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The Theory of the Band Spectra of PH and NH
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The theoretical formulae for the effect of molecular ro-
tation on spin multiplets are considered for triplet cases,
The form of the "swelling" term in D is found for the'
limiting case a, and its importance is evident in the ex-
planation of the experimental observations on PH and NH.
Formulae are given, from which the molecular constants
A, 8 and D can be calculated. This has been done for the

two examples mentioned, moreover for PH the A-type
doubling has been calculated from the theoretical formulae
derived by Hebb, and is found to agree well with experi-
ment. The explanation of the observations on NH neces-
sitated considering an appreciable p-type tripling in the
'Z level, which has not been observed before.

1. INTRoDUcTIoN

HE rotational distortion of spin multiplets
was erst considered by Kemble, ' using the

methods of the old quantum theory. The next
step was taken by Hill and Van Vleck, ' who
started from Hund's case b type' of coupling,
and, with the new quantum mechanics, found
the energy formulae and amplitudes for the
general case which has a type of coupling inter-
mediate to cases a and b. A later development
by Van Vleck4 took case a as the unperturbed
system and for doublet and triplet states,
obtained formulae identical with the formulae
of Hill and Van Uleck. They have been applied
with considerable success to the explanation
of doublet spectra, but little has been done
towards the explanation of triplet spectra. This
is largely because the formulae are not put in
suitable form for direct comparison with experi-
ment. The energy values, which are the roots
of a cubic equation, have been given in the form
of expansions, but these are valid only for
certain regions of convergence, and do not pro-
vide a very satisfactory test of the theory. These
energies can be evaluated by a numerical
method, provided the molecular constants are
erst determined with considerable accuracy.

In this paper expressions are obtained from the
coe%cients of the equation, which is cubic in the
energy value, which give the molecular constants
B, D and A, for all values of the rotational

~ Now at University College, Dundee Scotland.' E. C. Kemble, Phys. Rev. 30, 387 (1927).
2 E. Hill and J.H. Van Vleck, Phys. Rev. 32, 250 (1928).' An account of the different coupling cases is given in the

article by Hil'. and Van Vleck, reference 2; cf. also R. S.
Mulliken, Rev. Mod. Phys. 2, 105 (1930).

4 J. H. Van Vleck, Phys. Rev. 33, 467 (1929).

quantum number J. In calculating these con-
stants we do not take into account the terms
which give rise to the A.-type doubling. The best
test of the theory occurs in the determination of
the constant A. The expression which is derived
for A is peculiarly sensitive to errors in the
values of B and D, and in the case of NH it
showed the necessity of taking account of a
slight splitting of the Z levels.

2. THE MATRIx oF THE D TERM

It can be shown from simple classical consider-
ations' that the total rotational energy for a
case b type of coupling, can be written in the
form

5'„=8¹+D¹+,
where N is the nuclear angular momentum. The
value of N is given in terms of the rotational
quantum number X and the quantized compo-
nent A of the orbital angular momentum along
the electric axis, by

X= (X(%+1) —A') '. (2)

We take 8'„as the form of the unperturbed
energy, when the coupling between the spin
angular momentum and the electronic orbital
angular momentum of the molecule conforms to
case b. In future we shall take a factor 8 out of
the matrices, including those matrices which
were given by Hill and Van Vleck, and Van
Vleck, and we shall write

), =A/B, IJ, =D/B.

The unperturbed energy for case b will therefore
give a diagonal matrix

' R. S, Mulliken, Rev. Mod. Phys. 2, 99 (1930).
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where IIb IItb+IIy y (6)

P)5(r; I)S*(r', I) = 0 if r'/r
if r'=r.

Van Vleck has set up the matrix corresponding
to a case a type of coupling, and has shown that
(5) transforms over to this case for doublet and
triplet states, when A —+~. We shall write this
matrix for case a

II,=II„,+IIp.

IIp comes from the interaction of the spin and
electronic angular momentum and has the form

FI, =XXZ.

The matrix II„, is independent of X. If we let S~

H„b ——¹+P¹
The perturbing matrix II~, has been given by
Hill and Van Vleck. We shall not require the
explicit values of its elements, but simply ob-
serve that they will have ) as a constant factor.
The solution of the problem in the general case
will then be given by the solution of the set of
linear equations

W(r; r)S(r; r') —P~H~(I; r')$(r; t) =0; (5)

be the matrix which carries (4) over into case a,
and S~* be the transpose of the conjugate of S~,
then

II,=SgIIbSg*. (10)

The expression on the left equated to zero serves
to define S~. Then substituting the value of II,b,

given by (4), into the second of the Eqs. (11),we
obtain

II„.=SgN'Sg*+ pSg¹Sj*
=II+pII'

(12)

where we use II to denote the matrix S~¹S~*
whose elements have been given by Van Vleck.
The addition to that theory is found in the
presence of the matrix @II', which occurs when
the effect of the terms in D is taken into account.
This result serves to show that the main contri-
bution of these terms to the energy, for case
a type of coupling, is of the diagonal form
DJ'(J+1)', corresponding to the fact that the
main contribution of the terms in 8 is of the
form BJ(J+1).

Using the expressions (6) and (8) in Eq. (10)
and equating the terms in X to zero, we find

IZO Spy—„Sg* H„,——SgH—,AS(* 0. ——(11)

3. FORMULAE FOR 3II STATES

We first give the elements of the matrix II, for a 'II state. In order to simplify the algebra later, we

subtract from the diagonal elements the value of

-,'Spur H, =J(J+1)——,'+p{J'(J+1)'+4J(J+1)+5/3}; (13)

we then find,

II,(IIo, IIp) —-'; Spur H = —X+4/3+2@J(J+1),
H, (II, ; II,) ——', Spur H, = 4/3+4@{J(J+1)—1},
H, (II2, IIg) —-', Spur II.= X —8/3 —6p{J(J+1)——', },
H.(11„II,) =H. (11,; II,) = [1+2'{J(J+1)+1}){2J(J+1)}**,

H. (II, ; II,) =H.(II„II,) = [1+2&{J(J+1)—1}j{2J(J+1)—4}—:,

H~(112, 11$)=H,(IIO,'II2) = 2/{J(J+1)—2}'*{I'(J+1)}'

The existence of terms proportional to p=D/B in the diagonal elements of IZ, shows that in the
limiting case a the effect of the D terms on the energy is not simply DJ'(J+1)' for all three compo-

nents, as usually assumed in the literature. Instead this effect is not quite the same for all components,
the difference being of the order DJ(J+1),and the apparent triplet separation is accordingly modi-

fied to this extent by centrifugal expansion.
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The energy levels for the general intermediate case between cases a and b, will be given by the
roots of the equation'

i, (W/B) b(Z Z') II (—Z Z')
i
=0 Z Z'= —1 0 1

we obtain kg(J)/6(2 J+1)=B+4D+2D{J'+J+1).

The constants 8 and D

Using Eqs. (14) and (13), we find

Spur W(J) =B Spur II,= —(B 5D)+—3(B+4D)J(J+1)+3DJ'(J+1)'.
Therefore, writing hq(J) =Spur IW(J+1)—W(J —1) }=Spur W(J+1)—Spur W(J—1),

(13)

(16)

(1&)

The values of h~(J) can readily be found from the experimental data by using the difference combi-
nations for the IIO, IIj, II~ levels,

Wg(J+1) —W~(J —1) =Qi(%+1)—Oi(%+1)=53(Z—1)—Q3(E—1),

Ws(J+1) —Ws(J 1)=Rg(Z)——P2(E).
(18)

The values of B and D can then be found by plotting A~(J)/6(2 J'+1) against J'(J+1), and interpret-
ing the slope and the intercept of the straight line according to Eq. (1'7). As has been mentioned in
the introduction, Eq. (17) will have some small additional terms which give rise to the A-type doubling
and consequently the results will be slightly different according as the A or the I3 levels are con-
sidered. This is not of much consequence in the cases considered subsequently.

The coupling constant A

After making the transformation

2= W/B —1/3 Spur H. ,

—Z'+aZ+P =0; (20)

~=V —41 +(4/3)+4J(J+1)+8J(J+1)I2J(J+1)+1}~
—4I2J(J+1)—1}Xp+16J'(J+1)'IJ(J+1)+1}p',

P = —(4/3) X'+ (4/3) lb+16/27+ (8/3) J'(J+1)+ (terms in y).

The values of Ii can be found from the differences

&'= (1/B) (W' —a Sp«W) = (1/B) (Q'i, ~. 3
—Q'i, 2, ~)'

We here use the suffixesi and j, which have the values 1, 2, 3, to designate the energies or term
values of the IIO, Oi, or II2 states.

Analogous relations can be obtained from the other branches. This would give a method for de-
termining the constant A, as Eq. (17) is quadratic in X. It is, however, possible to determine X by a
simpler method, which is probably more accurate, as it does not depend upon the readings of so
many term values. This is to use the identity

-', (E&—Es)'+-', I(Ei—Zs) —(E2—Z3) }'—= (Spur E)'—3 P Z;Z;=3n,

which gives the relation

4B '(Wi —Wg)'+-,'B 'I(Wi —Wm) —(Wg —Wg)}'=3(X—2)' —8+12J(J+1)
+24J(J+1)I2J(J+1)+1}p—12I2J(J+1)—1}Xp+48J'(J+1)'IJ(J+1)+1}y'. (23)
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The terms on the left-hand side of this equation can be calculated from the experimental data.
8'~ —8"2 and 8"2—S'3 are the separations between the II0 and the IIj components, and the II~ and
the H:q components, respectively, for a given value of J. 8'~ —S"3 is the sum of these separations, and
is therefore what is known as the over-all spin-multiplet width. These differences are given by

Wi(J) —W2(J) =P'(J+1) P'(J—+1)= Q'(J) —Q'(J) =R'(J—1)—R'(J —1),

Wg(J) —W3(J) =J"(J+1) P'(J—+1)='Q'(J) —Q'(J) =R'(J 1) —R'(J— 1). —

The value of p has previously been determined, and so (li —2)' can be evaluated for diRerent values
of J. The term in Xp in Eq. (23) is small, and hence an approximate value of X can be introduced
without causing much error. We naturally expect to find the values of (X—2)' constant, if the par-
ticular molecule considered has a type of coupling intermediate to eases a and b.

When the constants X and p have been calculated in the manner indicated, a good check on the
agreement with experiment can be obtained by calculating the values of E from Eq. (20). This can
readily be done by a numerical method.

4. COMPARISON %'ITH EXPERIMENT

The X3400 band of PH

This band was analyzed by Pearse6 and shown
to consist of nine branches, representing 'II~'Z
transitions. The graph in Fig. 1, drawn accord-
ing to Eq. (17) gives the values, 8=8.024 and
D= —5.42. 10 4. The values of A calculated for
different values of J from Eq. (23) were found to
remain nearly constant. The average value was
taken to be A = —115.4. In Table I are given,
the values of E calculated from Eq. (20), with
the values of the constants given above, and
also the values of E found from the experimental
data by' the relations (21).The agreement of the
values of E determined from experiment and
theory is good for all values of J, although the
terms in p in the coefficients a and P in Eq. (20),
and terms giving rise to the A-type doubling,
have not been taken into account.

TssLE I. Comparison of experimental and theoretical results.

The A-type doubling for PH has been calcu-
lated according to the formulae given by Hebb
in the preceding article. In Fig. 3 the full lines

join the calculated values for diAerent values of

J(J+1), and the experimental values are repre-
sented by points. The agreement is good, and
particularly striking is the manner in which the

u'5
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Fro, 1. Graph of Eq. C,
'17) for PH.

EXPERIMENTAL RESULTSJ EI
THEORETICAL RESULTS

Twm, E II. A.-type doubling. Comparison of experimental and
theoretic al values.

2 16 59
3 17a33'
4 18.24
5 19.33
6 20.54
7 21.72
8 23 23
9 24.68

10 26.19
27.71

12 29.36

0.81
0.72
0.61
0.48
0.38
0.27
0.18
0.10
0.03-0.03—0.14

—17.41—18.04—18.85—19.81—20.91—22.12—23,41—24.78—26.21—27.67—29.22

16.46 0.96
17.22 0.84
18.19 0.70
19.31 0.55
20.57 0.42
21.98 0.29
23.40 0.18
24.93 0.08
26.53 0.00
28.17 —0.08
29.86 —0.14

-17.42—18.06—I8.88—19.86—20.98—22.27—23.58—25.02—26.53—28.10—29.72

' R. W. B. Pearse, Proc. Roy. Soc. A129, 328 I'1930),

0

2
3

5
6
7
8
9

10

+0.12
+0.07
+0.09—0.02—0.02—0.12—0.16—0.25—0.24—0.21—0.10

0.07
0.18
0.29
0.32
0.37
0.53
0.59
0.57
0.62
0.57

EXPERIMENTAL
II0 Ds

0.08
0.18
0.02
0.09
0.10
0.30
0.35
0.54
0.63

+0.14
+0.06—0.03—0.10—0.16
-0.21—0.22—0.21—0.20

THEORETICAL
II1

0.14 . 0,00
0.26 0.02
0.37 0.04
0.47 0.09
0.55 0.10
0.60 0.25
0.62 0.36
0.61 0.50
0.57 0.66
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FIG, 2. Graph of Eq. (17) for NH.

maxima and minima occur in the 'II~ and 'IIO

levels. The values of the three constants, which
occur in the manner indicated by Hebb, mere
found to be:

Co ——0.12 cm—', C~ ———0.125 cm ',
C2 ——0.0090 cm '.

The )33M band. of NH

The experimental data given here mere ob-
tained by Pearse. ' Batsch has also observed
these bands, but his data do not extend near
to the origin of J, and he has observations only
for the I' and R branches. Pearse obtained
observations for the three components of the
I', Q and R branches. Batsch, however, has not
given any observations for a Q branch, but he
observed, in addition to the I' and E. branches,
a number of faint lines which were separated
from them by distances varying from about 4 to
6A. He attributed these lines to transitions for
which the change in the spin quantum number is
AS= ~1, whereas the P, Q and R branches
correspond to transitions for which 65=0. This
is a reasonable explanation if the faint lines
exist; however, Batsch apparently assumes that
the observed separation of from 4 to 6A is
caused by the A-type doubling. This could not
be the case, but a possible explanation is that it is
caused by the tripling of the Z levels, caused by
the spin structure. This cannot be shown'. directly
to be the case, since the observations of the faint
lines made by Batsch are not reliable enough
to take for this purpose, but it can be shown

' Unpublished work kindly communicated to the writer
by Dr. Pearse.

"H. Batseh, Ann. d. Physik 18, 81 {1934).

-04S t
J(J'+IJ ~ g'0 joo

FIG. 3. A-type doubling for PH. The full lines join the
calculated values of the doubling and the observed values
of by~(J) are represented by, + for the 'IIO level, X for the
'III level, Q for the 'II~ level. The experimental results are
obtained from the relation,

kgb(J) = -,'LFg(7+1)+Fg(J)j——,'LFg(J+1)+Fg(J)j.

that there is an appreciable separation in the
Z levels, in the manner indicated in the following
paragraphs.

The data co'uld be made to 6t the theory, on
the assumption that the nine branches given by
Pearse were Pq, P~, I'3, Q~, Qq, Q3, Rq, R2, Rl
branches. The values of B and D were 6rst
calculated according to Eq. (17). The graph is
shown in Fig. 2, and the experimental points are
found to be represented well by a straight line
except for very lom values of J, The latter devia-
tions are presumably caused by inaccuracies in
the observations, or some small effect which has
not been taken into account as, for example, the
perturbations caused by other excited levels of
the molecule. The values of the constants mere
found to be B=16.322 and D= —17.3)&1.0 4.

The structure of the Z level was then in-
vestigated, as far as was possible from the limited
data at hand. We write W'(X) for II levels
with J=X, and W"(X) for 2 levels with a given
value of' X. Then we take the following diAer-
ences:
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Pi(X+1) P3 (—X+1) = Wi'(X) —W3'(X) —
I Wi" (X+1) —W3"(X+1) I,

~,(X—1}—Z.,(X—1) = W, '(X) —W, '(X) —
I W,"(Z' —1) —W,"(X—1) I.

Subtracting Eqs. (25) we get

P,(X+1) P,(—X+1)—I Ri(X—1) R3(—X 1)I—

(23)

= —
I Wi" (X+1)—Wi"(X+1)I + I Wi" (X—1)—W3"(X—1) I =4y, (say). (26)

If there were no p-type tripling the result of
taking the difference on the left of Eqs. (26)
mould be zero. We 6nd, however, for diferent
values of J that this gives a value which is
always negative and nearly constant and equal
to —0.20, which leads to the value y= —0.05.
Consider now the second of the Eq. (26). This is
a difference equation whose. solution will be

Wi" (X)—Wi" (X) = —2yX+ constant. (27)

This is the result we get from the usual theory of
p-type tripling. y is the constant, which on the
conventional theory arises from the interaction
of the resultant spin 5* with the 6eld produced
in the direction X by the forced rotation of the
electron system around this axis. The same result
is also obtained from the alternative theory of

F16.4. (X—2)~ calculated for NH. The variation with J is
shown hy, (+) when terms containing D and y are ne-
glected, (X) when terms containing y are neglected, (Q)
when the terms in D and y are taken into account. The
latter calculation gives the nearly constant value of
(x—2)~ = j.7.7.

p-type tripling in 'Z states, given by Hebb.
We now calculate the value of (X—2}' given

by Eq. (23). It was found that the result was
particularly sensitive to the value of B chosen,
and also to the small term in y. The effect of
taking into account the various terms arising
through the presence of these constants, when
calculating (X—2)', is well shown in Fig 4. .
The terms in y are introduced into the expres-
sion for (X—2)' in the following manner:

(Wi —Wg) ' = [(Wi' —W3') —(Wi" —W3")]'
=(W,' —W3')' —2(Wi' —Ws') (Wi" —W3"), (28)

neglecting the term in (Wi" —W8")'. Therefore,
if we use Eq. (27), the first term on the left of
Eq. (23) becomes

(Wi —W3)'= (Wi' —W,')'
—28(Wi' —W, ') (—27X+C}. (29)

The effect of the separation in the Z level, on
the second term on the left of Eq. (23), is
negligible. In the calculation the best value of
y, chosen to make (X—2)' a constant, was found
to be y= —0.06. This value is very close to the
value y = —0,05 which was found directly from
a consideration of the Z levels.
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