would be
very close to —0.050 ev, which is evidently the
error inherent in the forced separation of the
shells.

In the examples so far given the core function
and the ion function have been identical, and
there seems to be no doubt as to the propriety
of computing the ionization energy as the diRer-
ence of the computed energies of atom and ion.
The best function for the atom core having a
given form will, however, presumably diRer from
the best ion function of the same form; in fact,
as has already been pointed out, the ion function
has diRerent symmetry properties from the best
core function. Thus there arises the question as
to how the ionization energy shall be determined.
In order to investigate this point, we made
computations differing from the Ii —I' combina-
tion of Table I in that, in the first case, the
coefficients c„were allowed to take on values
minimizing the atomic energy, and, in the second
case, in that this adjustment was made after
separate coe%cients were assigned to the terms
in r1 and r2, and to those in rp and rp. In the first
case the energy was reduced by 0.0003 ev, while

the second charge permitted a further improve-
ment of 0.0002 ev. We conclude that there is ng
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significant difference between the best ion func-
tion and the best core function obtainable with a
given series of the sort which we use. This is
fortunate, for it relieves us of the necessity of
determining the coefficients of the ionic function
and introducing them explicitly as restrictions
upon the variation carried out to give the corre-
sponding atomic function. We need only solve
the secular equations for atomic and ionic
problems, and take the difference as the ioniza-
tion energy. It also enables us to save labor by
assuming that terms which in the ionic function
must have the same coefficient may be treated as
preserving this relation in the atom, thereby
forming, for purposes of variation, a single
term.

PHYSICAL INTERPRETATION

Qualitatively, these results are easy to under-
stand. If we had complete flexibility in both XX
and I, we should: arrive, on minimizing the total
energy, at a definite function of a rather interest-
ing type, in which the relation between the L,

electron and the X shell taken as a whole is
formally that between the I. and X electrons in
excited He, particularly in the is2s'S state,
according to the Fock approximation. In line
with our discussion of the Fock function for the
corresponding singlet state (no treatment of the
triplet state being available), we may expect
the defects of this function to be, speaking
roughly, that it neglects the polarization of the
core by the valence electron and the consequent
contraction of the outer orbit, thereby yielding
too high a total energy. We would also expect
that the X shell function will be but slightly
different from that of the free ion. Both the dis-
tortion of the ion function and the polarization
effects should be less pronounced in Li than in
is2s 'S He, because the core electrons are more
firmly bound. Now, in is2s 'S He, we have
found that the defects of the Fock function are
responsible for an energy error of 0.078 ev; this
should be less for the triplet state because the
electrons are to some extent kept apart by the
antisymmetry. The error in the total energy of
the best separated-shell function (indicated by
SS) for Li should then be a few hundredths of a
volt only, and this will also be the error in the
ionization energy if we disregard the difference

between the correct ion function and the EZ'
factor in our atomic function.

As computed for a separated-shell function the
energy is roughly separable into energy of the
core, energy of the valence electron in the average
field of the core, and exchange energy, of w'hich

the last two parts give the ionization energy.
Starting with the function SS, we may replace
the core factor by another which may contain
large errors with respect to the mutual relations
of the core electrons, but which has substantially
the same average field. While the tot:al energy
will be seriously affected, the ionization energy
will be inHuenced only through the variation of
the exchange term, a second-order effect which
might be of either sign. On the other hand, if
the I.orbital is varied the change in the ionization
energy will arise principally from modification
of the energy of the valence electron, with the
change in exchange energy making a second-order
contribution. Thus the ionization energy is
essentially a characteristic of the I, orbital used,
with a minor dependence on the core function
through the exchange energy. When functions
permitting separation of the shells give ionization
energies in error by less than 0.05 ev, as in
Wilson's work, this cannot be taken as evidence
that the function is a good one; thus, it is clear
from Table I that some combination of A and 8
could be found to give exactly the correct
ionization energy. This effect is due to the com-
pensating errors in the exchange energy which
arise from a -poor core function. To obtain a
more accurate value for the ionization energy
which is also reliable one must deal with the
mutual polarization of the X and I shells.
It is to this problem that the next section of this
paper is devoted.

INCLUSION OF POLARIZATION EFFECTS BETWEEN
THE SHELLs

For the computations of this section, we have
extended our modification of the Hylleraas
method, constructing new terms in our trial
series by multiplication of the terms already
found most useful by powers of r» and r»
and jor by suitable negative powers of ra (assign-
ing the number 3 to the L electron). The new
terms (as well as all of those previously discussed
except those of the function 8) can be specified
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as follows: We choose as variables p~ ——sr~,

p23
——I~r23, in which a possible additional degree of

Hexibility is gained by introducing the scale-
constant a. Let

f [k, m, n/~, S, S]
= (g'/47r) &s ~YPa+~P2+~P1& p3~p2~p&~

$[k, rn, n/y, 6, 8]
= (f&"/4~)ks (TP2+&Pa+&Pl)p ~p ~p

Our terms in the series for y(1, 2, 3) then have
the forms

f [k, nr, n, P]= p23~ {f'[k, nr, n/y, 8, 8]
—&[k, rn, n/y, 6, 8]I,

g[k, m, n, P] p»=~f [k, ~, n/~, S, S]
—pg3&[k, rn, n/y, 6, 5],

k[k, rn, n, p] = p„|'[k, rn, n/y, 8, 6]
—p„g[k, m, n/~, S, S],

f[k*, rn, n, P]=pu" {f'[k, m, n/p*, 8, 6]
—g[k, ~, n/~*, S, S]I, etc.

In the bulk of the work of this section, the con-
stants had the values 8=3, y=0.65, y*=1.5,
1~:=1. We postpone for the present a discussion
of their selection, as well as of the choice of
appropriate terms. The most general extension
of the Hylleraas method would, of course, require
provision for terms with powers of two or three
interelectronic distances occurring simultane-

ously, which could not be represented in the
above notation. We have avoided this com-
plication. We have also, in accordance with
the results of the previous section, treated
{g[k, m, n, p]+g[k, n, rn, p]I as a compound
term with a single coeAicient. It will be seen that
the terms g are just those occurring in the
previously discussed functions of the separate-
shell type. The new terms f and k allow for
detailed treatment of the reactions between the
outer electron and the inner one having the same
and the opposite spin, respectively.

It might appear that so long as one's interest is restricted
to the ionization energy it would be possible to ignore the
terms gLk, m, n, pj, p/0, which permit an accurate treat-
ment of the core. Thus one would regard the atomic func-

tion as constructed from a core function, depending on rq

and r2, and an L orbital depending on r3, r13, and r~3, and
would argue from Table I that the ionization energy should
be practically unaffected by change in the core function.
But it must be noted that we have no guarantee that results
parallel to those in Table I would be obtained if the outer
function were freely variable. For r12, r&3 and r23 cannot
take on their magnitudes with complete independence, and
from this arises the possibility that (in a very awkward
manner, to be sure) some defects in the core function might
be compensated for by adjustment of the inter-shell polar-
ization terms. Thus with a core function poor enough to
bring this effect into play the calculated ionization energy
might appreciably exceed the actual value. It is accordingly
necessary to carry out the work with core and atomic
functions so good that such second-order terms can be
safely neglected, and this seems to require a fairly accurate
treatment of the e6'ects on each other of the X electrons.

As a basis for our work we have chosen the
atomic function constructed from the Hylleraas
core function Ii and the Wilson L, orbital,
omitting, however, four of the twelve terms with
an estimated error of 0.001 ev. To this function
we have added nine new terms designed to take
account of the polarization eBects, obtaining a
total energy in error by 0.068 ev. It was possible
to make a fairly definite estimate of the limit
attainable by the inclusion of indefinitely many
such terms, including those with higher powers
of r~3 and r23 and combinations of such powers,
according to the general method which we have
previously explained. ' Such an estimate indicates
a convergence limit in excess of the experimental
value by 0.051+0.007 ev. Now, this is, within
the limit of uncertainty, exactly the error which
we ascribed to the defective core factor of the
function before the polarization terms were in-

cluded, —that is to say, it is the error of the best
free ion function which can be constructed out
of the terms which remain when we write down
the terms in our best atomic function and then
strike out all factors referring to r3, r~3, or r23.

It appears then that to a satisfactory degree of
approximation, the core function retains its
identity even in the correct, nonseparable atomic
function; that our atomic function is so good an
approximation that the errors due to imperfect
representation of the inner shell and to incom-

plete treatment of the polarization are additive.
To the extent that this is true, we may speak of
the ionization energy corresponding to our func-

'H. M. James, A. S. Coolidge and R. D. Present, J.
Chem. Phys. 4, 187 (1936).
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tion, even though it is of a nonseparable type.
Our best calculated ionization energy is thus
5.347 ev, and the extrapolated value 5.363
&0.007 ev, as compared with the experimental
5.364 ev.

We have not determined the coefficients of our
best 17-term function. We give here a com-
paratively simple normalized function which is
very nearly as good.

rp(1, 2, 3) =8.70800g[1000]+0.46443 k g[1010]

+g[1100]}+3.74530 {g[1020]+g[1200]}
—2.25446g [1110]+4.66553g [1001]
—0.60372g[1002]—7.76625g[0*000]

1 85902Ig[0~010]+g[0"100]}

+1.57214f[0001]+1.93299k[0001].

It will be recalled that the complete wave func-
tion is the sum of three such terms, differing by
systematic permutations of the electron numbers,
each multiplied by a different spin factor.
Accordingly the above expression for y(1, 2, 3)
has been normalized to 1/3.

The energy given by this function is as follows:

Experiment
Function
Error
Percent

Total energy,
RLQ&p

—14.95784—14.95215
0.00569
0.038

Free ion,
RL;Ir,

—14.56160—14.55776
0.00384
0.026

Ionisation
(ev)
5.364
5.339—0.025
0.47

Of the total "polarization energy" of 0.05 ev
about three-eighths comes from the pair of
electrons with the same spin, and 6ve-eighths
from the other pair. This inequality is in agree-
ment with the general rule that polarization is
more important in singlet than in triplet states
of two-electron systems.

METHOD OF CALCULATION

The calculation of the matrix components of energy and
unity hinges upon the evaluation of the integrals

I(abcdef jerpy) =fd Ue (~"~+~"'+r"& r pr2 re'r2e req'rye~

Consider first the case that d, e, f are each either 0 or —1.
If e (say) is 0, then the integral is readily evaluated by
taking as variables of integration r1, r2, r3 cos 812 cos 823,

@13 (the angle between the plane containing r1 and r2 and
that containing r3 and r2) and three unspecified angles
giving the orientation of the whole system in space. The
last four variables do not enter the integrand. We set

1/r23=&n~23"g23 &n(COS 023) and 1/r12=&n~12 g12
" X

P„(cos 812), where s;;, g;; mean, respectively, the smaller
and the greater of r;, r;. Upon integration over the cosines,
the terms for n)0 disappear, and we have, for example.

I(abc —10—1/spy) = 6471. {Wa+2, b+1, c+1(~& P, Y)
+Wa+2, c+2, b(~~ Yr P)+Wb+2, a+1, ~+1(py ~) Y)

+Wb+2, c+1, a+1(p& 'Y& ) +Wc+2, a+2, b(Y~ ~~ P)
+W,+2, b+1, .&.1(V, P, ) I,

where

g. . .(, p, ,)=f d,f dyf deere .*y-e &e"-e

I{abc—100/mph) = 64~3A~2(o.)
I Vb+2, .+1(P, V)+ V.+2, b+1(V, P) I,

A;{a)= dxx'e
0

Vm, n(P P) = dy dzymP
—PPzne —&z

0 y
and

We note that A, (cx) V n(p, y) = W; „(n, p, y)
+W, ;, „(P, , &)+W, „, ;(P, &, ).

If d =e =f= —1, it does not seem possible to find a sym-
metrical method of evaluating the integral. We have ex-
panded 1/r13 as before in terms of P„(cos 813), which, by the
theorem of biaxial harmonics, can be replaced by P„(cos 012)
P (cos 823) plus terms which disappear upon integration
over q13. We thus find

I(abc —1 —1 —1/aPy) = 64m. Zn(2n+1)
X I Wa+2n+2, b+1, c—2n(& Pt Y)+Wa+2n+2, c+1, b-2n{r Y~ P)
+Wb+2n+2, a+j, c 2n{py ~ Y)+ Wb+2n+2, c+1, a—2n(py 'Y& )
+Wc+2n+2, a+1, b—2n(Y& r P) +Wc+2n+2, b+1, a—2n(Y& P& ~) I ~

r23 ——r2 +r3 —2r2r3 cos 0232= 2 2—

it is possible to reduce any case of positive d by steps of two
powers of r12 until one reaches either d =0 or d = —1. The
resulting expressions will have the same form as the integral
I, except that some of them will now contain powers of
cos 023 in the integrand. These can readily be treated by the
methods indicated above. The same reduction applies to
the case that f)0. It was found advantageous to work
out the explicit formulas, in terms of the W's, giving
I(abcdef/aPy) for every set of numbers d, e, f which we re-
quired, as this resulted in considerable cancellation, and
also improved the rapidity of convergence when all three
numbers were odd and a summation had to be used.

The first step in the calculation is the construction of
tables of the integrals A, V, and W, according to the
following definitions and recurrence relations. By the
systematic use of the latter, the work can be made self-
checking by verifying that two independent chains of
calculations, in which the relations are applied in diferent
order, lead to the same final value.

The final formula is thus symmetrical, and the summation
converges rapidly.

Because of our not considering individual terms in
which more than one interelectronic coordinate explicitly
appear, we did not encounter the case that e)0. (This case
could, however, be readily handled by extending the
following method. ) By means of the relation
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A;(a) =J e *x'dx, j~o.

V (a, p) f=fe *x e ~ey"dxdy, m~O, m+n~ —i.

+gW~, , h(, p, &)+h~&, , h (, p, &)],
f~i, f+g~o, f+g+h~ —i.

By reversing these recurrence relations, the functions can be
computed for negative n, g, and h, within the limits for
which they remain finite. It is well to avoid the relations
marked, * as the computation of tables of all the 8"s re-
quired to construct all the I's for a given choice of n, p, y,
can then be based upon preliminary tables of A(n+p+p)
and of V(n, p+y), V(p, n+y), V(7, n+p), V(n+p, y),
V(p+y, n) and V(n+y, p).

Each term in our trial series consists of two parts, but
because of the symmetry of the Hamiltonian operator, the
matrix elements of energy and unity between any two such
terms contain but two components, each taken twice.
These components are computed separately. The elements
of unity need no further discussion. Those of energy are
found to fall into two classes, according as the. interelec-
tronic distances specifically involved in the combining
functions refer to the same or to different pairs of electrons.
The first class gives rise to the integral

(2~'/64vr') J'd V Ie 'P +&'P~+~'P' p~~'pg 'p, "'p~p" }
&(IIIe ~ +~ ~+& ' p, ~pgmp "p g"}=~2L+~M.

Wfea(a, P, y) J=Jfe *xfe &"y e "'e"dxdyde,
a(y(z

f 0, f+g —1, f+g+h
A, (n) = 1/n;

A;(n) =(1/n)'A; (n), ~=1.
1 n+p

V., ~(, p)=-log
p

*V,, „(,p) =(1/ )fA„(p) —A ( +p)g, n 0;
V, (n, p}=(1/n) fmV y, (n, p) —A + (n+p) j,

m 1, m+n~O;

=(1/p)IA .(+p)+ v, . (,p)j,
m~o, m+n~o;

1
fm V, „(,P)+n V, „&(,P) ),+P '

m 1, m+n~O.
*~. . h(-, p, )=(1/n)LV, .(p, )-V, .(n+p, )l,

g~o, g+h~ —1.

~f, g, h(n p 7) =(1-/n)l f~y—I., g, h(n p 'Y)

VJ+, , h(n+p, ~)j, f~i, f+g~o, f+g+h~ —1;
=(1/p)L ~, ,—,.(, p, )

+vy, h( +p, v) —vf, h(, p+v) j,
f=o, f+g=o f+g+h=-1'

=(1/v)fh~j, g, h—i(n, P, V)

+ f, +h(n, p+y)j, f 0, f+g —1, f+g+h» —1;
1

ff~j—, , (,P, v)

L = —(n2+p2+y2) I(000, 000) +n(2k+2+ p)I( —100, 000)
—k(k+1+ p)I(—200, 000) +p(2m+2+ p)
)&I(0—10, 000) —m(m+1+P) I(0—20, 000)
+y(2n+2) I(00—1, 000) —n(n+1) I(00—2, 000)
+P I

—(m+k+2+2P) I(000, 00—2) —nI( —120, 00—2)
+nI(100, 00 —2) +kI( —220, 00 —2) —pI(2 —10,00—2}

+pI(010, 00 —2)+mI(2 —20, 00 —2) }.
3I/=Ifooo, —100j+Ifooo, 0—10$+Ifooo, 00—1j

—3If—100, 000j—3Ifo —10, 000j—3Ifoo —1, 000].
In these formulas, Iflcm, xysg is an abbreviation for

Ifk+k'+u, m+m'+e, n+n'+m, x, y,
p+p'+g/n+n', p+p', y+7'j.

The second class of combinations produces the integral

(2d/64m )J'dUIe (a p~+P py+p p.)p a p~m p
n

p ~y }
~&p++Pptp+'VP~&p I('pp~p +pp &}

The value of this integral is represented by the same formula
as before, provided that I've, xys j is now understood to
be an abbreviation for

Ifk+k'+I, m+m'+v, n+n'+w, p'+x, y,
p+s/n+n', p+p', 7+y'j.

These formulas are not symmetrical; the coefficients of
the I's are determined solely by one of the combining
functions. This is in practice rather an advantage, since it
provides two different methods of calculating the com-
ponents, and thereby checking the rather treacherous step
of picking out the coefficients. A symmetrical formula
could, if desired, be worked out by a method which we have
discussed in a previous paper. The same paper contains a
description of the process of setting up and solving the
secular equation, and thereby determining the best func-
tion which can be constructed from a given selection of
terms.

CHOICE OF PARAMETERS AND TERMS

It would be desirable to have a form of trial function
permitting independent variation of the screening con-
stants for the inner and outer electrons, but this degree of
Qexibility could not be combined with that secured by the
use of many terms with adjustable coefficients without
tremendously multiplying the labor of computation. With
our definition of the trial function, the screening param-
eters are sq=i(:b for the inner and s2=ay, se*=~y* for the
outer orbital. The only practicable variation, that of a,
changes all three in the same ratio. It is therefore important
to start with suitable ratios of 8, y, and y*, and this can
most easily be accomplished by making them equal to the
values which sp, s2, and s2~ are expected to have, relying
upon variation in a only for slight additional improvement.
Accordingly, p and p* were fixed by rounding o6' Wilson's
values, taking y 0.65, y*=1.5. To fix b, we investigated
the energy of the ion as given by a six-term function
similar to F of Table I but with variable screening param-
eter. Table II contains the results, which indicate that

H. M. James and A. S. Coolidge, J. Chem. Phys. 1,
825 (1933).
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TABLE II. Compzited energy of Li+, as fngction of screening
constant si.

$1
ION ENERGY, ERROR

RL;h (ev)
ION ENERGY, ERROR

Sg RI &h (ev)

2.7
2.85

—14.55844 0.043 3.0 —14.55776 0.052—14.55850 0.042 3.24 —14..55452 0.096

si = 2.79 is the best value, and would give an energy error of
0.041 ev, or 0.020 percent, to be compared with the 0.014
percent error in Hylleraas' treatment of He, in which the
same six terms were used. However, when many terms in

the series are present, readjustment among the coeScients
takes care of considerable variations in the screening
constant, which therefore need not be very carefully
chosen. We selected b =3 for ease in computing. A smaller
value would have improved our total energy by 0.011 ev,
but, in view of the results already presented, would not
have affected our ionization energy appreciably.

With b, y, and y* so fixed, the effect of taking ~ different
from 1 can be anticipated. The outer orbital will be directly
influenced by the change in s2 and sg*, but since we have
already chosen practically the best values for these
constants, this will cause but a second-order change in the
ionization energy. A poor choice of y and p* could have
been to a large degree corrected by varying v. The effect on
the core function of such a variation will be small, owing to
readjustment of coefficients, and the residual effect will not
be large enough sensibly to alter the ionization energy. We
conclude that, so far as ionization energy is concerned, the
chief usefulness of the variable ~ is to correct errors in

choice of y and y*, and that in our case little gain could be
expected. We have verified these relations by calculations
with a single-term L orbital, for which our y is not the best
value of s2.

In selecting terms, we first set up a function for the ion,
using the terms occurring in Hylleraas' function for the
analogous ground state of He. Upon multiplying these by
the main term of the L orbital, re '2", we obtain the six
terms gL1000j, g L1010j+gL1100j, g/1020 j+gt 12001,
gL1110j, gt 10011, and gL1002j, the best combination of
which gives an ionization energy error of 0.093 ev (Ii-I'
combination, Table I). To these terms there correspond six
"star" terms, gf0*000j, gL0*010)+gl0*100j, etc. , arising
from the minor term e '& "in the L orbital. From analogy
with results with core function E, we should expert that
inclusion of these terms would reduce the error to,—0.056
ev. It was actually found that the first two star terms alone

suFficed to carry us within 0.005 ev of this value, and we did
not go to the labor of computing the matrix elements re-
quired for the remaining terms. We did find that inclusion
of the additional terms gI 20001 and gf1*000j produced an
improvement of 0.006 ev, leaving an error of —0.055 ev.
This improvement is clearly due to perfecting the L
orbital; it is exactly the same as was found with the crude
core function C upon going from orbital Q to the best
combination of six terms, which is a rather striking example
of the degree to which corrections for different sorts of
defects in the function are additive, and supports our con-
clusion that the ionization energy error for the best
separate-shell function is —0.050 ev.

To take account of inter-shell polarization, we included
the following additional terms: f10001j,fL1001j,fL0~001j,
hL0001j, hI 0011j+IzI0101|,hL1001j, and kL0*001j. The
writers' discussion5 of the most desirable form for polariza-
tion terms, when applied to this case, suggests the useful-
ness offI 0001jand Iz(0001j, or modifications of these terms
in which y is somewhat increased. These are, indeed, the
most helpful of the above terms. The terms fg1001j and
hL1001), use of which would correspond to taking account
of polarization by introducing the factor (1+cr;;), are
almost completely without value. However, as is also
suggested by the argument just referred to, when I)2000$
is included in the function these terms are of some service,
though not as helpful. as the more compact fI00011 and
IzL0001j. More compact even than these terms —indeed,
apparently somewhat too compact —are fL0*001) and
kI 0*001j. When correlated with gt 1~000j these terms are
less useful than fI 0001j and IzL0001 j, but not so poor as the
other terms. As one would expect from the fact that none
of the polarization terms are ideal in character, an ap-
preciable further improvement is obtained by including all
of them in the function.

All the above polarization terms were constructed from
the principal term of the core function. In order to check
that polarization could be satisfactorily treated in this way
we introduced into the most complicated of our functions
the term Iz)0011 j+kl 0101j, which corresponds to the
important term hf0001j in the treatment of the polariza-
tion, but is constructed on another term of the core func-
tion. Table I shows that this addition would markedly
improve the representation of the core in connection with
the polarization effect:, yet the computed energy of the
system is improved by just 0.001 ev. The introduction of
other polarization terms of this type is apparently un-

necessary.


