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and thus should increase with atomic number.
As is seen from the values in the table, this in-
crease is nearly linear and corresponds to the
nearly constant and quite reasonable value

(1/r) 3.5&&10" crn '.

The high energy of the electron emitters Li',
8", N" and F" can be understood on the basis
of their disintegration into the tightly packed
nuclei Be', C" 0" and Ne" The nuclei Be"
C", and 0"can be classed together as represent-

ing stable or at most slightly unstable configura-
tions.

In conclusion we wish to express our apprecia-
tion to Dr. Robert Serber and Dr. J. R. Oppen-
heimer for discussions of the theoretical aspects
of these investigations, to Kurie, Richardson
and Paxton. for sending us a copy of their
manuscript before publication, to Dean %ool-
dridge for preparation of the carbon targets
containing an increased percentage of C", and
to the Seeley W. Mudd fund for financial sup-
port.

AP RIL 15, 1936 PH YS ICAL REV I EW VOLU M E 49

A Theoretical Discussion of the Deviation of High Energy Charged Particles
in Passing Through Magnetized Iron

W, F. G. SwANN, Bartol Research Foundation of the Franklin Institute

(Received February 24, 1936)

The paper attempts a critical discussion of the situation
pertaining to the magnetic field in a piece of magnetized
iron, particularly in relation to the deflecting force which
it produces on high speed charged particles passing through
it. On the Lorentzian theory the magnetic induction, 8,
is the average value of the true magnetic field II, averaged
throughout the magnetic material. In this average, regions
inside the magnetic entities responsible for the polarization
make contributions which determine the whole difference
between 8 and the ordinary macroscopically defined field,

h, equal to 8—47'-I. A study is made of the special case
where the entities are rotating electrically charged spheres.

If the entities are very small in volume the chance of a
point electron missing all.of them in its passage through a
reasonably small length of the magnetized material is
considerable. It appears that for'such electrons as miss
the entities the effective deflecting force is determined on
the average by h+27rI. The true average for all electrons
passing through the material is determined by 8=h+4+I;
but, that average is contributed to in appreciable amount

by very few electrons which experience deflections-much
in excess of those determined by B. These considerations
have important consequences in relation to the interpreta-
tion of experimental results.

INTRoD UcTIQN

HE interest of the problem cited in the
above title arose, primarily in connection

with experiments on the deviation of charged
particle cosmic rays in passing through mag-
netized iron. A simple application of the Lorentz-
ian theory seemed to require that the magnetic
induction 8 was the vector concerned in the
deviation while the first experiments performed'
seemed to lead to the conclusion that the mag-
netic intensity h was the vector operative. Subse-
quent work' has given rise to conclusion that a

B. Rossi, Accad. Lincei, Atti 11, 478 (1930); B. Rossi,
Nature 128, 300 (1931);L. M. Mott-Smith, Phys. Rev. 39,
403 (1932).

'

' L. Alvarez, Phys. Rev. 45, 225 (1934};W. F. G. Swann
and W. E. Danforth, Phys, Rev, 45, 565 (1934).

vector being between 8 and h is the vector
really involved. It is not our purpose to discuss
here these experiments, or the validity of their
interpretation. It will suffice to say that the
results to date are such as to suggest that, in such
experiments, the elements operative involve fea-
tures of greater complexity than would be sug-

gested by the most na'ive view of the matter
which regarded the iron as the magnetic equiva-
lent of a bundle of continuous tubes of induction.
The purpose of the present paper is to look into
certain of the theoretical elements concerned in

some degree of detail. In this task we meet at the
outset certain diAiculties which must be faced.

In the first place while recognizing that the
problem should be discussed ultimately in terms
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of wave-mechanical principles, we shall -in the
present investigation confine our attention to an
approach founded purely upon classical electro-
dynamics, in the belief that the essential elements
which the discussion will reveal are of such a
nature as to have their representatives in wave-
mechanical story. Even in conFining ourselves to
the classical treatment, however, certain elements
of fundamental difficulty present themselves. A
piece of magnetized iron owes its state of mag-
netic polarization to the presence of a number of
polarized entities. In the older views, these en-
tities were represented by the revolutions of
electrons around the atomic nuclei. Each atom
was the statistical equivalent of a number of
amperian whirls, which, in turn, were the equiva-
lents of magnetic doublets at distant external
points. A more modern picture associates the
magnetic entities with the spins of the electrons.
Wave mechanically, this spin is something which,
for each electron, has symmetry with respect to
the center of coordinates of the atom to which
it belongs. In our treatment we shall idealize the
problem by supposing that the entity is a uni-

formly rotating sphere of radius a, carrying a
uniform surface charge density. Such an entity
gives a uniform field for its interior and a field the
equivalent of that of a magnetic doublet at all
external points. Then, even in the absence of a
resultant orientation, the entities will exei t forces
upon moving charges passing near them, so that
there will be a magnetic scattering action in the
absence of magnetic orientation. In our ideal
problem we shall have to discard this feature in
the belief that, to a first approximation, the
alterations of the deviation produced by orienting
the magnetic entities is calculable from the ideal
problem of the passage of electrons through the
medium with its entities completely oriented and
adjusted in strength to produce the resulting state
of magnetization under consideration. Again,
if the magnetic entities were to be regarded as
having a nature in any way similar to rotating
electrons of classical dimensions, the problem of
what happens when another electron passes
through one of them becomes of serious moment.
The question arises as to whether forces exist
which would prevent such penetration. The
classical equation of motion for an electron gives
the force per unit charge on it as E+[wHj/c,

when E is the electric field, m is the velocity of
the electron, II is the true magnetic field at a
point, and c the velocity of light. The significance
of this quantity must be viewed with many mis-
givings when the. vectors E and II vary to an
extent comparable with the whole of their values
over the volume of the electrons whose motion is
under discussion, and where the electron and the
rotating shell actually penetrate each other. The
possibility of the electron penetrating the mag-
netic entity must not be dismissed. as an event
whose probability of occurrence is negligibly
small; for, as will presently be seen, the magnetic
fields in the interior of the entities plays an im-
portant part not only in providing for the differ-
ence between h and B but in determining the
average deHection of the electron in passing
through the magnetized material.

To sum up, therefore, the present investigation
is founded upori the consideration of an ideal
problem in which a definite assumption is made
as to the nature of the magnetic entity, in which
all the magnetic entities are oriented alike iri the
magnetized state, and in which the charged par-
ticle whose deHection is studied is regarded as a
point which traverses the magnetic entities as
well as the space between them and experiences
everywhere a force given by the Lorentzian
theory in the form [wR'j/c.

1. REVIEW OF CERTAIN GENERAL MATTERS
PERTAINING TO POLARIZED MEDIA

For the benefit of those who are not specialists
in electrodynamics, it will be of advantage to
review certain matters which are well known but
whose relationship to one another is not always
evident. Those to whom these matters are well
known may desire to omit this section (Section 1).

Definitions

In what follows, we shall use P, u, E, H, for the
electric density, velocity, electric field and mag-
netic field at an ideal point in the medium, inside
or outside an atom, or even inside an electron.
c is the velocity of light. We shall denote the
electronic velocity as a whole by m.

When passing to a material medium, it will

become necessary to consider vectors macro-
scopically defined. The only ones which concern



us are e, k, I', 0, 8 and I, which are, respectively,
the electric 6eld intensity, the magnetic 6eld
intensity, the dielectric polarization, the di-
electric displacement, the magnetic induction,
and the intensity of magnetization. The de6ni-
tion of these quantities varies according to the
theoretical avenue of approach from the sub-
macroscopic to the macroscopic case.

The primitive electrostatic and. magnetostatic
macroscopic theory

The elementary theory of dielectric and mag-
netic media made prior to the Lorentzian and
allied theories still 6gures prominently in the
thoughts of most physicists so that a word is
necessary concerning it. The theories for the
dielectric and magnetic cases are exactly the
same. The magnetic medium, for example, is
represented by a distribution of polarization, or
magnetization, arising from magnetic doublets.
It is a mathematical fact that such a distribution
of doublets produces, at points external to the
medium, a potential equal to that which would be
produced by a 6ctitious distribution of mag-
netism of volume density pj and surface density
og given by

The vector k+4mI thus has an important prop-
erty, and so it constitutes a new vector valuable
in our discussions, which vector we call the
magnetic induction 9, so that

The electrostatic case proceeds in the same
manner, except that k and I are replaced by e and
I', and (4) has as its analog

div (e+47rP) = p

the right-hand side being now no longer zero since
the possibility of the presence of real volume
density p of electricity must be admitted. The
definition of D then follows as

and Eq. (6) becomes div D = p.

It is of interest to observe that, in the develop-
ment of the theory, the order of appearance of
the vector is I—+k~8 for magnetism, and in exact
correspondence, P—&e—+D for dielectric theory.

A further step of less fundamental significance
is taken in seeking the actual field at the center
of a spherical cavity in the interior of the
medium. This held is h', where

where the subscript n refers to the normal
component.

If we now define, as the magnetic intensity in
)ke medium, a quantity k, which is to be under-

stood as the 6eM calculable from magnets or
cuf ren ts outside the medium plms thc 6cM
calculable by Ebs larv of inverse squares at the point
in the medium by use of the 6ctitious magnetic
"charges" aforesaid, ' this definition of k endows
it with the characteristic given by

4mpf ———div k,

which, by combination with (1) tells us that

div (b+4v I) =0.

37he definition is preferred in contrast to the usual
definition in terms of the actual magnetic field in an elon-
gated cavity with axis parallel to I, to which defmition it is,
however, equivalent. It will be observed that II, calculated
as it is in part from the smothered out fictitious distribu-
tions pf and ay is itself mathematically continuous in the
body of the medium.

b' = Ii+47rI/3

for magnetism, with a corresponding expression
's=e +~4P 3/for the dielectric case. The cus-

tomary derivations then proceed to show that
when the spherical hole is refilled with the ma-
terial which may be imagined to have been
removed from it, the 6eld Ii'(or e') may be re-

garded as the actual held at the point occupied by
one of the doublets, and due to all of' the other
doublets in the medium, and to external inHu-

ences, provided that the doublets are fortuitously
distributed in space or are distributed with
cubical symmetry. The writer feels that very
little fundamental significance can be attached to
the quantity b' (or e') as above provided for. For
the case of cubical symmetry it has signi6cance
only at the center of one of the entities, and has
no immediate relation to the forces on an electron
traveling between the entities, for example. For
the case of fortuitous distribution of the doublets,
with respect to each other„and so with respect to
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(1/c) (4ir pu+ (BE/Bt)) =curl H, (10)

4m.p=div E,

—(1/c) (BH/Bt) =curl E, (12)

O=div II. (13)

The vector 8 at a point now becomes defined
macroscopically, as the true volume average
value of II, in the vicinity of the point. The
vector I at a point becomes defined macro-
scopically, as the true volume average in the
vicinity of the point of a certain quantity having
to do with the velocity of the electricity at a
point and its displacement from a standard posi-
tion. There are independent contributions from
the positive and the negative electricity. The
vector h now becomes defined as 8—47rI.4 On the

4 Sometimes another term depending upon the velocity
of the medium and the polarization at a point is included
in the quantity subtracted from B to produce h. The
details of many of these matters are irrelevant to the
main purpose of this paper. Some mention of them must be
made to provide a complete story; but, no detailed dis-
cussion of them will be attempted here. The reader will
find reference to them in H. A, Lorentz, Enzyk. der Math.
Wiss. 2, 200—209; also in E. Cunningham, The PrinciP/e of
Relativity, in J. H. Van Vleck, Electric and Magnetic
Susceptibilities (Clarendon Press), and in W. .F. G. Swann,
The tundamentals of Electrodynamics, pp. 5-74 (1922);
a part of Bulletin No. 24 of the National Research Council.

points in space, the quantities ft' (or e') would not
represent the actual field at one of the doublets
due to all causes other than itself, but only the
average of such fields. In any particular case
there would be large fluctuations from the
average, depending upon the degree of proximity
of the nearest doublets. Kith regard to the actual
field at a point between the doublets, tt' (or e')

again represents an average for the case of
fortuitous distribution, but there are large
fluctuations from this average in any particular
case. The significance of k' (or e') will appear in

much less distorted form as a result of considera-
tions to be presented later.

The Lorentzian theory of polarized and mag-
netized media

In the hands of Lorentz, the starting point is
the assumption that, on a sufhciently fine grained
scale, there are no absolute discontinuities of
field, and the real fields E and H are controlled by
the equations for free space, vis'. ,

other hand, P at a point becomes defined in
terms of the displacement of the positive and
negative electricity from a standard position. e at
a point becomes defined macroscopically as the
true volume average of 8 in the vicinity of the
point, and D becomes defined as e+47rP. It will

thus be observed that while, in the primitive
macroscopic theory, the orders of definition are
completely analogous for the magnetic and elec-
tric quantities, being, in fact, I~h —+8 and
P~e~D, respectively, in the case of the Lorentz-
ian theory, the orders are 8~I—+h and P~e—+D,
respectively. However, these matters are not
pertinent to the main part of our discussion, and
are included only for completeness of the picture.
The primary fact which concerns us here is that
8 is defined macroscopically at a point as the true
volume average of II in the vicinity of the point.

Visualization of the signi5cance of 8 on the
Lorentzian theory, for a special case

Following the line of procedure indicated in the
Introduction, we shall limit our discussion to the
case where the magnetic entities are spherical
shells of radius a, with uniform surface charge,
and rotating with uniform angular velocity. It is
easy to show, and is well known, that such a
sphere gives at a point for which the radius vector
r from the center is greater than a, a field which is
the exact equivalent of a doublet of moment p
depending upon the surface density, radius, and
angular velocity. Moreover the field within the
sphere is uniform, parallel to the axis of rotation
and equal to 2p/a'. Hand in hand with the above
entity, we shall study another one, an entity of
radius a with a surface distribution of' positive
magnetism on one side of the equator and of
negative magnetism on the other side; so chosen
as to cause the entity to act as a doublet of
moment p for points outside the sphere, ' i.e. ,

points for which r is greater than a. We shall call
this a polar entity in contrast to the rotating
shell which we shall call a current entity. In the
case of the polar entity the field is also uniform
within the entity, but it is in the opposite direc-
tion to that of the corresponding current entity
of moment p, and is equal to —p/u'.

' The elements pertaining to these matters are estab-
lished in the Appendix to this paper, Problem 1.
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Let us start with a picture in which the entities
are current entities, and let there be n of them
per cc. The vector B represents the average value
of H where the regions inside and outside the
entities are included. Suppose now we change to
the corresponding polar case, and take the volume
average of the true field H. It will differ from the
former average on account of the change of the
fields inside the entities from 2p/a' to —p/a'. It
will, in fact, be B—(3p/a') (4yra'/3)n. Since np = I,
this amounts to B—47II. In other words the
average of the true H for the polar case is the
quantity h as defined in the Lorentzian theory.
This is entirely in harmony with our expecta-
tions; for, .k is recognized as a vector whose line
integral between two points is the line integral of
the true H for the polar case.

Suppose that now on taking the average we
simply omit the field inside the entities alto-
gether. We obtain

B—(2p/a') (4yra'/3) n =B 8yrI/3 = h—+4yrI/3.

In the case where the entities are very small in
volume, the omission of the contributions of the
fields inside them to the average is the equivalent
of evaluating the average for the regions outside.
This average is then h+4yrI /3; and, it 'would

appear that, obtained in this way, the status and
meaning of this vector is clearer than when
evaluated according to the principles cited in con-
nection with the primitive electrostatic and
magnetostatic theory.

2. THE PASSAGE OF ELECTRONS THROUGH

THE M AGNETIZED M EDIUM

We shall confine our discussion to the case
where the magnetic entities are rotating charged
spheres of the type already referred to. Ke shall
consider an electron constrained to move in a
linear path parallel to the 2' axis which is per-
pendicular to the vector Iwhich shall be parallel
to the x axis. The time integral of the force on,
i.e. , the momentum imparted to, the electron
parallel to the y axis is

Fy= sg c Hgds'.

For all particles of cosmic-ray energy we may put
v = c in the above expression. For lower energies,

v is at least constant to a first approximation;
and, indeed, would be absolutely so for the case
of a path constrained to be always along the s
axis, For the case v, =c, we have

L

+If Hgdg )

0

where I is the path length.
Consider a length M parallel to the y axis; and,

perpendicular to it, draw a number of the above
paths parallel to the plane y, s. All of the above
integrals have the same value if the path L, is long
enough. Now the flux of H, through the plane of
areas 1.3f is

M L ~M I
II dydee= dy H s= M H„ds.

0 0 0 0 0

N M

= (L(deed) 'dye dyf yd, -dy

0 0 0

Now if the path I is long enough, the integral
with regard to s' is independent of x and y, and
is H,L„where H, is the average value of H, along
the path L, and is a quantity independent of y
and s. Thus

so that

B,= (LI(yIN) 'NI(yILII,

as was, of course, expected to be the case.
Now in spite of the fact that the average mag-

netic vector H responsible for deflecting the
electron is 8„this average is secured in a manner
which invites comment and which leads to
ultimate results different from those to which a
na'ive consideration of the theory would lead. It
may be remarked here that the problem of
visualization of the details of the elements in-

Since the integral with regard to s is independent
of y as above stated. Thus if H is the average,
value of H along the path I, the above flux
through the plane of area L,lV is 3IIL,H, . Let there
be planes of the above kind drawn perpendicular
to the axis of x for a length N thereof. Then, the
volume average of H„which is 8„, is

N M L

y). (LddN) 'f f f yd.=dydydy

0 0 0
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volved is one which is apt to invite doubts
founded upon intuitive consideration of special
cases. However, the whole story is perfectly
consistent in the long run. Ke shall later discuss
one of these special cases, but for the moment
we shall confine attention to a fortuitous distri-
bution of entities. For such a distribution, all

paths parallel to a fixed direction have the same
history in the long run. The contribution to H
along a path is made up from contributions from
entities which it does not thread, and from con-
tributions by entities which it does thread. The
contribution from the latter source is quite a
large proportion of the whole contribution by the
magnetization of the iron, even in the case of
entities of very small dimensions, when the event
of threading is very rare. As a matter of fact, it
turns out, as will presently appear, that the
contribution in question is independent of the
size of the entity for an assigned value of I .

In order to avoid interrupting the line of
thought, we shall quote here a result proved in

Appendix (Problem 2), to the effect that the
average contribution by an entity to the line

integral along a path which threads it is Sp/3a'
from the inside and —2p/3a' from the outside,
making 2p/a' where a is the ra.dius of the entity.

Consider a tube of length l along whose axis a
particle flies. It passes through the entities
whose centers are contained within a cylinder of
radius a. If n is.the number of entities per cc, the
number in the cylinder is ma'nl, and the con-
tribution to the above-named line integral is
2vpa'nt/a'=27rI, l, since pn=I, . It will be ob-
served that this result is independent of the size
of the entity for a given value of I,. Small size
entities correspond to very infrequent contribu-
tions of very large amounts to the line integral.

The contribution per unit length to the line

integral is 2xI„and this represents the contribu-
tion of the entities threaded on a path to the
average magnetic vector along that path which

is responsible for producing deflection in an
electron traversing it. The effect of any entity
threading a path in the fortuitous distribution is
confined to a length of the path which is small
compared to the distance between it and the next
entity which threads the path, for small entities.
Thus, if the thichness of the material traversed is
small compared with what me may call the mean

free path between the entities, ' the effective field
alonf, the Path mill be II —2+I,=B,—2~I, =
h*+2~I..

Now it is admitted that however thin may be
the material which is traversed by the electrons,
a parallel beam containing many point electrons
traversing it will experience a deflecting force
determined on the average by 8; for, the many
short paths taken in different places through the
material average in their characteristics to those
of a long path through the material. However,
while the average deflection is determined by 8„
that average will be produced, in the case of a
thin slab of small entities, by a process in which
nearly all of the electrons experience a deflection
determined by 8 —2xI„while a very few, which
pass through entities will have very large de-
flections which will bring the average deflection
up to that calculable from 8,. As a matter of fact,
the complete story may be formulated according
to the usual statistical methods, leading to a law
of distribution of scattering; and, in this story the
large deflections experienced by electrons passing
near but not through entities would figure. Such a
formulation would probably have but little
meaning on the basis of the present analysis in
view of the restricted nature of the simplifying
fundamental assumptions involved. The essen-
tial fact is that, in the case of a sufficiently thin
piece of matter traversed by a beam of point
electrons, any practical experiment would reveal
8,—2~I„or in other words, h, +2+I„as the
deflecting vector for the case of magnetic entities
of very small size. In such experiments as those
of Alvarez, ' the number of electrons experiencing
the large deflections necessary to bring the aver-
age deflecting vector up to 8 would be too small
to observe. In the case of the experiments of
Danforth and the writer, published in 1934' and
now in detail in the present issue of the Physical

' To fix our ideas, suppose that every orbital electron in a
piece of iron figured as an entity, and suppose, taking a
cubic centimeter of iron lying on a sheet of paper we could
precipitate all of those electrons onto the piece'of paper.
The total area which they would occupy on the paper
would be 28~a'N, where N is the number of atoms of iron
per cc, a is the radius of the electron, and the 28 refers to
the number of electrons in an atom of iron. Now 28K is
23 X10".If we should take for the classical radius 2 && 10 ',
the area covered would be only 0.3 of the square centi-
meter. In other words, a point particle shot through a
centimeter of iron would probably miss all the entities.' L. Alvarez, Phys. Rev. 45, 225 (1934).

'W; F. G. Swann and W. E. Danforth, Phys. Rev. 45,
565 (1934).
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Review, the measurements involved finding the
number of rays which were deviated by more
than a certain assigned amount by the magnetic
field. In such experiments, the small number of
electrons deviated through large angles (in the
case of small entities) are unable to exhibit their
potency in contributing to the average; and, the
results are to all intents and purposes determined
by the group whose deflection is determined by
8.-2~I'

Of course, it is only when the magnetic entity
is of very small size or the material is very thin
that the effective vector becomes 8,—.2~I,. In
general, for larger sized entities, the effective
vector may lie anywhere between 8,—27fI and
8,. A complete set of experimental data should
be capable of revealing the effective size of the
entity, although here, again, the imperfections of
the fundamental assumptions would probably
render such a determination of little significance.

The present problem has some of the features
of the alpha-particle scattering problem. It is
rather curious that in that problem interest has
been centered on the single scattering and has
concerned itself but little with the small devia-
tions produced by the fields between the scatter-
ing nuclei, while in the magnetic problem interest
has centered on the effect of the average mag-
netic vector in the medium and has concerned
itself but little with the scattering produced by
close encounters.

It may be thought that, in the foregoing dis-
cussion, the concentration of attention on elec-
trons which actually go through, the entities is
misleading, since an electron passing very near to
an entity experiences forces comparable with
those which it will experience in passing through
it. The point is that, as will be shown in the
Appendix (Problem 2) the average contribution
to H by paths passing near but not through
entities is zero, so that while such paths result in
large electronic deflections, they do not disturb
the conclusion that, in the case of entities of very
small size an overwhelmingly large proportion of
the paths experience a magnetic vector de-
termined by 8,—27fI, . On the other hand the
paths which thread the entities do make a sig-

nificant contribution to the true average II,
raising it from the practically measured 8,—2m I„
to the ideal value 8..

Ca3

I

I

Cp3= ~
C~3

I
I

I 'A

FiG. 1.

A special case
The consideration of certain special cases may

raise questions in the mind as to the importance
of the part played by the interiors of the entities
in contributing to 8. A particularly drastic
special case is one in which the entities are ar-
ranged at the corners of cubes, in a cubical array.
Suppose, for example, the sides of the cubes are
parallel to the directions we have taken for the x,
y and s axes. Suppose Fig. l represents a plan of
the lattice seen as one looks in a direction parallel
to the axis of s. The entities are shown by the
circles. Consider a plane perpendicular to the
paper, and containing the dotted line A8. It is
obvious that the average flux across the plane is '

8,. An electron moving in this plane will never
pass through an entity, yet, the average deflect-
ing force experienced by such electrons wi11 be
determined by 8,. Of course, two electrons travel-
ing perpendicular to the paper so as to pass
through D and C, respectively, will not ex-
perience the same deflection, for the field is by no
means uniform over the plane A8. '

Suppose now we consider a plane perpendicular

' It is of interest to note that the contribution of the
nearest entities to the field is very considerable. Thus the
field f due to an entity at a distance r from its center is of
the order 2p/r'. If / is the distance between the entities,
the number n of entities per cc is 1/l'. Thus f=2pnP/r'.
Now pn=I, so that if r=l/2, we have, for the contribu-
tion of a single entity to the field at a distance from
it equal to half the distance between entities the value 4I.
This is comparable with the whole vector h+4mI.
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to the paper and containing the line EI'. The
average flux through this plane is again B„but,
the Rux is very unequally distributed. If / is the
distance between the entities, there are nl en-
tities per square centimeter; and, the part of the
flux which is contributed by the entities them-
selves and which passes through their own srnatt
cross section is (2pnl/a')era', which amounts to
27rIl/a; and, for small entities would amount to
far more than h, +47rI, so that the discrepancy is
taken care of by a reversed field outside the en-
tities as shown. Thus, while electrons traveling
perpendicular to the paper in the plane defined

by EJ" would experience, on t'he average, a de-
flecting force determined by B„there would be
an enormous variation around that average,
extending even to an important range of nega-
tive values. An electron passing downward
through a line of entities, would pass through 1/t

entities per centimeter of path. This would be an
enormous quantity compared with the mean free
path calculated for the fortuitous distribution of
entities, referred to above, and exemplified in
magnitude by the calculation in foot-note 6. An
electron traveling down through a line of entities
as above would experience an enormous deflect. -

ing momentum as compared with the average
experienced by the electrons. Of course, it would
in actuality be deflected out of the line at the first
encounter in question.

The symmetry of arrangements of fields intro-
duced by the cubical arrangement of entities
results in a cooperation of influence which pre-
vent our concluding immediately that, in the case
of a combination of small entities and small
thickness of material, an overwhelming propor-
tion of paths would experience a deflecting force
determined by B,—2~I,.

APPENDix

and
0= —(4/3) ~0~(a /r ) cos 8 for r )a
0 = 2vro-cuba(2+ (4r/3a) cos 0) for r &a.

Problem 1. Magnetic field of a uniformly charged shell
rotating with uniform angular velocity

Maxwell* shows that the magnetic potential of unit
circular current is given by 0', where

1 a "+' dP„(v)
Q =2~(1—v ) 5 — P (p) for r)a

n in+1 r dv

~1—v' r n dP (v)Q'= —2' 1 —v+ Z — I'„(p) for r &a
n i n a dv

where the symbols have the following meaning. The origin
is the center of a sphere of radius a. The potential 0'
applies to the point r, 8, in space. The potential is caused
by a circular current of unit amount, flowing in an in-
finitely thin wire lying on the sphere, symmetrically with
the axis of symmetry and subtending an angle 2n at the
origin. p and v are written for cos 0 and cos a, respectively,
and the I"s are the ordinary Legendre polynomials.

As applied to our problem, the potential dQ due to the
portion of the rotating sphere contained between u and
n+da, rotating with angular velocity cv and charged to a
surface density tr electromagnetic units is obtained by
multiplying each of the above expressions for 0' by
trina sin ader, by —o~adv. The complete potential is then
obtained by integrating from v=1 to —1. The only terms
surviving the integrations are the terms for which n=1,
and the term 1 —v for the case r&a. We thus, obtain for
0, the magnetic potential

The external field is consequently that produced by a
doublet of moment p=4~roua'/3, and the internal field is
uniform, parallel to the axis of symmetry and equal to
2p/a'.

The polar case is solved in J. J. Thomson's Elements of
Electricity and Magnetism, f from which it will be seen
that a suitable distribution of positive and negative
magnetism on the sphere mill cause the sphere to act like
a doublet of moment p at external points, and to have a
field uniform and equal to —p/a' inside.

~a'Ji ——2 dr rd p H. 'ds, (13)

where H, ' represents the contribution to H by the entity
in question, the 2 is introduced to take account of the two
symmetrical contributions before entry and after exit, and

Problem 2. Calculation of the average contribution of an
individual entity to the line integral of H, along a
path which treads the entity

Following the scheme already used, let the axes of x,
and of s, be parallel, respectively, to the polarization and
to the line of flight of the particle. Let r'=x'+y', and let

be measured in the x, y planes. Let there be a un iform
density of flux ofelectrons, and let Jbe the average contribu-
tion of an entity to the line integral in question. J is
composed of 2 parts, a part Ji arising from the contribution
to the line integral outside the entity, and a part J~
arising from the contribution inside the entity. We have

* Maxwell, 6'lectricity and Magnetism, Vol. 2, third
edition, p. 333.

f J. J. Thomson, Elements of Electricity and Magnetism,
third edition, pp. 223—226.



W. E. DANFORTH AND W. F. G. SWANN

where
q=(a2 —y2)& if y&a; g=p if y)u. (14)

p a dy
Jg ——2— (sin' Ho —sin Hp)

—~

g2 p y
(19)

'I'he limit Ho corresponds to g. From (14) we see that
1

Ho
——sin ~ (1—y2/+2)' lf y &+ Ho ——0 lf y

Thus

ady 2~ 2X 3x2
me2J& ———2P — 1 ——— 1 ——sin Hooy o y' y2

(17)

x2——sin' Ho dy. (18)
y2

If x were replaced by y, the q integral in (18) would be the
same as before. Hence we may replace x' by (x2+y2)/2
=y2/2, and the integral will be unaltered. By doing this

We include the case y )u in anticipation of the discussion
of the passage of electrons near to but not through the
entity. Now

pL(x2+y2+z2) 3/2 3x2(x2+y2+z2) 5/2g

(p/y )L(1+F2/y ) / —(3x /y }(1+@/y } "'/2j. (15)

If we substitute this expression in (13) and put tan H =z/y,
so that sec' H = 1+s'/y and ds/y =sec' HdH; we obtain

any 2~ s./2
~a2J~ ———2P — cos HdH

p y 0 Oo

3x2 m/2
cos3HdH d&. (16}

r2 OO

Using the expressions for Ho given above, for y &e we find

J~ ———2p/3a2. (20)

Now with regard to the integral J2, we.observe that the
fiel inside the sphere, and resulting from the current, is
2p/a3. Thus

2p a . 2~ g 8mp a
Xa2J2 =—— dy ydy dS = (a2-yz).-ydy,

g3 p p a3

J2 ——8p/3a2. (21)

Eqs, (1S) and (16) establish the results quoted above, and
lead to J= 2p ja2.

Pxoblem 3. Calculation of the average contributions of an
individual entity to the line integral of H, along a
path which does not thread it

This case corresponds to y )a. The calculation proceeds
exactly as for J& except that, in (18) and the following
equations, the integral with respect to y extended from
0 to ~, and the limit Ho is zero, since y)e. Thus, (19)
becomes replaced by

2p 00 dy
J2 ——— (sin' Ho —sin Ho)—

g2 P y

where Ho is zero. Hence J2 =0.
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Experiments are described in which the deflections
suffered by cosmic-ray electrons in passing through the
saturated iron core of an electromagnet are detected by
means of Geiger counters. The observed eRects are com-
pared with the results of calculations in which we have
used the energy distribution as found by Anderson and
Neddermeyer with the cloud chamber. In this way we
have found it possible to set limits to the effective mag-
netic vector within the iron. One of our experiments
indicates a value lying between the induction B and B/2.

The other points to the limits 3B/4 and B/4. A theoretical
discussion is included in which it is pointed out that all
electrons of the same energy will not necessarily experience
the same deflection but will show a statistical distribution
of deflections with an arithmetic average corresponding
to the induction B. The present type of experiment, how-

ever, does not give a true arithmetic average and would
be expected to indicate, for the effective deflecting vector,
a quantity less than B to an extent dependent upon the
particular geometrical arrangement.

INTRODUCTION
~HE negative results obtained by B. Rossi'

and by L. M. Mott-Smith' in their attempts
to realize deAection of cosmic-ray electrons in
magnetized iron has excited speculation as to
the correctness of using the induction B rather

' B. Rossi Accad. Lincei, Atti 11, 478 (1930).' L. M. Mott-Smith, Phys. Rev. 39, 403 (1932).

than the magnetic intensity h as the vector
determining the force which such an electron
experiences. Indeed, Rossi's first experiment gave
magnetic deHections no more than comparable
with the experimental error. His second experi-
ment' did result in a small effect, which, however,

' B. Rossi, Nature 128, 300 (1931).


