POSITRON THEORY

points out, the experimental results for nickel
are best represented by S=1/2, leading to
25(S+1)/52=2. Thus we may expect the Curie
energy to be somewhere between % and twice
the energy of magnetization at the absolute
zero, with the probabilities favoring the latter
value. The experimental Curie energy 440 cm™
is 1.62 times the magnetization energy 271 cm™!
which we have found. The agreement seems en-
tirely satisfactory, considering the nature of the
approximations which we have made.

ELEcTRONIC SPECIFIC HEAT OF NI1CKEL AT Low
TEMPERATURE

It has been recently observed by Keesom!
.that the electronic contribution to the specific
heat, which, being proportional to the tempera-
ture, outweighs the contribution of the lattice
vibrations at low temperatures, is many times
the normal amount in nickel. Both Keesom and
Mott have suggested that this arises from the
large concentration of energy levels in the neigh-
borhood of the top of the Fermi distribution, on
account of the 3d levels. We can easily test this
hypothesis. Sommerfeld and Bethe (reference 2,
p. 430) show that the specific heat per gram
molecular weight on account of free electrons in

11 Keesom and Clark, Physica 2, 513 (1935); W. H.

Keesom, Proc. Roy. Soc. A152, 12 (1935); N. F. Mott,
Proc. Roy. Soc. A152, 42 (1935). I am much indebted to
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a normal metal is C,=(27%/3)N({0)k*T, where
N(E)dE represents the number of energy levels
of one spin in dE, if we are dealing with a gram
molecular weight, and { is the maximum energy
occupied at the absolute zero. Thus his N is half
our distribution function f. For a ferromagnetic
metal, however, at low temperatures all levels of
positive spin are filled, so that they do not con-
tribute to the specific heat, and we count only
electrons of negative spin. This removes the
factor 2 in the formula above. Furthermore, ¢
must be taken to be the maximum energy of
electrons with negative spin, when the electrons
of positive spin occupy the whole band. In this
case, from the numerical data from which Fig. 1
is drawn, we find that N(E) is 26.15 times
Avogadro’s number, if energy is expressed in
atomic units. Substituting this value, and appro-
priate constants, we find C,=0.00117 calories
per mole per degree. Keesom’s experimental
value is 0.0017447. The agreement is not very
good, but still it is correct in order of magnitude.
To get better agreement, the peak in Fig. 1 at
energy —0.45 atomic unit would have to be
about half again as high as it is, presumably
being correspondingly more narrow. This does
not seem impossible, though it is unlikely. In
any case, the high specific heat is definitely
connected with the high peak in the 3d distribu-
tion curve of Fig. 1, verifying again this general
feature of our curve.

Mr. R. H. Fowler for calling my attention to these
references.
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The origin of the infinite light-quantum proper energy
which follows, according to Heisenberg, from the creation
of matter by the field of the photon, is examined in some
detail. We are led to investigate the inconsistencies which
appear on the incorporation of the Dirac positron theory
into the formalism of the quantum theory. These incon-
sistencies make it impossible to regard with confidence any
predictions of the theory for which a consideration of the

N a field free vacuum, the infinite distribution
of electrons in negative energy states envis-

* National Research Fellow.

singularities of the density matrix is essential. It is shown
that when the off-diagonal distance in the density matrix
is taken different from zero, the proper energy of a light
quantum and the electromagnetic energy of an electron are,
in order ¢?, finite, and that the off-diagonal distance plays
in these calculations the part of a generalized electron
radius.

aged in Dirac’s theory of the positron clearly
should contribute nothing to the expectation
values of observables of the system (charge and
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current density, energy, electromagnetic fields).
The contribution of this field free vacuum distri-
bution has then to be subtracted from the expecta-
tion value of every observable. Since, however,
the difference between the contributions of the
vacuum distribution in the presence and absence
of an electromagnetic field does not turn out to
be finite,! the theory in this form cannot give
sensible and determinate answers to questions
involving the reaction of the electron distribution
in varying fields. Dirac himself has now tried to
modify the formalism in such a way that all
expectation values would necessarily be finite.

Dirac’s treatment of the problem? is based on a
study of the density matrix

(x//k// l (R I x/kl) = Z\pn(x,/kll)lpn_"(x,k/).

oce

Here ¢,,(x"'k"") is a one-electron wave function at a
point x,"" =ct”, xi"’, x2’/, x35", and k’" is the spin
variable. The summation is to be extended over
all occupied states. Dirac has shown, by integra-
tion of the equation of motion for ®, taking the
¥, as solutions of the ordinary Dirac equation,
that ® is finite when the length of the four-
vector x=x"—x"' is different from zero, i.e., the
density matrix is singular only when xx*=0. The
worst singularities in ® can be eliminated by
symmetricizing the density matrix between
positron and electron, that is, by replacing & by

(B | RIE) =3 dnla B Wt (R

oce

— 2 YR T (R .

unocce

Explicit expressions for the singular terms, .S,
which remain in R have been given by Heisen-
berg.? These singular terms may be deleted by
replacing R by »=R—.S. It is of course possible
also to subtract finite terms. Heisenberg has
included such a term in .S; it is chosen to re-
normalize the polarization of vacuum for slowly
varying and weak fields to zero. The expectation
value of an operator F at a point X=31(x'+x") is

1P. A. M. Dirac, Solvay Congress, 1933; W. H. Furry
and J. R. Oppenheimer, Phys. Rev. 45, 245 (1934); R.
Peierls, Proc. Roy. Soc. A146, 420 (1934).

2 P. A. M. Dirac, Proc. Camb. Phil. Soc. 30, 150 (1934).

3 W. Heisenberg, Zeits. f. Physik 90, 209 (1934).
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now given by

F(X)=lim ¥ (X — b, k| Fr| X +1x, k),

-0 k

and is guaranteed to be finite and determinate.

The electromagnetic field produced by the
electron distribution is taken into account by
including in the total current which appears in
the Maxwell field equations the expectation value
of the current calculated from the density matrix,

AX)=—elim 3 anpw (X —3x, &' | 7| X +3x, k).

-0 kk’

Here jo=p, ap=1. Heisenberg has shown that,
despite the subtraction of the singular terms, the
conservation law for the current still holds in the
limit x—0, as do also conservation laws for the
energy and momentum of the entire system,
material field plus electromagnetic field.

The passage from the density matrix treat-
ment, based on the correspondence principle, to a
quantized field theory can be made by regarding
the equations of motion (the Dirac equation and
the Maxwell equations) as matrix equations in
the variables ¢, y*, E;, 4;, which satisfy the
usual commutation laws. The consistency of such
a procedure depends upon the compatibility of
commutation laws and equations of motion:
these equations must, namely, be such that the
values of the commutators remain unchanged in
the course of time. This condition is not satisfied
by the system of equations with subtracta-
tive terms. Thus, with 4;= —FE; and E=curl
H+t4rea(R—S), (@/d)[E«(X), A:i(X')]= —4mwe
[@:iS(X), 4:(X")]5#0. In fact the time rate of
change of this commutator is singular.

A second scheme has also been proposed by
Heisenberg. This consists in taking as a Hamil-
tonian function the energy expression of the
density-matrix treatment, now regarded as a
function of the g-numbers ¢, y*, E;, 4;. One takes
as canonical conjugates ¢ and ¥+, 4; and E;, as in
the usual quantum electrodynamics. One sets the
scalar potential 4,=0, and xy=0. The Hamil-
tonian function is then*

4 We shall employ rational units, measuring length in
terms of the Compton wave-length %/mc, time in terms of
#/mc?, and mass in terms of the electronic mass . In these
units e?=a.
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dX 3 Lojprr {10/ 0%+ 5e[ A (X +52) + A ;,(X — 32) ]} +Brrwr I (X + 3, B)Y(X — 3, &)

— (X =3, B (X 43, k) ]+ f AXS00)9x0(X — b, ¥ | S| X +3x, )+ Hpw, (1)
2. k’

where Hpy= (1/87) S dX(E*+H?). This Hamil-
tonian function can be formally treated as
Hermitian, provided one understands that in
taking the transpose of a matrix one is also to
reverse the direction of x. The interaction be-
tween electromagnetic field and matter is to be
supposed a small perturbation and the usual
perturbation theory, expanding in powers of the
electronic charge e, is to be applied. In the result
of any calculation one is to pass to the limit
x—0. :

However, the Hamiltonian function carries
with it its own equations of motion, and these are
not the same as the equations of motion of the
simple density matrix treatment. Thus the
Hamiltonian equation for ¢ is

W (X) =[a;(—19/0X;+3e{A;(X)
+4;,(X—x)}) +B (X —x), (2)

which differs from the ordinary Dirac equation
through the appearance of x on the right-hand
side. Since the Heisenberg subtractative terms
were determined on the supposition that y obeys
the Dirac equation, there is no warrant for be-
lieving them correct when, instead, ¢ obeys (2).
The Hamiltonian equations for the electro-
magnetic field differ from the Maxwell equations
even more radically, for the subtractative terms
introduced into (1) are explicit functions of E
and A4, and hence give rise to new terms in the
equations of motion. Thus instead of the ordinary
equation — A ;= E;, one finds, aside from terms of
order x,

—A;=E;— (e2/3m)[xixc;E; /0%

—E;log (Janx /en]. (3)
The equations for E; can be written
— Eitcurl; H=4x[j:(x) —e2S:(j) ]

+e? (singular terms). (4)

Here j(x) represents the contributions of the
terms in (1) which are linear in e, and —e?S(j)
contains the subtractative terms necessary to
cancel the singularities which appear in the
expectation value of j(x) in order e The appear-
ance of singular terms in (3) and (4) is of course
fatal to the theory, since E; and 4; will evidently
be singular as x—0 and no provision has been
made to remove such singularities. Moreover, in
the derivation of the subtractative terms ex-
plicit use is made of the relation —4; =E;. One
would be just as badly off if one attempted to
regard the subtractative terms in (1) as not being
explicit functions of dynamical variables, since
then the subtractative terms for the current
would be lacking in the Hamiltonian equations
for the field.

Heisenberg has applied the Hamiltonian func-
tion (1) to the calculation of the proper energy of
a photon in order 2 but he did not obtain a finite
result. The reason for this is easily seen. Since H
is a function of x the transformation matrix
which diagonalizes it will also depend on x.
The transformed Hamiltonian function is H(x)
=S5"1(x)H(x)S(x). However Heisenberg set x=0
in the transformation matrix, taking H(x)
=.S571(0)H(x)S(0), presumably in order to avoid
any possible consequences of the change from the
Dirac equation to (2). (2) of course reduces to the
Dirac equation when x=0. This precaution
would be unnecessary if S(0) led to a finite result,
since in that circumstance it would be quite im-
material whether one used S(0) or S(x). Actually,
if S(0) is used, one term appears in H, namely,
S71(0)HgmS(0), which is completely independent
of x, and this term diverges.® Since the off-

5 It would be of no aid to introduce x into E2+H? in a
way analogous to that in which it is introduced into y*y. If
the propagation vector of the photon is k, such a modifica-
tion would introduce into Hgar a factor depending on k- x.
Such a factor does not help, since by the conservation laws
k is equal to the sum of the momenta of the pair virtually
created by the perturbation, whereas the singularities arise
from integration over the difference of the momenta.
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diagonal matrix elements of H, as well as the
diagonal elements, approach no limit as x—0, the
artifice of setting x=0 in the transformation
matrix is clearly not permissible, nor can any
conclusions regarding the characteristic values
of H be drawn from such a calculation.

If one carries out the calculation using S(x) no
difficulties are encountered as long as x#0, since
now every term in I involves x. The photon
proper energy in order €? is found to be

W= —(ahv/37)(z/R*—2 log 3CR+O0(R)),
(log C=0.577 ---) (5)

where 2 is the component of x in the direction of
the electric vector of the photon, and R is the
length of x. But in the limit x—0, the photon
proper energy becomes infinite.

The entire contribution to (5) comes from
Hgy, in fact (5) is just the expectation value of
Hpgy—hv. This seems paradoxical, since the un-
wanted singular terms in (3) and (4) do not
affect the expectation value of Hzy in order e?,
while from the remaining terms all singularities
have presumably been removed. That the singu-
lar terms in (3) and (4) play no part may be seen
most easily by inspection of the ordinary per-
turbation theory formula for Hgy. If we write
H=H®4-eH® 4+ 2H® we see that, since Hgy is
diagonal in the original representation, its ex-
pectation value in order € is completely inde-
pendent of H®. However, the singular terms in
(3) and (4) can be regarded as coming entirely
from H®.

Heisenberg has ascribed the photon proper
energy difficulties to the point nature of the
photon, that is, to the possibility of large fluctua-
tions in the quantized electromagnetic field. That
this is not the true explanation can be seen by
thinking of the calculation as carried out by
direct integration of the equations of motion in
powers of e. One then sees that in order e® the
energy contains no terms higher in degree than
quadratic in the unperturbed value of the electro-
magnetic field variables, by and bnt. For the
photon proper energy, we require the terms in the
energy proportional to M, the number of
photons. Fluctuations in the field consequently
contribute nothing : one must have terms at least
quartic in by and bt before fluctuation terms
proportional to My, can appear.

ROBERT SERBER

The real source of the trouble lies in the fact
that a Hamiltonian perturbation calculation in
powers of e is equivalent to integration of the
equations of motion under the supposition that e
is a slowly varying function of the time, which
increases from an initial value zero to its final
value, e. But in the calculation of the subtracta-
tive terms it is explicitly assumed that e is inde-
pendent of time: all time dependences are to be
included in the vector potential A. If it were not
for the subtractative terms it would be quite
immaterial, in computing the current, which one
supposed to vary, e or the electromagnetic fields,
since only the produce eA appears in the Dirac
equation. However the subtractative terms in the
current also involve eA, and hence will by no
means be the same in the two cases. Suppose that
the perturbation is applied over a time 7. During
this time transient terms of order 1/7 will appear
in the expression for the induced current, before
inclusion of the subtractative terms. If one
supposes A to vary with time, transient fields
will also be present, which will contribute
additional subtractative terms which at every
instant just cancel the transient terms in the
uncorrected current. However if e is varied
these additional subtractative terms will not
appear. The transient terms which in conse-
quence remain in the current vanish in the limit
T— o, but since they also act for a time T', their
contribution to the electromagnetic fields will be
of order unity as T— . If one calculates the
contribution of these transient terms to Hgu, one
obtains just the result (5). The photon proper
energy calculation illustrates a further difficulty
involved in the passage to a Hamiltonian theory :
even though it is possible to give a rule by which
non-singular solutions of the equations of motion
may be obtained, these solutions will not, in
general, correspond to stationary states of the
Hamiltonian system.

The efficacy of the subtractative terms is in
any event severely limited by the fact that they
have been determined only in the approximation
in which the density-matrix treatment is appli-
cable, and so cannot be expected to give, in
general, finite answers for problems in which
fluctuations are involved.

The possibility of constructing a Hamiltonian
theory, along the lines laid down by Heisenberg,



POSITRON THEORY

which” would avoid the difficulties discussed
above is very doubtful. Certainly no simple modi-
fication of the original scheme, such as the
introduction of new subtractative terms in the
Hamiltonian function, will give equations - of
motion and expectation values for energy which
are both free of singularities. On the other hand
formal arguments alone hardly provide an
adequate basis for a more radical revision.

In the absence of any consistent theory, the
simplest procedure which suggests itself is to
dispense entirely with subtractative terms, to
carry out all calculations with x different from
zero, and in the result to pick out the term inde-
pendent of x as the only one of significance. This
scheme has the flaw that a classification of terms
as depending on x or not depending on x is
essentially ambiguous. It is of course possible to
pick out terms which are singular or which vanish
as x—0, but since, unfortunately, (x*4y?
+2%)/R*=1, an unambiguous separation into
“determinate’” and “indeterminate’ terms is not
possible. In this connection, it should be re-
membered that after the introduction of x, an
operator F is in general no longer either Lorentz
covariant or gauge invariant. This could lead to
no inconsistencies provided the lack of the proper
transformation properties manifested itself only
in terms which were recognizably x-dependent.
However, we have not succeeded in formulating a
criterion for the seperation of determinate and
indeterminate terms which, in any given problem,
can be relied upon to lead to Lorentz covariant
and gauge invariant results. Calculations made in
this manner accordingly cannot lead to un-
equivocal results. But it may be hoped that they
will give some indication of the sort of corrections
which must be applied to present theory, and of
the order of magnitude of the correction terms.

We shall introduce x into the theory in a
somewhat different way than did Dirac and

ahv( fme\ 22
-
27 hy R4
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Heisenberg. The operators of the usual field
theory will be left altogether unaltered, except
for their symmetrization in electron and positron
WX =3O X)) — (XY H(X) D). The
commutation laws however, will be taken to
involve x:

(X)), ¢(X)]r=8(X —X'+x).

This formalism would correspond to the im-
possibility of making field measurements without
mutual disturbance at two arbitrarily near
points. It thus suggests a not unreasonable
motive for the introduction of the off-diagonal
distance x.

As in the usual quantum electrodynamics, the
wave equation associated with the Hamiltonian
function is to be augmented by the auxiliary
relation div E—4rp=0. This relation is, in fact,
not compatible with the equations of motion,
since the conservation law for the current holds
only when x=0. The inconsistency of the auxili-
ary relation with the equations of motion is only
to be expected, for, with x>%0, the Hamiltonian
function is no longer gauge invariant. The same
inconsistency appears if x is introduced into ¢

" and ¢t instead of into the commutation relations.

(Even in the density matrix treatment, it will be
remembered, the conservation laws fail for x50).
Since the covariance of an inconsistent set of
equations is in any event illusory, we have been
content to introduce x into the theory in a
patently noncovariant manner. As we shall see,
this lack of covariance is much the same as that
which appears in classical electrodynamics when
one attempts to introduce the radius of the
electron.

The formalism just described finds an interest-
ing application in the calculation of proper
energies of photon and electron in order e2. The
photon proper energy is found to be (in c.g.s.
units)

x23? 22 1 x? 1
)2 [ mrow

Rt R 3R J’

where x is the component of x in the direction of propogation of the photon, z is the component in
the direction of the photon’s electric vector, and R is the length of x. This result may reasonably be
interpreted as indicating a null photon proper energy in order e2.

If we carry out the elimination of the electrostatic field variables in the usual way, overlooking, of
course, the inconsistency of the auxiliary relation, we obtain in the energy a term



550 ROBERT SERBER

i‘ Z (an+am - a'marn+) (as+at - atas.’-) Qnm; sty (6)

nmst

where

Ut (X) 0 (X) v (X )v(X7) )
Quni = te* [[ax [[ax e exp — ¥k, ++E k) X,

and ¢y and y* have been expanded in electronic plane wave functions v,, of momentum k,: ¢ =3 a.v,
n
exp—3ik, -x, yt=>a,tv,* exp—3ik,-x. The factors exp —itk,-x are inserted so that the @, and a,*

n
will obey the usual commutation relations. The diagonal matrix elements of (6) give the ordinary
Coulomb and exchange terms, and in addition, terms which represent the electrostatic proper energies
of electrons and positrons. The proper energy of an electron in a state 7 is

WES=ZQM': T'T_ZQTP: pre (7)
r P

Here 7 and 7’ refer to positive energy states, p to negative energy states. Evaluating (7) in a Lorentz
frame in which the electron is at rest, we find

WES=(e2/167r3)fdr/|r+x|fdk(1+k2)~% exp (ik-r)=(e2/47r2)fdrK1(r)/rIr+x|,

where Ki(7) is the Bessel function defined in Whittaker and Watson, Modern Analysis, §17.71. The
angular integration gives

R o
WES':(EQ/TF)[RA[ rKl(r)dr—l—f Kl(r)dr],
v R
which can be reduced, by use of the recurrence relation K(r) = (d/dr)Ko(r), to

Ws=(e2/nR) f Ko(r)dr=— (2¢*/m)[log 1CR—1+0(R)].

The electromagnetic proper energy in order ¢* can
also be shown to be finite when x50. Thus the
artifice introduced to eliminate the singularities
due to the sea of negative energy electrons has a
very natural extension to the treatment of the
electronic proper energy difficulties.

It will be observed that the filling of the nega-
tive energy states results in the summations over
positive and negative states appearing in the
electrostatic proper energy with opposite sign. If
the negative energy states were left empty,
the proper energy would instead be > Q.. »»

+ > Qrp; pr- This gives Wrs=e€?/2R, which is just

P
the electrostatic energy of an electron of radius
R. The off-diagonal distance x thus appears to
find a classical analogue in the electron radius.

Our method of calculation, too, is strongly
reminiscent of that employed in classical electro-
dynamics, which can likewise be described as the
introduction of a parameter, the electron radius,
and the final abandonment of all terms except
those independent of this parameter. The aim, of
course, is to separate, insofar as possible, those
terms which obviously depend on the particular
model employed or on the way in which calcula-
tions are carried out, from those which seem to be
independent of these factors, and which may be
hoped therefore to have some significance,
despite the unquestionable inadequacy of the
theory.

I wish to express my deepest thanks to Pro-
fessor J. R. Oppenheimer, to whom I am indebted
for many illuminating discussions of this subject.



