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Wave Functions for ls2s 'S Helium
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The 1s2s 'S state of He has been treated with a variant of Hylleraas' variational method, and
a wave function has been determined which gives an error of only 0.005 ev in the energy of the
system. The properties of desirable functions for use in this method are discussed. Wave func-
tions of the Hartree and Fock types, and a more flexible function not involving r», are also
determined by simple variational processes. The properties of the resulting functions are com-
pared, and are discussed in the light of the polarization method of Hylleraas and Bethe, properly
applicable to more highly excited states. The computations by the polarization method have
been extended, and the results are compared with those given by the variational procedure.

and Undheim, which may be constructed as
sums and differences of our terms. Use of these
terms somewhat mars the elegance of the mathe-
matical treatment, but contributes to the clarity
of the physical picture. It also tends to reduce
the number of terms needed to attain a given
accuracy in the treatment of the system.

Having thus produced a considerable increase
in the accuracy with which this state can be
treated we have chosen it as one suitable for a
detailed consideration of the way in which
atomic wave functions vary with the distance
between the electrons, and for a comparison of
the successes obtained by various simpler
methods of attacking the problem. For this
purpose it is particularly satisfactory in that the
relation of the electrons is similar to that ob-
taining in interesting atoms such as Li, Na,
etc. , while this system is much easier to treat
accurately.

INTRODUCTION

M~NE of the most interesting of the singly
excited states of He, as well as one of the

most difficul to treat, is the 2s state of para-
helium. The difficulty arises from the fact that
in the treatment of the moderately excited 5
states of He, methods of approximation which
are satisfactory elsewhere tend to break down.
This forces one to rely on variational methods,
which are in general not so easily applied to
excited states as to ground states. The best
previously found wave function for this state is
that of Hylleraas and Undheim. ' The agreement
of their energy with the experimental value is
markedly poorer than that given by the Hyl-
leraas method for the normal or the 2s ortho

state of the atom. ' In the study of this state of
He, as a preliminary to the treatment of the
ground state of lithium, we have therefore
attempted to extend and improve the method by
increasing its flexibility with respect to the radial
coordinates, introducing two modifications. The
first and more important consists of the use
two sets of terms with different values of
exponent applying to the "outer" electron. T
corresponds to the work of Wilson' and oth
who have constructed single orbitals for exci
electrons by superposing' terms with differ

exponentials, finding that only a very few ter
are required. The second consists in forming

wave function as a sum of terms which di

somewhat in form from those used by Hyller
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' E. A. Hylleraas and B. Undheim, Zeits. f. Physik
759 (1930).' E. A. Hylleraas, Zeits. f. Physik 54, 347 (1929).

'E. B. Wilson, J. Chem. Phys. 1, 210 (1933).

The wave functions employed were of the
form p =Q,C„„,(mnp j, where [m, n, p]

his —(&3/4~) ( s—vert (gy&)ms
—5ar2 (gy&)a+ e

—
vKp2(gy2)m

e '""~(~yq)"I (~yqq)&. ~ is here a scale constant, 5

ted and v are parameters, and the distances which
ent define a configuration are represented in the
ms usual way. Other terms were also introduced,
the which we designate by [yn*np], in which the
ffer is not an adjunct of the m, but indicates that

in these terms v has been replaced by another
parameter, v*. While the best value of f»: could
easily be determined during the final variation,
we desired to base all our computations upon a
single set of tables computed for fixed values of
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WAVE FUNCTIONS FOR HELIUM 677

the parameters 5, v, v*, and after experimenting
with some simple functions (of the type later
called FC), selected the following as suitable:
6=2, v=0.55, v*=1. Thus, 5 is characteristic of
a one-quantum orbital about the bare nucleus,
v corresponds to a two-quantum orbital governed
by a highly shielded nucleus, and the star terms
are useful in dealing with the region in the atom
where the outer electron makes a close approach
to the nucleus, penetrating a region where the
shielding is less effective.

One advantage of the form chosen for terms in our wave
function appears in the ease with which orbital functions
can be represented. Thus, such a function as that employed
by Zener4 is simply t100$+ct0001. The terms used by
Hylleraas and Undheim are linear combinations of ours,
[100j+L010j~L2007~2t 1101+3020j~ L200j—t 020$, etc. ;

it would require three of these to give the Zener function.
This advantage is only partially lost in going to more
general functions, for the helpful terms are those which are
not too different from the ones occurring in the product
functions. Our method enables these terms to be intro-
duced by themselves, whereas in Hylleraas and Undheim's
functions the helpful terms are linked with harmful ones,
which can be removed only by using additional terms in
order to cancel them out. For example, in constructing
our best function, we can do as well by the inclusion of

t 200$ and 1110jalone as with the last three of the Above
combination terms; the term L020j is harmful and must be
eliminated.

The form of trial function adopted enabled us
to determine analytical approximations to
several simplified functions as well as to the
correct function, permitting various interesting
comparisons. The four functions which our
approximations approach as limits are:

The Hartree function (FFC ); the best function
expressible in the form K(r&) XL(r2), where K(r)
and L(r) are single-electron functions of the
general character of 1s and 2s orbitals.

The Fock function (FC); the best function
which can be expressed as K(r&) XL(rg)+K(r2)
XL'(r~), where K(r) and L(r) are similar to but
not identical with those occurring in the HC.

The Best Radial function (RC); the best
function of any form containing only r» and r2,
which must enter symmetrically.

The Correct function (CC); a function of r~,

r2, and r», the first two entering symmetrically.
(The above abbreviations will be applied also

4 C. Zener, Phys. Rev. 36, 51 (1930).

to our analytical approximations where no con-
fusion will result. )

It must be clearly understood that these four
limiting functions have a definite existence inde-
pendent of the method used to approximate
them. Thus RC is the exact solution of a differ-
ential equation obtained from the Schrodinger
equation upon replacing 1/r» at each point in
configuration-space by its mean value over all
points having the same values of r» and r2, i.e.,

by 1/g» where g» is the greater of rq and rm.

There results an equation involving only r» and
r2, but it cannot be separated and solved by a
product of single-electron functions. The equa-
tions solved by FC and HC are sufficiently well
known.

In the ensuing discussion we shall distinguish
between two forms of atomic wave function
constructed from the Hartree single orbitals.
The first, which we shall designate HOC, is that
already described, which neglects the require-
ment of symmetry in electron coordinates. The
second, H,C, meets this requirement by the
addition of exchange terms: it has thus the same
form as FC, but the coefficients are those deter-
mined by minimizing the energy of HOC. To find
the energy of H C requires an additional com-
putation, using these coe%cients explicitly.

In using the variational method to find ap-
proximations for the various types of limiting
function, we have simply to observe certain
restrictions on the character of the terms used
or the way in which they enter. The product
functions HC and FC must have the form

P P„c c„'[m, n, 0]+P P„c„*c„'[m*,n, 0]
corresponding to K(r) =e '"gc„'r", L(r) =e ""

Pc„r"+e ""'Pc„*r~', (tak—ing K= 1). In deter-
mining HC, of course, the exchange terms have
to be omitted from the definitions of the func-
tions and from the matrix formulas. Correspond-
-ing to the conventional way of determining these
functions, we first assume that K(r) =e '", the
He+ 1s function; we thus determine preliminary
values of the c and c* by variation among all
terms having n =0, p =0. The next stage of
approximation improves K(r), determining the
c' by a variation among individual terms each
in the form P„Ic„gnat, n, 0]+c„*[no*,n, 0]I.
The |." and c* can then be readjusted if necessary,
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holding the c' constant, and so on until self-
consistent results are reached. RC is obtained by
an unrestricted variation among all terms having

P =0; the removal of this specialization gives CC.
In none of these variations (except that deter-

mining the X(r) factor in the product functions
HC and FC) were we seeking an absolute mini-
mum value of the energy parameter. Hylleraas
and Undheim have shown, however, that the
second root of the secular equation can never lie
lower than the second characteristic energy value
of the problem, and approaches that value as a
limit as the terms in the series are improved, even
though the lowest root may be at the same time
a very poor approximation to the lowest energy
value. The only precaution in using the method
is, therefore, to be sure that one has the proper
root.

INTRODUCTION OI' 1'12

Thar. H I. Computed mane functions and energies.

FUNCTION IIp4

Energy, in 2Rk
Energy error (ev)
K—per electron 14.447

r2

COEFFICIENTS

(000)
(100)
(010)
(110)
(200)
(020)
(210)
(120)
(220)
(0+00)
(1000)
(0+10)
(1*10)
(0*20)
(1420)
(001)
(101)
(011)
(0*01)

—2.13915
0.185
1.00

14.223

RC CC

—2.14309 —2. 14407 —2.14580
0.078 0.052 0.005
1.00 1.05 1,05

16.756 16.48.5 16.036

OF TERMS IN NORMALIZED FUNCTIONS

25.21939-6.32769

0.28620

-20.80546-7.90329

8.41368—2.75611—0.00725
.00237
.05770
.03635—.00005—.01191
.00025—5.66385—2.14445
.00488
.00185—.02447—.00926

4.88925-0.02948—.85415
.23488
.09866
.03271

—7.17757-2.26128
1.39627

0.35368—.69387
.14042
.12251

-2.30134
0.47626
1.08 184

0.63432—.08422
.07633—1.2 1923

There has been considerable experimentation
to determine the most practical way of intro-
ducing ri~ into the wave function. It will not do,
(as Hylleraas and Undheim point out) merely to
multiply a function of the RC type by (1+cr»)
Inspection of Table I will show' that we find no
tendency for the coefficients of the terms
[m, n, 1] to be proportional to those of the cor-
responding terms [m, n, 0], a result likewise
noticed by Hylleraas and Undheim. A possible
guide to the selection of r12.terms can be derived

by applying a method due to Hasse and Lennard-

Jones. ' We regard RC as the solution of an unper-
turbed equation, and introduce as a perturbation
the quantity 1/r~~ —1/g». Then the Hasse
approximation to Cy is

RC'(1+c[1/r» —1/g»] I,

c being a constant to be determined by variation.
The energy corresponding to this function is not
integrable over small r12, but this is a defect in
the approximation and not a property of the
function which we desire to represent; Upon
multiplication of the perturbation term by
r»/g~~ we remove this defect and obtain an
expression which is but little different from the
Hasse approximation in regions where one r is
much greater than the other, these regions being
those where the approximation itself is valid,
and simultaneously those in which the factor RC
takes on its largest values. In a wave function for
an excited atom, it is a small approximation to
replace g» by ri and r2, respectively, in the terms
in which electron 1 and electron 2 are assigned
the more disuse distribution. From each term
[m, n, 0] of RC we thus derive [m, n, 0]
+cI [m —1, n, 0]—[m —2, n, 1]I.The argument
not being rigorous, we can in general get the best
results by introducing the new terms with free
coefficients to be determined by variation, rather
than adhering to the relations between the coef-
ficients which the Hasse approximation pre-
scribes. Nevertheless we should expect definite
cooperation between the terms which in the
theory occur in pairs; each term in r» may be
most helpful only when a corresponding term,
which behaves in nearly the same way for large r,
is included in the series to be varied.

Terms suggested by this reasoning cannot be
used for m &2, for they would not be properly
integrable. It may therefore be necessary to
employ, say, the terms [m, n, 0] and [m —1, n, 1].
Moreover, terms such as [m+1*, n, 0] ' and
[m*, n, 1], are always available, and may to a
certain extent take the place of [m —1, n, 0] and
[m —2, n, 1], since both sets have the common
feature of representing more compact distribu-
tions than the term [m, n, 0] from which they
are derived. tA'e believe that this explains the
fact that the introduction of star terms is more

~ J. E. Lennard-Jones, Proc. Roy. Soc. A129, 598 (1930);
H. R, Hasse, Proc. Camb. Phil. Soc. 26, 542 (1930).
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helpful in constructing the function with r~2 than
when the terms with rj2 are omitted.

The importance of a given term is by no means
indicated by the magnitude of its coefficient in
the series, partly because the terms as we define
them are very differently normalized, and partly
because it may happen that two fairly similar
terms enter with large coefficients of opposite
sign, the net result being a very small alteration
of the function which might be ignored without
serious effects. (In such a case it is not worth
while to consider the corresponding terms in r~2. )
A principal and indispensable term (as indicated
by its effect on the computed energy) may thus
have a relatively sma11 coefficient, and serve as
the basis for the construction of useful r~2 terms,
while other terms with larger coefficients are
ignored for this purpose.

EVALUATION OF MATRIX COMPONENTS

Here A„(n) =J™e29,"dX-
eed V.„,(,d)=J &."e 'd'e$ e,"'e '"de-
The latter quantities are conveniently computed
by using formulas given by the writers. '

Consider two terms [m, n, p] and [m', n', p'];
as either or both may carry stars we must dis-
tinguish between the possibly different values v

and v' which occur, whereas ~ and 8 must be the
same in both terms. Between these terms the

' H. M. James and A. S. Coolidge, Phys. Rev. 49, 688
(&936).

The required matrix elements can a11 be found
in terms of the integrals

J(f, g, b/n, P) =(1/164r') fdVr, /e " r ee2~"dr, 2".

J(m, 42, —1) = V„,4.2, „+d(n, p)+ V +2, +d(p, n),

J(m 42 0)= V +2, +2(n P)+ V+2, +2(P n)

=A,.+2(n) XA +2(P),

J(me 42e 1) Vne+2, n+2(ne P)+ Vn+2e en+8(pe n)

+-', [V„d 4, „+&(n, P)+ V.+4, „+&(P, n)],

J(m, 42e 2) = Vm+2, n+4(n, P)+ Vn+2, m+4(pe n)

+ V„+4, „+2(n, p)+ V„+4, +2(p, n)

=A,„+(2)nXA„+4(p)+A„+4(n) XA +2(P)

matrix element of unity is

2J(m+m', n+22', P+P'/v+v', 26)
+2J(m+n', n+m', p+p'/v+8, v'+8);

which may be abbreviated to 2J(000)+2J'(000),
the general scheme of abbreviation being such
that J(a, b, c) stands for J(m+m'+a, n+n'+b,
P+P'+c/v+ v', 28) and J'(42, b, c) is similarly
formed from the "exchange" term. The matrix
element of the energy, in units of 2R k, is the
sum of two terms involving Jand J', respectively,
with identical coefficients as follows:

442{ —(v2+82) J(000)+v(2m+P+2) J(—100)
—m(m+1+p) J(—200)+8(224+p+2) J(0—10)
—n(n+1+P) J(0—20)+P[{—2(P+1)—m —22}

XJ(00—2)+vJ(10—2) —vJ(—12 —2)
+m J( 22 ——2)+8J(01—2) —5J(2 —1 —2)
+n J(2—2 —2)]}+244{J(00—1)—2J(0—10)

—2J(—100)}.
It will be noted that these coefficients depend
only on the first of the two combining terms. A
symmetrical formula could of course be obtained;
but the unsymmetrical form has the advantage
of permitting a check against the alternative cal-
culation in which the terms are interchanged.

RESULTS

In Table I will be found the wave functions
and energies obtained in our best computations
with functions of the various types.

The energies stated are those for the fixed
nucleus problem, in units of 2R &=27.074 ev.
Hylleraas' has shown that, to the approximation
in which one can neglect the dependence of the
wave functions on r~~, these numbers also give
the energies of the corresponding approximate
solutions of the free nucleus problem in units of
2RH, &=27.070 ev. Bethe" has shown that for
the ground state the correction for dependence
on rI2 of the function is a fifth of that above. In
the present computations this further correction
has been neglected, for the dependence of CC on
r~2 is much less important; the error in the energy
arising from neglect of rj~ terms is less than a
tenth of that found for the ground state. The
errors given in Table I are then differences
between the corrected energies and the observed
energy of the system.

' H. Bethe, IIandbuch der Physik, Vol, 24/1,
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A discussion of these results fails naturally into
two parts; in the first we are concerned with the
reliability of the approximations which the vari-
ation method yields, taking the four limiting
functions and their corresponding energies as
standards of perfection, while in the second it is
these limiting functions themselves which inter-
est us, and which we regard as sufficiently well

represented by our approximations.

ACCURACY OF RESULTS OBTAINED BY THE

VARIATIONAL PROCEDURE

Hylleraas and Undheim estimate that the
limiting energy obtainable by a function of the
radial type is —2.14400. We have barely sur-

passed this, reaching —2.14407. There appears
to be no calculation of the function itself avail-
able for comparison. This is also true of the
correct function.

As measured against experiment, the error in

our approximation to the energy of CC is only
about one-sixth of that associated with the six-
term function of Hylleraas and Undheim, the
best previously available. The essential difference
between the two functions is the addition of the
v* terms, to be discussed later. Other terms were
introduced, but discarded as being of no value.
The explorations made were, however, not suf-

ficiently extensive to permit an accurate estimate
of the convergence limit, in accordance with the
procedure outlined elsewhere. '

In the case of the Hartree function, it is

possible to make a direct c'omparison between the
results of the variation method and those ob-
tained by accurate numerical integration by
Wilson and Lindsay' at the first stage of the
calculation, in which the 1s orbital is taken as
e '". The energy parameter e for the 2s orbital
we find to be e2 ——0.3054, and Wilson informs us
that they obtained precisely the same value, this

proving the effectiveness of our variational pro-
cedure. In view of the existence of their complete
solution, we have not carried out any further
stages of approximation. In any case, the dif-

ferences between our function and their final

one are so small that we shall use our function
in the following discussions.

'H. M. James, A. S. Coolidge and R. D. Present, J,
Chem. Phys. 4, 187 (1936).

'W. S. Wilson and R. B. Lindsay, Phys. Rev. 4/, 681
(1935).

The value given by Wilson" for the energy of
this state is, however, very different from ours,
his computed ionization energy being less than
that observed by 0.81 ev, while ours is in error
by only 0.184 ev. Wilson calculated the energy
of the atom by introducing into the formulas of
Slater" values which he obtained for the integrals
using his Hartree orbitals. In doing so he neg-
lected the nonorthogonality of his orbitals; his
value is accordingly not the energy associated
with a wave function constructed from the
Hartree orbitals, as ours is, and his computed
ionization energy is not comparable with other
results of the Hartree method.

Oqr approximate Fock function was obtained
as a second approximation, varying each factor
once. A further variation gave no appreciable
change in the 2s orbital; this function thus
represents the best approximation to the Fock
function obtainable with the terms included. It
may be compared with that computed by Hyl-
leraas, " likewise by the variation method, but
with a different series, and without varying the
1s orbital. Taking v =0.5, he finds with the three
terms [nz00], m=0, 1, 2, the energy —2.14275,
which sinks to —2.14294 upon inclusion of two
more terms of the same series. Judging by the
smallness of the improvement given by the fifth
term, he accepts this value as substantially the
limit of convergence. With the same three terms
as Hylleraas (but with u =0.55) we find the
energy —2.14285; putting [0*00] in place of
[200] gives us —2.14293, illustrating the use-
fulness of the star terms. With [200$ and [1*00]
in addition, we reached the value —2.14307,
appreciably lower than Hylleraas' apparent
convergence limit. The value given in Table I,
—2.14309, shows the minute improvement re-
sulting from variation of the 1s orbital, and
justifies Hylleraas in neglecting this step. Com-
parison of numerical values of his 2s orbital with
ours shows typical discrepancies of one or two
percent; in view of the lower energy, we believe
our result is superior. Our complete atomic
function should be more reliable than that of
Hylleraas also because we have improved the 1s
factor.

"W. S. Wilson, Phys. Rev. 48, 536 (1935)."J.C. Slater, Phys. Rev. 34, 1293 (1929)."E.A. Hylleraas, Zeits. f. Physik 83, 739 (1933).



WAVE F UNCTIONS FOR HF I, IUM 681

COMPARATIVE ACCURACY OF THE METHODS

OF APPROXIMATION

(is)»S He

)
1 14(io)

P 70(1)

1s2s ~S He

0.185
0.078
0.052

(1s)s(2s) ~ Be

1 95(w)
1.'610»

The functions II,C to CC which we have
obtained may be considered as successive steps
in the determination of an accurate function, in
which approximations are successively removed.
The approximations in II,C consist of neglect of
exchange in determining the function and failure
to give a detailed treatment of the interelectronic
repulsion. In JiC the first of these is removed,
while RC and CC represent two steps in taking
better account of the electronic interaction. For
comparison with our results on this state there
appear in Table II certain corresponding values
for the ground states of He and Be.

The exchange effects in 1s2s "SHe and (1s)'(2s)'
Be are comparable with regard to the quantum
numbers of the states involved; in Be, however,
there are twice as many exchange terms. That
the exchange effects in these two states differ by
roughly a factor of 2 in absolute magnitude is
thus not surprising. The percent of error in H,C

due to the neglect of exchange is, however, very
different from that in Be, where there is not only
an error due to neglect of the polarizing effect
of the outer electron on the core, which has its
analog in the excited He, but also a very large
error due to failure to treat the interactions of
the 2s electrons in a detailed manner. In such a
case as this the Fock method does not offer a sig-
nificant improvement over the Hartree method.

Abandonment of the orbital idea, the difference
between I'4 and RC, permits a partial adjust-
ment of the relative positions of the electrons.
In both of the states of He a third of the error
of the Fock function is thus removed. This may
be taken as a rough measure of the general
effectiveness of this modification. Thus, for
instance, a function similar to RC applied to the
treatment of Be might give an error in the first
two ionization energies as small as 1.0 ev.
Further reduction of this error, associated prin-
cipally with the treatment of the 2s electrons,

TABLE II. Errors in computed energy necessary for removal
of two electrons.

would require the very difficult step of intro-
ducing explicitly the distance between the 2s
electrons.

0.6
+

0,4

0,'R

d
o

0.05—
0.04

O.OS-
+0'L-

O
O,of-

d
0.00

o,o&

I I I I I I s I I

+ q 6 V
'a

H

H.

FIG. 1.Total radial charge densities. Upper figure shows
values for CC. Lower figure shows values for other func-
tions minus those for C4. Normalized to 2 on integration
over r.

RADIAL CHARGE DENSITIES

It is something of a problem to find a satis-
factory method for portraying the wave functions
of the different types, with the special object of
facilitating intercomparisons. Fig. 1 shows the
total radial charge densities; in order to avoid
confusion due to overlapping, we have plotted
a single curve for our best function, and indicated
by an enlarged difference plot how the other
values deviate from this. CC gives a charge
density of the form p„=r'Q„,C„e '~"r'. The
coefficients are shown in Table III. Though
useful for certain purposes, the total density is
not adequate for a careful study of the functions,
since it suppresses the most interesting charac-
teristics of the better functions, which take into
account in detail the interaction of the electrons.
Thus, although the total density given by RC
is much better than any of the others without
ri~, it would be a mistake to conclude that RC
is itself a correspondingly close approximation
to the correct function, as consideration of the
errors in the energy will show. On the other hand,
in cases where only the charge density is of
interest it may be a helpful simplification to use
functions of this type. Improvement of the
dependence of the functions on interelectronic
distance will be seen to result in an increase in
the charge density for the smaller values of r,
when the electronic repulsions are most im-
portant. This is probably a general behavior.
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TABLE III. Constants in formula for total charge density of CC p, = r'Err, ,err"C„r'.

1.155
1.6275
2.1
2.6775
3.15
4.2
5.355
5.8.275
6.3

C

—0.02237
.01346
.03986.18754—.19766—.06098—12,83385

14.76190—].88790

0.07185—.01260
.23617—.12678
.70711

3/. 37703—8.66312
6.80816
1.48937

—0.10055
—,19053

~ 168 18
—,16386

.19377
2.90319—2.91047
1.54834
1.68280.

0.10313—.14547 .

.04403—.1075 1—.01275
1.26657—.57610
.72437

0.00738
—,00476

.05943—.03667

.02744

.01630

C

0.00013

.00199

.02464

On the other hand it cannot be expected in
general that, as is observed here, the true radial
density will be between those given by IIC and
FC, for as we shall see, the relation between
these functions varies with the system treated.

CQMPARIsoN oF HARTREE AND FocK
FUNcTIoNs

r cirK (r) c2rL(r) r c1rK(r)

0.2 0.756
0.4 1.014
0.6 1.021
0.8 0.913
1,0 0.766
1.2 0 617
1.4 0.484
1.6 0.372
1.8 0.281
2.0 0.210
2.2 0.155

0.1033
0.1513
0.1601
0.1422
0.1066
0.0608
0.0086—0.0459—0.1006—0.1528—0.2026

2.4 0.114
2.6 0.083
2.8 0.061
3.0 0.043
3.4 0.022
3.8 0.011
4.2 0.005
4.6 0.003
5,0
5.4
5.,8

csrL(r} r

—0.2487 6.4—0.2890 7.2—0.3261 8.0—0.3582 9,0—0.4071 10,0—0.4406 11.0—0.4573 12.0—0.4602 13.0—0.4533 14.0—0.4388 1'5.0—0.4181

csrL(r)

—0.3787—0.3205—0.2615—0.1949—0.1406—0.0987-0.0671—0.0456—0.0302—0.0197

The product functions HC and FC can be
compared by plotting or tabulating their separate
1s and 2s factors. Table IV gives the results for
FC, the quantities tabulated being the "radial
amplitudes" c~rK(r) and c&rL(r), with cr and c~

so chosen that each factor separately will be
normalized with respect to integration over r
alone. Since these two factors are not orthogonal,
these normalization constants are not the proper
ones for constructing a normalized atomic func-
tion; for the same reason, caution should be
observed in comparing these orbitals with those
given by other authors who have used the Fock
method in problems where the symmetry was
such as to permit solution in terms of orthogonal
orbitals, In such cases comparison should be
based on the complete atomic functions. Fig. 2

shows our 2s factors of HC and FC; the 1s factors
mould on this scale be imperceptibly different
from the He+ orbital, and are not shown. The
figure shows that the 2s factor of FC is more
diffuse than that of IIC; this difference of course

TABLE IV. Radial functions in FC.

carries over into the total charge density, since
that due to the 1s factor and to the exchange is
nearly the same in both cases. Fig. 1 shows that
the total charge density due to FC is somewhat
excessive at large r, w'hile both IIOC and II,C err
more seriously in the opposite direction. These
results contrast with those of Hartree and
Hartree, "who find for Be that the Fock density
is more compact than that given by the self-
consistent field theory, and surmise that this is
a general relation. The origin of the difference
is not far to seek. In the case of excited He, the
exchange term occurs with a positive sign, just
as in the Heitler-London treatment of two
attracting H atoms; and for the same reason:
there exists a degeneracy of configurations of the
same total spin. In Be, and in general in atoms
where the inner shells are filled, the situation
resembles that of two repelling He atoms, in
which there is no degeneracy of configurations
and the exchange terms have negative coef-
ficients. It is not surprising that the effects of
considering exchange should be of opposite
character in these contrasting cases. Similar
remarks apply to the mean values of r' cor-
responding to FC and II,C. We find the former
some 16 percent greater (see Table I), while in
Be it is 11 percent smaller. (The Hartrees give
8.42 and 9.54 as the respective contributions
from each electron in the 2s orbit. A rough
numerical integration of their 1s function gives
0.23 as the corresponding r', making the mean
values per electron 4.32 for FC and 4.88 for
H,C.) This result, however, is to be expected
only in excited atoms, and therefore is hardly
an objection to the general usefulness of the
statement made by the Hartrees, that wave
functions calculated by the method of the self-

"D. R. Hartree and %. Hartree, Proc. Roy. Soc. A150,
9 {1935).



WAVE. FUNCTIONS FOR HELIUM 683

~2

3

.-5 I I I I I I i

8 4 5 6 7 8 Ba„r-
Fro. 2. 2s orbitals of Hartree function (II} and Fock

function (F). Curves show rl. (r), normalized to 1 on
integration over r.

consistent field appear always to give too large
a value for the diamagnetic susceptibility.

THE POLARIZATION METHOD

The relation betwee'n the Fock function and
those which are not restricted to the orbital
form may be qualitatively understood with the
aid of the polarization theory developed by
Hylleraas'4 and Bethe. ~ The method, primarily
applicable to highly excited atoms, makes use
of a separation of variables similar to that gener-
ally used in molecular problems. The outer
electron is regarded as moving so slowly in com-
parison with the inner that the motion of the
latter is essentially that of a particle about two
fixed centers, and may be represented by a wave
function u2(1), a solution of the differential
equation

(——',Vp —Z/ri —Z/r~+1/rim)N2(1) =Z~l, (1),

which is regarded as a function of the coordinates
of electron 1 only, those of electron 2 entering
as parameters. This function will differ from
E(1), the Hartree inner orbital, by being shifted
in a direction away from the instantaneous
position of the outer electron, so that its r'e-

pulsive effect upon the latter is reduced. The
outer electron is in turn considered as moving in
the field of the thus polarized inner distribution
plus that of the nucleus; its motion will be de-
scribed by v(2), a solution of a non-Coulomb
central field problem. Clearly v(2) will be more

'4 E. A. Hylleraas, Zeits. f. Physik 66, 453 (1930).

compact than the corresponding Hartree orbital,
in determining which the polarization of the
inner orbital was neglected. As an approximate
solution of the wave equation one then takes the
definite function P=u2(1)s(2); there are no
further steps of successive approximation, so
long as polarization is dealt with in this manner.

In the case of a moderately excited atom the
reasoning loses sharpness. In the first place,
there is a considerable probability of the electrons
being at comparable distances, so that neither
can be regarded as almost stationary. In such
configurations, we must (in terms of the classical
analogy) think of the orbit of each electron as
somewhat polarized by the instantaneous prox-
imity of the other, but to only a fraction of the
extent which would be caused by a stationary
electron, since the actual electron does not
occupy any given position long enough for the
full effect to develop. The polarization correc-
tion as given by the Hylleraas-Bethe theory will
therefore be excessive in the region of penetra-
tion. In the second place, the exchange terms
required by symmetry are not negligible, and
their interpretation is not clear. It is assumed
that f=g2(1)s'(2)+ui(2)v'(1), in which u~(1) is
the function obtained above, while v'(2) is the
solution of the variational problem in which the
energy of the complete function is minimized.
To a first approximation the corrections due to
exchange will be independent of the polarization
corrections, and one may expect s(2) and s'(2)
to be related in the same way as the outer orbitals
given by the Hartree and Fock methods,
respectively.

We shall now show that even in the compar-
atively little excited state which we are now con-
sidering, the qualitative, and to some extent the
quantitative, properties of our functions are
those indicated by this theory.

An exact calculation of u2(1) would be very
difficult. Bethe' and Ludwig" have applied a-per-
turbation method, starting with the simple He+
function I'(1), and calculating the first-order
perturbation produced as the outer electron
moves in from infinity. They use an expansion
in surface harmonics, and obtain only the terms
in I i and P2, the first being much the more im-
portant. We have obtained a general formula for

1' G. Ludwig, Helv. Phys. Acta /r 273 (1.934).
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these terms, and have included in our computa-
tations terms in I'o and P3 (D. etails are reserved
for a separate section. ) The new terms are small
except when the second electron is only slightly
beyond the first, or even inside it,—that is, for
configurations for which the basic ideas of the
method break down anyway.

The function v(2) has received practically no
discussion by previous authors, who have been
concerned primarily . with determining energy
values, for which purpose they have used Fock
or even hydrogenic outer orbitals, as being suf-
ficiently good in the case of highly excited states.
We have not attempted to determine v (2)
directly, but have investigated an "empirical"
v(2) of form so chosen that, when combined with
our approximate values of u~(1), it reproduced
CC as well as possible. In the outer regions, this
function is well defined by the total radial
density; since the exchange terms are negligible
here and u2(1) is normalized for integration over
dv&, the density gives immediately the square of
v(2). In the inner region, the choice of v(2)
becomes increasingly arbitrary; no values can
be found which give consistent agreement, and
those selected will serve as well as any to show
the magnitude and nature of the discrepancies.

In Table V are indicated values of the assumed
v(2), the corresponding atomic function PC, and
CC, for several configurations. We also include
the angle variations (differences in the function
for configurations with the same r~ and r~, but
minimum and maximum values of r~2, compared
with the mean value over all values of r~~). This
table shows that, as expected, the function v(2),
in the region where it is well defined, is appreci-
ably more compact than the Fock outer orbital,
and that it leads to an atomic function in quite
satisfactory agreement with the correct function,
both in absolute magnitude and in angle vari-
ation. The angle variation furnishes a particu-
larly good test of the polarization theory, since
the values calculated are only slightly dependent
upon the form assumed for v(2). In the inner

region, on the other hand, the agreement becomes
much worse, and the angle variation according to
the polarization computation is much too large,
likewise as expected.

Reasoning similar to that above can be applied
to the determination of the function RC. The

inner function u&(1) now describes the motion of
the first electron in the field of a second electron
distributed over a sphere with radius r2,' the
first-order correction is given by the term in I'0
of the complete polarization theory. The "polar-
ization" takes the form of an increasing diffuse-
ness of u~(1) as r2 becomes smaller. It must also
result in some contraction of the outer function
v(2), compared with L(2), but the smallness the
I'0 term in the polarization correction indicates
that this should be insignificant, except for very
small r2.

COMPARISON OF THE FOCK FUNCTION WITH

MORE ACCURATE FORMS

Except for the complication introduced by the
exchange terms, we have now a basis for com-
parison between RC and FC. In Fig. 3, we have
plotted r~r2RC in the form of a series of curves
for fixed values of r&, which we may regard as
cross sections of the surface representing r~r2RC

as a function of rj and r2. These cross sections
are practically indistinguishable on this scale
from those corresponding to FC . For small r I,
they have essentially the character of a 2s
orbital, while, as r j increases, they pass over into
the 1s orbital form. The exchange effect, a neces-
sary consequence of the symmetry of the
function, largely masks that due to polarization.
It happens, however, that, for r~=0.2, FC gives
r&X(1)=0.756, rrL(1) =0.1033, while for r& 1.0——
we find r~X(1) =0.766, rrL(1) =0.1066. A com-

parison of the corresponding cross sections for
RC and FC therefore practically eliminates the
exchange effect, since the amounts of 1s and 2s

orbitals present in FC are almost the same in

both cases, and the exchange effect is supposed
independent of the polarization correction. These
cross sections are shown in Fig; 4. For large r2

and small r&, both FC and RC reduce practically
to the single terms X(1)L(2) and u~(1)v(2).
Further, u&(1) is, as shown by computation,
practically indistinguishable from X(1), so that
in this region we are essentially comparing v(2)
with L(2); it is seen that the difference between
RC and FC is practically the same for both values
of r~ and corresponds to a slight contraction in

the outer function. On the other hand, when

both r's are small the two terms in the function
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smaller values of ri and r2. Here the differences
in CC with varying ri& are much greater than the
differences between RC or I'C, and CC, the mean
value of CC for given ri and r2. RC is in fact a
fairly good approximation to CC everywhere;
from this the satisfactory agreement of the charge,
densities for RC and CC follows.

COMPLETE DETERMINATION OF FIRST-ORDER POLARIZA-

TION OF THE CORE

We require a solution of the equation

(-,'Vi'+B(rg)+Z/ri+Z/r2 —1/ri2)u2(1) =0, (1)

where r2 is considered as a fixed parameter, and u~(i) is a
function of the coordinates of electron 1 which depends
upon the position of electron 2. We regard (1/ri2 —1/r2) as
a perturbation term, small of the first order. Then, in terms
of the new variables

P=Zri, R=Zr2,

we find the zeroth approximations for solution and energy
to be

uP(i) (Z/2)ce ~, cs =4Z/x, BP(R) 2Z' Z(Z 1)/R

To the first order, the energy is Ep(R}+&i(R); where

ei(R) = —Ze ~+(1+1/R). The first approximation for the
solution is assumed to have the form

N2(1) =u'(1) I 1+ Z f~(1, 2)P~(cos Him) I. (2)

To determine the f (1, 2), we expand 1/ri~ in spherical
harmonics, substitute (2) in (1), and equate terms of cor-
responding order of smallness and involving the same
harmonics. Let u (1)f (1, 2) = p„(p). There result the
equations

~ p"—~ p+2(v p'+9 p)/P
e '~(1+1/R) for p&R, (3)
I e '~(1+1/R)+1/p —1/Rj for p&R.

+2(v' +I' )/P n(n+1)lP
p"/R"+' p&R=ce ~ R, +,

' ', n)O. (4)

Ludwig gives the solutions of these equations for n=1, 2.
(Through an error, he introduces a factor 2 on the right
side, but his solutions are correct except that in his Eq.
(15a) (1+R') should read (1+R)'.) The general solution for
n &0 may be obtained in the same way.

The case n=O presents some interesting peculiarities.
For the region p&R, a particular solution, everywhere
finite, is found to be

q i, ———',e '~(1+1/R)ce ~fbi(2P)
log (2p) p (e"—1)/2p j (5)

To this may be added a constant, a{R),times that solution
of the homogeneous equation which remains finite for
P~O. Similarly, for p&R a particular solution, vanishing
properly at infinity, is

rp«q ———,'ce "I[e '~(1+1/R)+1 —1/Rj
X I 1/2p —log (2p) —pj+pI ~ (6)

For p&R, f„=—(1/Z) IA„(p)B (R)
+I C (p) —D (p)Ã (R)+H (R) I

For p&R, f„=—(1/Z) IC (p) f B (R)
—Ii„{R)j—G„{p)R"+Z„(R' t.

For n=O, we find

Ap(x) =1 Bp(x) =0
Cp(x) = 1/2x —x—log (2x) Dp(x) =e ~/2x —Ei(2x)

Ep(x) = —e '*(x+1)/x Fp(x) = (x—1)/x

Gp(x) =x
H.(x) =.—.Ix+2C—-;-+(2C—1)/x

+(1+1/x) log (2x)+(1—1/x)e'~&( —2x) I.

Xp(x) =Hp(x) —
I (e 2~Bi(2x) —1)(1+1/x)

+log (2x) (1—'1/x) I.
C represents Euler's constant.
For n &0, we let n(n+1)/2 =m; then

A „(x)= (n+1)x~+nx~+'. B„(x)=1/2mx "+'.

C„(x)= 1/m+1/x+m/2!x'+m(m —1)/3!x'
+m(m —1)(m —3) /4!x4

+m(m —1)(m —3) (m —6)/5 ~x'+

D„(x)= —,'e'*(—1)"+'
I 1/x' —(m —1)/x'

+ (m —1)(m —3)/2!x4 —~ ' ~
I

g„(x)= —,'e ' (—1}"+'(2n+ 1.)(1+x) I 1/x
+m/x'+m (m —1)/2!x'+ ~ ~ ~ )

F~(x) = —
g (2n+1) (1+x) I 1/x —m/x'

+m (m —1)/2!x3—~ ~ ~ I.
G (x) =(n+(n+1)x)B„(x).

H„(x) =0. X„(x)=0.

To this may be added a constant, P(R), times that solution
of the homogeneous equation which vanishes properly for
p~ao. One would expect the constants a and p to be
determined by the conditions that the two solutions and
their derivatives must have the same values at p=R.
However, it turns out that the two required solutions of
the homogeneous equation are identical, namely, uP(1)
itself. Continuity of function requires

P —a =PP = (1/Z) I (e ~&(2R)—1)(1+1/R)
+log (2R) (1—1/R) I, (7)

and it is found that this relation also leads to continuity of
derivative.

There are therefore an infinite number of solutions of the
complete equation which satisfy the boundary conditions.
The one desired is that which is orthogonal to the unper-
turbed solution (a requirement which does not need to be
considered when n&0, since orthogonality is assured by
the presence of the factor P„(cos Oi2}). We have, therefore,
(since u'(1) is normalized),

R
o.(R}= —(4~/Z') I q,„uPP2dp

0 '

+J (y, t+P'u')u'p'dp5 (8).

The final expressions for f„(1, 2) may be conveniently
thrown into the form:


