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Theoretical formulas based on the work of Van Vleck
are developed for the A.-type doubling in 'II states with
coupling intermediate between Hund's cases g and b.
Heretofore only the limiting cases u and b had been con-
sidered for triplet states. It is shown that, in addition
to the usual splitting caused by the II —Z interaction, there
is a contribution to the doubling of the 'IIo component
which arises from the magnetic spin-spin coupling between
individual electrons. The expressions for the doubling
necessitate the numerical solution of a cubic equation for
each value of J but are otherwise simple and easy of ap-
plication. Comparison with experiment is made in the

case of N2 where good numerical agreement is found.
The fine structure of 'Z states which is called p-type
tripling is also considered. It is shown that this fine struc-
ture can arise from perturbation by II states —a sort of
reflection of the A.-type doubling in these states. Curiously,
it is found that the formulas which are derived in this
manner give separations depending on the rotational
quantum number X in exactly the same way as the formu-
las of Kramers which were obtained from quite a diferent
origin, vis. , spin-spin interaction and coupling of the spin
to the rotational magnetic moment of the molecule,

INTRODUCTION

HE general theory of A-type doubling in

diatomic molecules, including spin effects,
has been treated by Van Vleck. ' He has calcu-
lated the width of the A-type doublets explicitly
for 'll states intermediate between Hund's cases
a and b but for 'G states only in the ideal limiting
cases a and b. The general intermediate case for
molecules in 'H states will be treated in this
paper.

In both Hund's cases a and b the axial Beld due
to the separation of the atomic nuclei is pro-
nounced enough to give the component of the
electronic orbital angular momentum parallel to
the molecular axis a quantized value' A. In
Hund's case c the spin-orbit interaction couples
the spin to the axis of the molecule so that its
parallel component has a quantized value Z. The
sum of A and Z denoted by 0 is the parallel

component of the total electronic angular mo-

mentum. In Hund's ease b the effect of the
rotation of the molecule on the spin predominates
over the spin-orbit coupling and the spin becomes

decoupled from the molecular axis. Then of
course 2 and 0 cease to have a meaning.

In the absence of molecular rotation the two
states (A, Z) and ( —A, —Z) are ordinarily'
degenerate since they differ only in the sense of
rotation about the molecular axis. The rotation
of the molecule removes this degeneracy and
results in a splitting of the energy levels. This
separation is called the A-type doubling.

Following Van Vleck we shall consider the
interaction between the 'lI state in which we are
interested and a single '5 state. We shall later
take account of the remaining 'Z states by a
summation. This is, of course, equivalent to
6nding the interaction between the 'II state and
all the 'Z states but of neglecting the inHuence of
the '2 states on one another. The '6 states have
a negligible effect on the A-type doubling in 'lI
states and are disregarded.

Van Vleck has given the Hamiltonian matrix.
elements for the diatomic molecule using

an unperturbed representation appropriate to
Hund's case a. These elements are'

' A preliminary report of this work was given in abstract
13 of the Minneapolis meeting of the American Physical
Society„June 1935 (Phys. Rev. 48, 475 (1935)).' J. H. Van Vleck, Phys. Rev. 33, 467 (1929).

3 Strictly, the parallel component alternates rapidly
between +A and —A and has an average value zero. Its
square, however, has the quantized value A2. As is custom-
ary, the angular momentum is measured in quantum
units h/2~.

' Note, however, the exceptional case of 'IIo where the
degeneracy between the two A components is removed by
the spin-orbit and spin-spin coupling even for J=0.

' J.H. Van Vleck, reference 2. The first three of Eqs. (1)
are, respectively, Van Vleck's Eqs, (32), (31) and (29); the
fourth follows immediately from Eqs. (54), (30} and (20)
with the modification explained at the foot of' page 493
of his article.
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A —TYPE DOUBLING

3C(evAZ; nvAZ) = C(nvA; nvA)+ A (nvA; nvA) AZ+B(nvA; nvA) [J(7+1)—Q'+5(5+1) —Z'j

K(iivA&; rivA&&1) =B[J(J+1)—Q(Q&1)jr[5(5+1)—Z(~&1)3',

~(vvAZ; ~'v'A~1m) =2(BI..)(nvA; nVAa1)[(JWQ+1)(JWQ)]'*

~(&vAy. ; ~'v'A~1Z~1) = (AI..+2BL„)(nvA; n'v'A~1) [5(5+1)—~(~~1)]-'-.

Here R is the total Hamiltonian operator for the
diatomic molecule. The elements (1) are complete
except for omission of the small centrifugal
swelling effect mentioned in footnote 17, a very
small term to take account of the magnetic
coupling of the L and S vectors with the held set
up by the molecule's end over end rotation, and
the terms due to the magnetic spin-spin inter-
action which will be considered in the next
section. The symbol A denotes the coef6cient of
the spin-orbit coupling which is taken to be of the
form A(L 8). The additive constant C is fixed
for an electronic state and serves to give the
molecular energy exclusive of multiplet and
rotational structure. The arguments of A and
B=k'/8 Iirhave not been written in, except in
the first Eq. (1). 1.,(nvA; n'v'A') denotes the
matrix element of the component of electronic
orbital angular momentum in the x direction,
perpendicular to the molecular axis, for the
stationary molecule. The spin quantum number
and the total angular momentum quantum
number for the molecule have been designated by
5 and J, respectively. We have used v for the
vibrational quantum number and n to symbolize
all the remaining electronic quantum numbers
which have not been shown explicitly.

where P is the Bohr magneton and i„jrefer to the
various electrons. The matrix elements of (2) in
our axial representation are all seen to be diagonal
in 0 but may have AA=hZ =0, hA= —AZ = ~1,
oI AA = —Az = &2. Thc clc1Tlcnts diagonal ln
A and Z are not of interest for the A-type
doubling. These elements give rise to the inc
structure of the 'Z state which has been con-
sidered by Kramersv and which will be mentioned
later in section 6. The elements with AA= —hZ
= ~1 yield small terms connecting the II and Z

states. However, as these elements are much
smaller than those of (1) of the same type already
connecting the II and Z states, they can safely
be ignored. On the other hand, the elements for
which AA = —AZ = ~2 have no counterpart in

(1) and though small cannot be disregarded since
they connect the initially degenerate 'IIO states
which have A= —5=+1 and —1. These states
will be designated +'II() and —'IIO, respectively.
The part of (2) which yields elements between
thcI11 ls

3p'Q[s;+s, +(—r;; )'+s, s; (r;;+)'j/r;,

2. MATRIX ELEMENTS FOR THE SPIN-
SPIN INTERACTION

The matrix elements (1) given by Van Vleck
do not include terms which arise from the
magnetic coupling of the individual spins. These
elements are diagonal in 0 and hence were of no
importance in the cases which he considered with
the exception of the doubling for 'IIO states.

The spin-spin coupling energy can be taken in
the form'

X„=4P'Q[—3(s; r;;)(s; r;;)
+(s' s)r' 3/r*, (2)

'See, for example, H. A. Kramers, Zeits. f. Physik 53,
422 {1929}.

and r,;;+=x;;aiy;; = (x;aiy, ) (x;wi—y;).

The 2 axis is here taken along the axis of the
molecule.

Let us suppose, for simplicity, that there are
only two electrons outside of closed shells and
consider the interaction of the states +'IIO and
—'IIO. We may take the orbital parts of the wave
functions to bc

7 H. A. Kramers, reference 6.
The minus sign appearing in P is inserted to take care

of the behavior of the spin functions on reAection in a plane
containing the nuclei. With this convention in phases, the
complete wave function for the +II state transforms into
that for the —II state on the abov'e reflection. Cf. J. H.
Uan Uleck, Phys. Rev. 40, 544 {1932},especially page 559.



M. H. HEBR

P—=tf+*= (8~')—ltg. (rg, 8,)u. (rg, 8,)e '—» —u.(r„8,)~ (r„8,)s—»],

where f+ and P refer, respectively, to the states +'IIO and —'IIO. Here u, (r, 8) is the wave function
appropriate to a single electron having X or m~ equal to zero. The similar function I (r, 8)e'& has
X =m~ = +1.The arguments r, 8, P of these functions are the usual polar variables with the azimuthal
angle p measured in the positive sense around the s axis from the xs plane. Throughout we use an
asterisk to denote the complex conjugate. The functions n(r, 8) without the P-factor can be supposed
real. The expression rl2+ is now the same as r~ sin O~e'» —r2 sin 02e'». We then have

K-(+'110; —'110) = —3P'~t ~t4+*(rq sin 8~s'» —
rm sin 82e'&')'(rq2) 'f dvgls2,

since the spin factors reduce to unity. The integrand is everywhere finite on account of the nodes in
the wave functions P wherever the electrons coincide. Now the interelectronic distance r~& involves the
azimuthal angles g& and @2 only through a factor cos (@z—gz). Similarly, the rest of the integrand
depends on @~—p2 but not on &~+&2. Hence we can transform to these linear combinations as new
azimuthal variables and perform the integration over &~+&2. We then find

K„(+'IIo, —'IIO) = (3/2x)P' r&'dr& r2'dr2 sin 8&d8~ sin 82d82 [(O' —V')/r»"]d(P& —$2)
0 0 0 0 0

where U and V are both real and are equal, respectively, to

[Q (rl 81)Q (r2 2)8lrsin 81+@ (r2 82)Q (rl 81)r2 sin 82] Cos ($1 4I2)

Q (rl 81)Q (r2 82)r2 sin 82 Q (r2 82)Q (r1 81)rl sin 81

L~.(ri, 8i)~.(r2 82)r»in 8i —~.(r2, 82)~.(ri, 8i)r2 sin 82] sin (41 42).

Sign of n('11). It can be easily shown that if the factor r» ' is omitted in (3), then the resulting
integral is positive. The effect of reinserting this factor will clearly be to accentuate the contribution
to the integral from those regions of configuration space where the electrons are very close together.
The contribution from these regions is always positive. This can be shown by holding one electron
fast and expanding the integrand of (3) in a Taylor's series in the coordinates of the other electron
about the position of the first. If one retains only the nonvanishing terms of lowest order and then
integrates over the volume or surface of a small sphere around the fixed electron, one finds that
the result is always positive whatever the position of the fixed electron. Hence, if the functions I,
and I vary slowly enough in space so that the region in which the first term of the Taylor's ex-
pansion is accurate, includes the region of important contribution to the integral, then the integral
will surely be positive.

3. THE A-TvPE DOUBI.&NO

From Eqs. (1) and (3) we obtain the necessary matrix elements for our problem. The. resulting
ninth order Hamiltonian matrix, for the interaction of the II with one Z state, can be reduced to one

of fourth and one of fifth order by applying the well-known Dang transformation whose matrix
elements are given by Van Vleck. ' This reduction corresponds to a transformation to wave functions
with the Kronig (+) or (—) symmetry or antisymmetry on reflection of space and spin coordinates of
all particles in the origin. Such symmetry property the original functions with constant angular

' J. H. Van Vleck, reference 2, p. 495.
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momentum about the molecular axis did not have. This is tantamount to using sine and cosine
rather than exponential azimuthal factors in the wave functions. After the reduction, the Hamiltonian
matl Ices ale

3', 8.(x—3}+A„
'II I 8„(2x—4)»

8.(2x —4}»

8 (x+1)

8„(2x)»

»(&+2~)'

8 (2x)»

8 (x+1)—A +0.
—( —1)~2&'x»

I 1-(-1)'j~*{2x)»
I 1-(-1)'j((+2~)'

8„x—hI (II" Z)

l 1 —( —1}s/8~x&

t 1 —{—1)'$8~»

8„(x+2)—hv(II; Z)

2q(x —2}»

2»{(+2q)

—( —1)~2qx» I 1 —(—1)~g(p+2~)

31r, 8 (x —3)+A

311, 8.(2x —4)»

8.(2x —4)»

8.(x+1)

2n(x —2)»

2»(q+2~) L —1 —(—1}~g~(2x)»

8 (2x)» 8.(x+1)—a„—~ (—1)'2&x» L —1 —(-1)'j(P+Z&) (4b)

»(&+2~)' (—1)~2g*x» 8„x—hI {G;Z) L
—1 —(—1)~j8„x»

t
—1 —(—1)'j~*(2x)» I

—1 —(—1)'g(g+2~)* L —1 —{—1)'j8-x» 8-(x+2) —h.{rr; Z}

B.(x 3)+A. WB—.(2x —4)—&

B.(2x—4) & B (x+1)—W B„(2x)l

B (x+1)—A —W

with x=J(J+1).This equation was given by Hill and Van Vleck" and recently used by Budo" for
determining the "'II energy levels in the intermediate ease u —b.

One sees on passing to Hund's case a by taking B/A equal to zero that the two matrices (4), aside
from the extra diagonal element relating to the Zo state, become identical in 6rst order. The presence

"E.L. Hill and J. H. Van Vleck, Phys. Rev. 32, 250 (1928), page 261."A. Budo, Zeits. f. Physik M, 219 (1935}.

0

with the abbreviations x =J(J+1), $ = (AI.,) (II; Z) and g = (BL„)(II; Z). In writing the matrices (4)
we have used the relation (L,)(+II; Z) = —(—1)~(L, ) (—II; 2), where +II and —II refer to the states
with A = +1 and —1, respectively, and where the exponent Z is zero or one according as the Z state is
5+ or Z . A Z state is dehned as Z+ or Z according as its wave function remains unchanged or
reverses sign on reHection of the eleetronie space coordinates in a plane containing the nuclei.

It is to be clearly understood that for a given 'Z state, elements relating to the 'Zo component
appear in only one of the matrices (4); i.e. , the single 'Zo state factors wi'th (4a) when Z is Z and
with (4b) when Z is Z+. On account of the factors [a1—( —1)~j in (4) all the off-diagonal elements
for the 'Z() state vanish for one of these matrices and the corresponding diagonal element for this
state is to be rejected. Hence one of the matrices (4) always reduces to one of fourth order. Indeed
we could have written (4) directly as one fifth and one fourth order matrix but then the terms &rx
would have appeared with a coefficient (—1)s snd the correspondence of the matrices (4) to the (&)
linear combinations of the original wave functions would have depended on the symmetry of the Z
state. As we have actually written (4), the wave functions which are associated with the first matrix
(4a) are even linear combinations of the original functions and hence are even on reHection of orbital
and spin coordinates in a plane containing the nuclei, while those associated with the second
matrix (4b) are odd. Thus the complete wave functions for (4a) are (+) or (—) and those for (4b)
are (—) or (+) according as J is even or odd.

It may be mentioned here that the secular determinant which corresponds to the II portion of (4)
yields the following cubic equation whose roots are W( II2), W('IIi) and W('IIp) exchlsive of the
A-type doubling effects:
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of the diagonal spin-spin terms +n for the 'IIO states and of the spin-orbit interaction term connecting
the 'IIO and 'Z, states in only one of t:he matrices (4) shows us that, as noted by Van Vleck, i2 there is a
A-type doubling for the 'IIO component even in case c. Using first-order perturbation theory we And

for this doubling

3IIO case a: hD vo = (—1)~+'[W('IIO+) —W('IIO )]=y —2a+ &

with y =4K(—1)s
~
(AI,)(II; Z) ~'/hv(11; Z) and n as defined in section 2. Here z is the contribution

to the 'IIO doubling which arises from interaction of the 'II with»Z and '5 states. Van Vleck»2 has
shown that this interaction, for case c coupling, yields a separation of the IIO states which is inde-
pendent of J, but leaves 'II» and 'IIg levels unaffected. The doubling which occurs when Q=O thus
has a different origin than the usual doubling introduced by the rotational distortion. The subscripts
& in Eq. (6), refer to the (+) symmetry defined at the beginning of this section and are not to be
confused with the notation of Section 2.

In the ideal limiting case b, obtained by setting A/B equal to zero and omitting the spin-spin
terms &a, we hnd that the quintic secular determinant corresponding to (4) factors into two quad-
ratics and a linear term and that the quartic related to (4) reduces to a single quadratic and a pair
of linear factors. These may be collected and expressed as

[W—hv(II; Z) BE'(X+—1)][W+B B.X{X+—1)$—8~ (BI.,)(II; Z) ~
'X(X+1)=0

W+B BX(X+—1) =0

with X=J—1, J and J+1.X is the usual rotational quantum number exclusive of spin which is

characteristic of case b. As is to be expected in case b the spin has completely disappeared and Eqs.
(7) are valid for II and Z states of any multiplicity. Hence the A-type doubling which is now the same'

for all three components with the same value of X is

i112, 'IIi, 'IIO case b: her =~X(%+1) where a=8+(—1)z~ (BI,)(II; Z) ~2/kv(11; Z). (8)

The behavior of the energy levels in the transition from case 0 to ease b may be seen from Fig. 1

which is constructed according to the following rules:" (1). In case a the higher state of the A-type

doublet is alternately {+)and (—) with respect to Kronig symmetry as J increases by unity. (2). In

case b the higher state of the A-type doublet is alternately (+) and (—) as X increases by unity. (3).
The state J=0 passes oyer into one of the states X= 1 without a crossing of the levels. (4). The three

multiplet components with the same value of J in case e pass over into three states in case & with

X equal to J—1, J and J+1. In the special case J=1 there are only two pairs of states in case

a but the value of X=J—1=0 in case b is missing. (5). No states having the same value of J and

the same Kronig symmetry can cross.

4. THE 4-TYPE DOUBLING IN THE GENERAL INTERMEDIATE CASE

. In the intermediate case the elements connecting different 'II components are comparable with the
'II multiplet separations. However the elements connecting 'II and 'Z components are small in com-

parison with the II —Z separation unless the Z state accidentally lies very close to the II state. The

latter situation is exceptional and we shall proceed on the assumption that the Z state is well removed.

We then have a case of "near degeneracy"" for the II states. The technique for such problems is to
solve exactly the part of the problem relating to the nearly degenerate levels and then to handle the

effect of the remaining states using perturbation methods. This means that we must diagonalize the

"J.H. Van Vleck, Phys. Rev. 40, 544 (1932), Section 4; also reference 2„Section 7."In drawing Fig. i, it has been assumed that the constants C0 and y have the same sign, Otherwise, the symmetries
of the 'II0 and 'III components in case a may be reversed.

"Cf.J. H. Van Vleck, The Theory of 8/ec!roc and 3/IggneA'c SNscep6bi/ilies, p. 531'.
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third order matrix consisting of the II portion of either of the matrices (4)/ disregarding the small
terms &n, i.e. , solve the matrix equation 5 'KS= W for 5 and W. Here Q is the II portion of the
matrix (4), Wis the diagonal matrix consisting of the eigenvalues of K, and 5 is a unitary transforma-
tion matrix. Explicitly we have to solve the following system of linear homogeneous equations for the
elements of 5

[B (x 3)+—A —W('II;)]5('II2,. 'II,)+B.(2x —4) ~5('IIi., 'II;) =0,

B,(2x —4)~5('IIi, 'lI;)+[B.(x+1)—W('II~)]5('IIi, 'lI;)+B.(2x)~5('IIO,. 'II~) =0,

B,(2x)'5('IIi, 'II~)+[B (x+1)—A —W('II;)]5('IIO, 'II;) =0

withi =2, 1, 0. The usual conditions for the consistency of these nine equations, vis. , that the three
determinants (one for each of i =2, 1, 0) of the coefficients of the elements of 5 shall vanish, gives us
the familiar secular Eq. (5) which determines the W's except for A-type doubling effects. Let us
suppose that Eq. (5) has been solved and that the transformation matrix 5 has been determined from
(9). We then apply this transformation to the two matrices (4), First, however, piecing out the
matrix 5 in the usual way with unit diagonal elements and zeros off the diagonal until it has the
proper dimensions. The transformed matrices now have no large off-diagonal elements connecting the
various 'II components. Because of the presence of the terms +u in (4) but not in the matrix which 5
is designed to diagonalize one Finds that after the transformation the matrices (4) do have elements
connecting the 'll components. These elements all involve a as a factor and hence are small in
comparison with the 'll multiplet widths. Our "near degeneracy" difFiculties are then removed and
all the off-diagonal elements can be treated by perturbation theory.

We could immediately write down the energies of the three levels for each of the matrices (4).
These expressions are rather cumbersome and, as we are chieAy interested in the widths of the A-type
doublets, we shall give only the differences between corresponding eigenvalues of (4a) and (4b). On
summing over Z states these are

khi;=Co[5('IIO, '31I,)]2+Ci[2J(7+1)]~5('11i,'II.)5('Il ' 'lI )

+C.( J(7+1)[5('IIi 'lI )]'+2[(J—1)7(/+1)(7+2)]~5(3IIg,''lI )5('IIO' 'II ) ) (10)

where i=2, j, 0 for the three components. Here Co ——y+8+2e —2m+x, C~ ——6+4e, C~ ——e. The
constants n, y, e are given by Eqs. (3), (6), (8), respectively, while i~ is explained below Eq. (6) and

8=16Xreal part of Z( —1)z(AI.,)(11;Z)(BI-,)(Z; II)/hv(11; Z).

5. APPLICATION TO THE FIRST POSITIVE BANDS

OF THE NJ.TROGKN MOLECULE

The most extensive data on the structure of a
'lI state have been obtained by Naude" from the
analysis of the hrst positive bands of nitrogen

"In writing the elements of S, we have made no distinc-
tion between initial and 6nal indices. It is to be understood
that the first index refers to the case a representation
while the second refers to the final representation inter-
mediate between cases a and b."S. M. Naude, Proc. Roy. Soc. AI36, 114 (1932).
Naude notes at the f'oot of page 136 that the signs of the
A-type separations which he gives in Table XIII have only
a relative meaning. If one wishes to determine the absolute
signs of these separations one must redefine the quantities
given by his Eqs. (14) and {15)to be consistent with the
corresponding de6nitions (12), (13), (16) and (17). The
two definitions to replace (14) and (15) are, respectively:

(B'lI —A'2;). He has analyzed both the Fifth and
sixth vibrational levels of the 'H upper state. We
shall however consider here only the latter. In
order to apply the theory of section 4 we must

I@2& (J)= P» (g+1)—P2 (g) = Sg»(g) —ZQ»(J)= Q2(J+1)—&2(~+1)= ~R»(J)—~Q»(~)
aIF2.h'{J)= P,.'(J) —P2h'{J—1)="Q2I(J)—&P2 (J)

=~2(J—1)—Q2(J —1)= Q»(~) —'&»(J)
It is then seen that the A-type doubling for the 'III com-
ponent is of the same sign as that for the 'II2 and 'II0
components. This modi6cation requires a slight change in
Naude's Fig. 2. All transitions originating in the III com-
ponent should be shown as coming from the opposite
members of the A-type doublets. The designation of the a
and b levels and of the symmetries of the states which he
gives is correct. In addition, the three transitions R2(0),
P2(1) and PQ»(0), all of which relate to nonexistent states,
should be deleted from Table III.
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Fir. 1. Schematic diagram of the case a —b energy level
correlations. The circles and dots designate levels of
difl'erent (~) symmetry. The state in the upper right
corner is 'II~ instead of 'IIO as shown.

I

determine the two constants B, A for this state. "
The constant B for the 'II state may be found by
comparing the spur or diagonal sum of the third
order II part of (4) with the experimental term
values of the three components of the II state.
This spur has the form $3J(J+1)—1jB . The
erst term gives the value of B and the second
fixes the arbitrary term value origin with relation
to our origin of energy. The value of A can then
be obtained, in the manner employed by Gil-
bert, " from the constant part of the expression
(1/3)(Sp R)' —Sp RR'=4B 'J'(7+1)+(4/3)B '

4B A +A ', w—here Sp R is the diagonal sum

just mentioned and Sp RR' is the sum of
products of the 'II roots taken two at a time. This
equation can be deduced readily from Eq. (5).
The values of B and A adopted in this paper
are 1.512 cm ' and 42.2 cm ', respectively.

Before we can apply Eqs. (10) we must de-
termine the transformation matrix 5 which was
introduced in section 4. This necessitates solution
of the cubic secular Eq. (5). It has been found
simplest to make this solution numerically for
each value of J; although the experimental term
values, adjusted as to origin as explained above,
may be taken as approximate roots. The trans-

I~We have neglected entirely the small term in the
energy which comes from the centrifugal swelling of the
molecule. Since the binding of the two atoms is in first
approximation harmonic, the energy term introduced
by the swelling is of the form DJ'(J+1)' where D is a
small negative coefficient. In our case, we have taken
D = —3 &(10 ' cm '. In order to apply the theory as we give
it, this small term should be subtracted from the experi-
mental data, However, neither the constants A, J3 nor the
A-type doubling are exceedingly sensitive to this correction.

"See following paper in this issue.

zoo 2(J /)
600

FIG. 2. A-type doubling of 8'lI levels of N2. The experi-
mental data are shown by the small circles and the calcu-
lated doublet values by the full lines. The upper curve
labeled Sp is the sum of the h.-type doublet widths for the
three multiplet components. The vertical scale should read
0.0, 1.0, 2.0, 3.0 cm '.

"To save space, the - table of transformation matrix
elements has been omitted. This table for the case 8/A
=0.0358, J=2—25 may be obtained from the writer.

'0ht this point, we are considering only the relative
signs of the C's. That the signs are here all the same simply
reflects the fact that for the same value of J the upper
members of the doublets for the three multiplet com-
ponents are all either (+) or (—).

2' See page 505 of reference 2,

formation coefficients" are then readily found
with the help of Eqs. (9).

Eqs. (10) which give the A-type doubling, con-
tain three adjustable constants Co, C&, C2. The
values of these constants" which give the best fit
with the experimental data are CO=2.27 cm ',
C~=0.0095 cm ', C2 ——0.00026 cm '. The calcu-
lated A-type doubling is shown by the curves in

Fig. 2. The corresponding experimental points
are indicated by circles. The agreement with
experiment is satisfactory except for very small
values of J for the 'II0 component and for the
spur (sum of doubling widths for the three com-
ponents). This latter should have the particularly
simple form Co+CQJ(J'+1). It may be pointed
out that the experimental error is considerably
larger for the 6rst few values of J than for later
values. However this is undoubtedly not the
reason for the deviation whose explanation is
possibly to be found in a resonance effect due to
a very near Z state for these values of J.Such an
effect has been noted by Van Vleck in the case of
Hulthen's observations on HgH. "

One sees on examining Fig. 2 that the charac-
ter of the doubling for small J is appropriate to
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case a (i.e. , large constant doubling for 'IIo, small
doubling proportional to J(J'+I) for 'IIi and
negligible doubling for the olIo component) but
that, as J increases and the rotational distortion
comes into effect, the doubling tends to become
characteristic of case h (i.e. , equal doubling
increasing as X(K+I) for the three components).

Theoretical consideration of the constants Co, Ci
and C2. Heretofore, we have regarded the quanti-
ties Co, Ci and Co and hence (y 2n—+ ii), 8 and o

as adjustable constants at our disposal. We can
examine the constants p, 6 and e theoretically if
we assume that Van Vleck's hypothesis of pure
precession" is a good approximation. This condi-
tion states that the electronic orbital angular
momentum of the molecule is a vector of fixed

magnitude which precesses uniformly about the
molecular axis, and further that A and B are
diagonal matrices. Then each of the sums y, 5, e

reduces to a single term for which I,(II; Z)

,'[L(L+ I)-gl. We then have from Eqs. (6), (8)
and (10)

y =A'L(L+ 1)/v, 8 =4ABL(I.+1)/v,
o =2B'L(L+ I)/v. (11)

If we now use the values of A and 8 found for the
II state and take I.=1, we find that the effective
frequencies deduced with the aid of Eqs. (11)
from the experimental values of 8 and e are re-
spectively 6&10 cm ' and 3.5)&10' cm ', in

su%ciently good agreement considering the ap-
proximate nature of Eqs. (11).The mean of these
values, say 5)& 104 cm ', substituted back into the
first Eq. (11) yields

~ y ~

=0.07 cm '. Thus z 2n-
must constitute practically all of Co. Now n
seems to have the wrong sign to account for the
observed A-type doubling in No (cf. following
paragraph and also end of Section 2) so that we
must suppose Co to arise here chieHy from the
interaction of the 'II state with neighboring»Z
and '2 states. As explained earlier, this inter-
action is capable of producing a separation of
the 'IIO levels but, with pure case a coupling, is
powerless to split 'II» or 'II2.

"Cf. pp. 488, 9 of reference 2, also R. S. Mulliken and
A. Christy, Phys. Rev. 38, 87 (1931).

2' Van Vleck, Phys. Rev. 40, 544 (1932).
24 R. S. Mulliken, Rev. Mod. Phys. 4, 1, 53 (1932).

Experimental sign of C0 in N~. It is evident from the
Eqs. (6) and (10), that the sign of C0 is positive or nega-
tive according as the (—) or (+) levels are higher for
even J. Experimentally the (+) or (—) character of the
B 'lI levels in N2 is found through the symmetry of the
A 'Z state together with the rule that for electric dipole
radiation (+) combines only with (—). The alternating
intensities found by Naude in the first positive bands fix
the A state either as 'Z + or''Z, . The former makes Co

positive while the latter yields a negative value of Co.
Mulliken'4 has concluded from configuration theory that
the A state is more probably 'Z„+ than 'Z, .This is in agree-
ment with the recent calculations of Recknagel2' which
place the 'Z, state much higher than 3Z„+. Also Herz-
berg and Sponer" find that the dissociation products of the
A state are probably 4S+'D, from which it is possible to
obtain 'Z„+ but not Z, . Finally the Z„+ interpretation
is strengthened by Kaplan's'7 observation of bands con-
necting the A state with the IZ, ground state of the
molecule. If these bands are due to electric dipole radiation
(I—g) one is forced to accept the 'Z + assignment for the
A state. On the other'hand, it might be possible to inter-
pret the Kaplan bands as magnetic dipole radiation"
(g —g, u —u) which would allow 'Z, . However it appears
almost certain that the A state is 'Z + and that C0 is
positive.

We should expect the A.-type doubling constant
y due to the II —Z interaction to increase more
rapidly than the spin-spin doubling constant 2n
as we go to heavier molecules, so that probably it
is permissible to consider only the former in such
a molecule" as I2. This follows from the fact that
y increases as A' and hence as Z', fq. On the other
hand, n is of order P'(I/r'); where P is the Bohr
magneton and r is the electron-electron distance.
Hence n should increase about as fast as Z', ff.

6. RHo-TvPE TRipLixo rN '2 SrATEs

When 4 =0 the spin-orbit energy is small and
hence '2 states conform closely to Hund's case
b. The energy of a 'Z state is given approxi-
mately by one of the roots of Eqs. (7), summed
aver different II states and is

W= B„X(X+1)
—SX(%+1)P ~

(BL,) (II; Z)
~
'/hv(II; Z)

"A. Recknagel, Zeits, f. Physik 87, 375 (1934).
2' G. Herzberg and H. Sponer, Zeits. f. physik. Chemic

B26, 1 (1934).
2' J. Kaplan, Phys. Rev. 45, 675, 898 (1934).
~' Cf. J. H. Van Vleck, Astrophys. J. 80, 161 (1934).
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on neglecting terms higher than the first power in

1/hv(II; Z). ActuaHy 'Z states do not satisfy
exactly the conditions of case b and there is a
slight separation of states with like X but unlike
J. This separation Mulliken" calls p-type
doubling for 'Z states and we shall use the
term p-type tripling for the same splitting in. the
triplet case. The energy levels are given more ac-
curately by the secular determinantal equations
related to (4) with the diagonal elements of the
determinants, B [J(J+1)—37+A —W, B P(J
+1)+17—W and B [J(J+1)+17—A —W, for
the II states replaced by hv(II; Z). If we expand
these equations in powers of 1/hv(II; Z) and
neglect terms of higher power than the first, we

find that the three solutions for the same value
of X are

Wp ——B-'X(X+ 1),

W+ = Wp —X[2(X+I)/(2X+ 3)7+p(X+ I), (12)

w = wo —X[(2X)/(2X —1)7—)iX,

where

B-' =B- 8+ i(BL.)—(rr; Z)i'/hv(11; Z),

I

=Pi�(AL,

)(11;Z) i'/hv(II; Z),

p, = 8 g real part of

Q(AL, )(II; Z)(BL )(Z; II)/hv(II; 2'),

and where 8"+, l/I/'0, 8' refer to states for which

J=%+1, X, X—1, respectively.
Kramers' has considered the splitting of 'Z

states arising from two causes: (1) the magnetic
interaction between the individual electron spins,
which he shows is equivalent to a coupling

energy proportional to (3 cos' )t —1) where y is

the angle between the resultant spin and the axis
of the molecule; and (2) the coupling mentioned

in section 1 between the spin of the molecule and

the magnetic field set up by the molecular rota-
tion. These two effects give a splitting of exactly
the same form as that obtained from Eqs. (12);
the first effect corresponds to terms of (12) in X

and the second to those in p. It is very interesting

R. S. Mulliken, Phys. Rev. 28, 481 (1926).

that two completely different mechanisms should
give formulas of the same structure.

Naude" has shown that the p-type tripling in

N2 is in excellent agreement with Kramers'
formulas (9) and hence with our Eqs. (12).
Actually, of course, the coefFicients X and )i in (12)
should be replaced by the sums of Kramers'
coefficients and ours, viz , by. X+(3/2)A' and

p —B', respectively, in order to include both
effects. Here we have affixed primes to Kramers'
A and B to distinguish them from the usual spin-
orbit constant A and the rotational constant B
which we use. The experimental values given by
Naude are then X+(3/2)A'= 1.3 cm ' and

p —8'=0.003 cm '.
ComParison of )i and B'. The considerations

given by Van Vleck" for the analogous case of 'Z

states apply directly here and show that p is

definitely larger than B', except for very light
atoms. Also %ick" has recently determined the
magnetic moment of hydrogen due to molecular
rotation and his results confirm the order of

magnitude assumed by Van Vleck for this

quantity.

Both Kramers' formulas and ours are approximate in

that they neglect squares and higher powers of the ratio
of the 'Z 6ne structure to the rotational separations. If this

ratio is not small, the approximation is no longer valid

and Kramers' Eqs. (8) must then be replaced by

A~+I ———A '/2+ 8(2%+3)
—$9A' /4 —3A'8+ (2K+3)'8'g&)

a~=A',
n~ I ———A'/2 —B(2E—1)

+$9A '/4 —3A '8+ (2E —1)'8'$'.

(13}

As explained above, A' is the constant Kramers denotes

by A and 8 is h'/8''I and not the same as Krarners'

constant B. These exact formulas were essentially derived

by Hill and Van Vleck (Eqs. (40), (41), (42) of reference

10). To obtain them explicity one writes k =S= 1, j=X
and replaces A by 3A' in Hill and Van Vleck's Eq. (42).
Then the three of these equations which relate to the

same value of X immediately yield our Eqs. (13).

"See pp. 499, 500 of reference 2.
31 G. C. Wick, Zeits. f. Physik 85, 25 (1933).
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