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In the case of the hydrogen compounds, the
formulas for G are:

Ga/m=5(24p) Ns+N) +3(2—w)[(As—Ny)?
—8D*/um*F+3\+D/m  (7)
and

InT+ %)\3+%M)\4 <Gy/m < %7\1‘*‘%)\34‘%#)\3, (8)
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the minimum occurring for D=0 and the maxi-
mum for D=mu(A\-—N\s)/(2+p). Here again we
would not expect Ga to be very close to the
lower limit. ,

The numerical values of the bond constant
calculated for various molecules are given in
Table I.
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By using metallic energy levels extrapolated from copper
to nickel, the energy difference between a nonmagnetic and
a ferromagnetic state with permanent magnetic moment is
calculated for nickel, and it is shown that the ferromagnetic
state is the stable one. Both saturation magnetic moment
and Curie point are calculated, in agreement with experi-
ment within the limits of error of the calculation. Extra-
polation further into the iron group, though less justified
than to nickel, indicates that ferromagnetism should

WO different approaches have been made

to the theory of ferromagnetism, that of
Heisenberg! and that of Bloch.? The former
operates with wave functions of the Heitler and
London type, localized around the atoms of the
crystal, while the latter uses plane waves travel-
ing through the whole crystal. Neither theory
has met with great success, except in the funda-
mental point of explaining the large energy of
orientation of the elementary magnets, or
magnetic spins, within a ferromagnetic crystal
in terms of exchange energy rather than magnetic
energy. This fundamental principle is surely
correct, but Heisenberg’s theory postulates the
existence of a positive sign for certain exchange
integrals which, in every case where they have
been calculated, have negative sign, and Bloch’s
theory does not permit ferromagnetism except
for lattice spacings much larger than those ob-
served in the ferromagnetic metals. Neither
theory has been applied specifically to the metals

1 W. Heisenberg, Zeits. f. Physik 49, 619 (1928). See also
Van Vleck, Electric and Magnetic Susceptibilities, Oxford,
1932.

2 F. Bloch, Zeits. f. Physik 57, 545 (1929). For discus-
sion of both theories, see A. Sommerfeld and H. Bethe,
Handbuch der Physik, Vol. 24, second edition.

persist in that group down approximately to iron. The
criterion for ferromagnetism previously suggested by the
author, the existence of inner unfilled electron shells (the
3d), small in proportion to their distance apart, is justified.
The calculation is not made according to Heisenberg’s
method, which is considered to be unsuitable for application
to ferromagnetism, except in its general principle of
explaining the energy of orientation of elementary magnets
in terms of exchange energy.

which are known to be ferromagnetic, and neither
one gives any suggestion of why just iron, cobalt,
and nickel should have these properties.

Several years ago the writer? pointed out that
a necessary condition for ferromagnetism ap-
peared to be the possession by the atoms in
question of an incompleted inner shell of elec-
trons, capable therefore of taking on a magnetic
moment by proper orientation of the spins, and
small enough so that the shells of neighboring
atoms overlapped very little, so that these
shells did not take part in the cohesion. The
reason is that the theory of valence and cohesion
demands, in agreement with experiment, that
the stable state be that in which the spins are
neutralized, so as to produce no net magnetic
moment. The electrons responsible for ferro-
magnetism cannot then be those engaged in
cohesion, but must be much more like those in
free atoms, in which the condition of stability
is known to be just the opposite: the stable
state is in general that of highest multiplicity,
or that with the maximum magnetic moment.
It was at that time pointed out that the incom-

3J. C. Slater, Phys. Rev. 36, 57 (1930).
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pleted groups of d electrons in the transition
groups were appropriate for ferromagnetism,
and it was found that of all the elements of these
groups, those with the greatest distance be-
tween the d shells in proportion to their size,
and therefore the least overlapping, were just

iron, cobalt and nickel. The recent discovery of

the ferromagnetism of gadolinium, in which the
4f group is presumably effective, fits in with this
rule, as Bethe? has pointed out.

Recent advances in the theory of electronic
energy levels within a metallic crystal® have
made it possible to carry Bloch’s type of theory
much further than before. In the reference just
mentioned, it was shown to be possible to
understand ferromagnetism in terms of this
type of theory, and to see why those elements
with non-overlapping unfilled shells should be
likely to show it. Until the present time, how-
ever, energy levels for a ferromagnetic crystal
have not been calculated, and consequently no
detailed comparison of the theory with experi-
ment could be made. Such computations have
still not been carried out, but the calculations of
Krutter® on energy bands in copper makes pos-
sible an extrapolation to the next element,
nickel, which has the same face-centered cubic
crystal structure, with a good deal of assurance.
Similar computations are now being made by
Dr. Manning for iron, and when they are com-
pleted an interpolation for the whole iron group
will be possible. In the meantime, however, it
was thought worth while in the present paper
to develop the method of calculation, and apply
it to the ferromagnetism of nickel, using the
extrapolated energy bands. The result is to
show definitely that nickel should be ferro-
magnetic, and to calculate saturation magnetic
moment and Curie point in good agreement with
experiment. Thus for the first time the theory of
ferromagnetism has advanced far enough to
make one fairly sure of its correctness. At the
same time, with much less justification, the
calculations have been extrapolated all the way
to iron. The extrapolation indicates definitely
that only a few metals preceding nickel in the
periodic table should be ferromagnetic; as a

4 See article in Handbuch der Physik, Vol. 24, see p. 596.
5 J. C. Slater, Rev. Mod. Phys. 6, 209 (1934).
6 H. Krutter, Phys. Rev. 48, 664 (1935).
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matter of fact, it would predict the limit of the
ferromagnetic elements to lie about at iron
rather than between iron and manganese, but
the calculation depends on the small difference
between large quantities, and a small error in the
extrapolation could shift the limit to its correct
position. It is hoped to remedy this when the
calculations for iron are completed. It is worth
noticing that while the present calculations are
made by the general method of electrons travers-
ing the whole crystal, there seem to be good
reasons to doubt whether any calculations of
Heisenberg’s type, depending on wave functions
surrounding the individual atoms, could lead to
the correct result in any simple way.

The writer is indebted to Mr. R. H. Fowler,
Professor J. H. Van Vleck and Professor Francis
Bitter for illuminating discussions regarding the
question of ferromagnetism.

UNFILLED ENERGY BANDS AND
FERROMAGNETISM

The wave functions of an electron in a
periodic potential field representing a crystal
are modulated waves, behaving around each
nucleus like an atomic wave function, but
changing phase from one atom to another. In
the case of rather tightly bound electrons like
the 3d electrons concerned in ferromagnetism,
the wave function is very much like an atomic
one, falling to a rather low value in the region
midway between atoms. The energy level is no
longer a sharp one, as in an atom, but is spread
out into a band, the spreading being greater
and greater as the overlapping gets greater.
Thus in the 3d functions the spreading.is not
very great. In copper, it amounts to about 0.4
atomic unit, or about 5.5 volts. Since there are
five types of d electrons (corresponding in the
atomic case to the five degenerate states given
by m=2,1,0, —1, —2), there will be five bands
in the crystal, but these overlap in a complicated
way. For our present purposes we need only the
distribution in energy of the levels. This is given
in Fig. 1, where f(E), the number of states
between E and E+4dE, divided by dE, is plotted
as a function of E, for the five 3d bands com-
bined. The total area under the curve then gives
the total number of electrons which can be ac-
commodated in the band; this is 10N, where N is
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Fi1c. 1. Distribution of states in energy, for copper.
f(E), number of levels per unit energy range, plotted
against E, in atomic units, lowest energies to the left. 3d
and 4s bands shown separately Vertical lines indicate the
portion of bands filled by 1, 2, ... 12 electrons, re-

spectively.

the number of atoms in the crystal, since each
band can hold one of each spin per atom. The
values of Fig. 1 were found by starting with
Krutter’s calculations, extending them from
the particular directions of propagation for
which he found them to all directions of propaga-
tion by a method of interpolation, and tabulating

the number of states for each range of energy.

of 0.01 atomic unit. The method will be de-
scribed in a forthcoming paper. The fluctuations
noted in the curve of Fig. 1 are partly of signifi-
cance, partly a result of the approximate method
of calculation used.

Overlapping the band of 3d electrons is an-
other band, also shown in Fig. 1, arising from
the 4s level of the atom, with interaction with
the 4p and other higher levels. This band, capa-
ble of holding 2 electrons per atom, has wave
functions of a very different character, large in
the regions between atoms, and acting there
very much like plane waves. Electrons in this
band act like free electrons, and possess high
electrical conductivity, in contrast to the 3d’s.
At the same time they contribute strongly to the
cohesion, as in Wigner and Seitz’s” calculation of
cohesion in sodium, and in Fuchs’s® calculation of
the cohesion in copper, where wave functions
very similar to the present ones were used.

As a first approximation to the structure of the
metal, we may suppose that levels are filled,
beginning with the lowest energies, high enough

" E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933).
8 K. Fuchs, Proc. Roy. Soc. Al151, 585 (1935)
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up so that all the electrons of the crystal are
accommodated. There will be two electrons per
state up to a certain energy, none above. In
Fig. 1, lines are drawn indicating the maximum
energy if there are 1, 2, 3 - -+ 12 electrons in the
3d and 4s bands combined. The case of 11 cor-
responds to copper, whose atom has 10 3d and 1
4s electrons. It is seen that the metallic 3¢ band
is filled, and that the 4s contains one electron
per atom. If now the energy levels remained
the same for the preceding elements, the case of
10 electrons would represent nickel, 9 cobalt, and
8 iron, respectively. We shall not try to estimate
the changes in the energy levels, but shall wait
until the case of iron is actually calculated.
We see that the ferromagnetic elements contain
less than one 4s electron per atom (explaining
partly the poorer conductivity of these metals
compared with copper, as Mott® has pointed
out), but that nickel contains only about 9.5
electrons in the 3d band, cobalt about 8.5 and
iron about 7.5. These missing electrons in the 3d
band are necessary for ferromagnetism. But as
long as the electron arrangement is as we have
described, with each state either occupied by
two electrons of opposite spins or empty, there
will be no net magnetic moment, and the metal
cannot show ferromagnetism.

We must, then, go to a higher approximation
to find any net magnetic moment. A similar
situation arises in the structure of atoms. As a
first approximation, we assign to each electron
a set of quantum numbers, %, I, m, and a spin
quantum number, and assume that, as in a
central field of force, the energy of each depends
on n# and /. We then assume that the energy
levels in the central field are filled far enough
up to accommodate all the electrons, deducing in
this way which of the quantum states are oc-
cupied in the normal state of the atom. As a next
step, however, we consider the vectorial inter-
action of electrons, resulting in the multiplet
structure. The electrostatic interaction is al-
ready taken into account if we set our central
field up properly, and the same is true in the
metal if the periodic field is chosen properly.
But we must consider the changes of energy
resulting from orientations of the orbits (change
in m) and from orientations of spins. The energy

o N. F. Mott, Proc. Phys. Soc. 47, 571 (1935).
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of a state proves to be, to the first order of
perturbation theory, given by the energy neglect-
ing orientations, minus the sum of certain ex-
change integrals over all pairs of electrons having
parallel spins.!® The integral is positive; with
the result that the energy depends on the ar-
rangement of spins, and that the minimum
energy corresponds to the state where as many
electrons as possible have spins parallel to each
other. Now suppose there are (10—#) electrons
per atom in the 3d shells, (10—#)N in the
whole crystal. If these are divided, as we have
assumed, into equal groups of each spin, there
will be (5—n/2)N of each spin. With each spin
there will then be 3{(5—#n/2)N}{(S—n/2)N—1}
‘pairs, or, neglecting 1 compared with N, the
total number of exchange integrals will be
{(5—n/2)N}% Suppose on the other hand that
there are only (5—#n/2—pu/2)N electrons with
negative spin, but (5—#/2+4u/2)N of positive
spin, leaving the same number of electrons as
before, but with a net positive spin of (u/24u/2)
=u electrons per atom. Then there will be ap-
proximately

LG —n/24p/DNP+L(—n/2—p/2)N T}
=[(6—n/2)NP+[uN/2F

exchange integrals, an increase of (uNN/2)? in-
tegrals. Since these terms are to be subtracted,
there will be a decrease of energy, and a tightness
of binding, if the spins set themselves parallel, re-
sulting in a magnetic moment. The maximum
possible moment is determined by the condition
that the number of electrons of either spin in the
3d bands must be between zero and five. The
second limiting condition is the significant one in
the ferromagnetic case, and as a result we see that
the maximum value of u equals #. In this case, all
states of positive spin are filled, but there are
nN electrons missing from the states of negative
spin. The exchange energy in this case is less
than that in the case of zero spin by (#N/2)?
times the average exchange integral between
two electrons.

We have just seen that the total energy of the
crystal is decreased, on account of exchange
effects, if as many spins as possible set themselves
parallel, resulting in a permanent magnetic
moment. There is, however, a compensating

10 J, C. Slater, Phys. Rev. 34, 1293 (1929).
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effect, which may be less or greater than the ex-
change effect depending on circumstances. If we
go from the state of balanced spins to that of
unbalanced spins, we remove ulN/2 electrons
from states of minus spin, and add them to the
states of plus spin. In the balanced state, the
lowest (5—n/2)N levels of each spin were oc-
cupied, up to a certain definite energy level.
In the process of unbalancing, the uN/2 electrons
of negative spin are removed from energies lower
than this maximum value, and are raised in
energy so as to occupy levels of positive spin
above this maximum value. Thus there is a net
increase of energy. This increase is likewise ap-
proximately proportional to u?; for the number
of shifted electrons is proportional to u, and the
energy difference through which they must be
raised is, at any rate for small y, approximately
proportional to u. The net effect of this energy
increase and the energy decrease due to exchange
will then be positive or negative depending on
the relative magnitude of the effects, but in any
case it will generally remain of the same sign
independent of the magnitude of u, so that
either the state of balanced spins will be the
most stable, or it will be the least stable and the
unbalancing will go the whole way, resulting in
an unbalanced spin of # electrons per atom. This
latter case is that for ferromagnetism.

The magnitude of the exchange integral is not
very different for different atoms, and for most
atoms the increase in energy on account of
shifting the electrons to higher levels, increasing
the binding energy, is far greater than the de-
crease of exchange energy when going into a
magnetic state. (Algebraic rather than absolute
values of the energies are here referred to.) Thus
most metals are nonmagnetic. For the ferro-
magnetic elements we must seek those whose un-
filled energy bands are as little split up as pos-
sible, so that as little energy change as possible
will result from a rearrangement of electrons
within the band. Thus we are led back to our
former criterion of nonoverlapping unfilled
shells, for it is just here that the splitting will be
small. Furthermore, the whole . calculation,
based on the top part of the band being unfilled,
the bottom part filled, is one for which the
method of periodic wave functions is particu-
larly suited, but for which Heisenberg’s method
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of atomic wave functions could be adapted only
with great difficulty.

CALCULATION OF EXCHANGE INTEGRAL

To get the exchange effect, we need only find
the average value of the exchange integral
between two 3d electrons in the lattice. Such
an exchange integral between two wave func-
tions a; and a; is by definition

SaF(D)a Q)@ /n)ai(DadDdoe, (1)

where 1 and 2 represent the coordinates of two
electrons. We divide the volume into N poly-
hedral cells, each surrounding an atom, and
integrate separately over each pair of cells.
Thus the integral is the sum, as p and ¢ range
from 1 to N, of the integral in which dv, ranges
over the interior of the pth cell, dv, over the ¢th
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cell. Within the pth cell, according to the
modulation of the wave function described by
Bloch, the function a; is equal to its value at the
corresponding point of the central cell, multi-
plied by the factor exp (zk;*R,), where k; is the
vector wave number describing this stationary
state, R, is the vector from the center of the
central cell to the corresponding point of the
pth cell. Similar relations hold for the other
functions. Thus our integral becomes
N N

2 2 exp (i(kj—ki)- (R,—R,))

p=1 ¢g=1
times the integral in which dv, ranges over the
pth cell, dv, over the g¢th, and where we replace
a; and a; by their values at corresponding
points of the central cell. Let these values in the
central cell be #;, #;; then the exchange integral
becomes

I=% 5 exp (ikj—ky)- (R,~Ry)) f f w(1)*(2) €/ r1s)s(Da(2) v, @)

p=1 ¢=1

A single term is the potential of a charge density
eu*(1)n;(1) in the pth cell, on a charge of density
eu;*(2)u;(2) in the gth cell, times the appropriate
exponential. First we shall consider the terms
» =g, which prove to be the leading terms. For
this case, R,—R,=0, so that the exponential re-
duces to unity, and the integral becomes sim-
ply NJSuH(Du*(2)(e/r2)u;j(1)ui(2)dvye, inte-
grated through the central cell only. Now within
this cell, the functions #; and #; are very much
like atomic d functions, on account of the rela-
tively small perturbations of the d electrons of
different atoms on each other. The normaliza-
tion, however, is different, each function being
approximately 1/N* times the corresponding
atomic function, so that the square of the func-
tion, integrated over the IV cells, can equal unity.
Thus the exchange integral finally is seen to be
approximately 1/N times the corresponding
atomic integral, which we shall call J.

Next we consider the case p>#¢. Two different
cases arise, depending on whether #; and u;
refer to the same value of the quantum number
corresponding to the atomic quantum number
m, or not. If they do, #; and u; are approxi-
mately equal to each other within the cell, and
their product integrates to 1/N over the cell,

so that the charge density eu;*(1)u;(2) is a
charge of approximate amount ¢/N, distributed
through the pth cell. Its potential at the gth cell
will then be approximately (e/N)(1/|R,—R,]|),
plus terms in higher inverse powers of |[R,—R,|,
arising from the fact that the charge distribution
really has multipole components as well as a
total charge. We shall see, however, that the
whole effect is very small, and the multipole
terms can consequently be neglected. On the
other hand, if #; and u; refer to different m
values, the functions will be approximately
orthogonal to each other, their product will
integrate almost to zero, over the cell, the charge
distribution will consist practically only of
multipoles (beginning with a quadripole), and
we may neglect its potential completely. We are
left, then, only with the case of equal m values,
in which the contribution to the integral is the
potential of a charge ¢/N on an equal one at
distance |R,—R,|. We may then convert the
sum over p and ¢ in (2) into a single sum in which
the pth cell is at the origin, obtaining

I=J/N+N(e®/N*)Z (exp (i(k;—ki)-R,))/R,, (3)

if u; and u, refer to the same m value, while
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I=J/N otherwise. It is to be noted_that J is
different for different pairs of m values of the two
wave functions.

We shall not attempt to evaluate I from (3)
for each separate combination of functions u;
and u;, but only to find the average over all
possible combinations, recognizing that this
may involve us in certain errors in the final re-
sult. In reference 10 it was shown that the ex-
change integrals between two d functions can be
written in terms of two parameters, F? and F*,
which can be evaluated from atomic wave func-
tions, or from observed atomic spectra. In the
table of coefficients b*(lm;; 'my’) on p. 1312 of
that reference, the necessary coefficients are
given for different combinations of the m's.
When we average over the 25 combinations of
the five m values with each other, we find from
that table that

T=2/35(F2+ F¥). 4)

For nickel, we can estimate the quantities F?
and F* from the observed spectrum. The
(3d)8(4s)? configuration of Ni I involves energy
separations determined by just these quantities.
Taking the observed multiplet separations for
this configuration, we can fit F values to it.
The fit is not very good, but to a rough approxi-
mation we have F?=80,000 cm™, F*=50,000
cm~t. To indicate the order of accuracy, we give
in Table I the energy differences between the
multiplets, as obtained by taking the center of
gravity of the observed multiplets, and we
compare with the values determined from these
parameters. Using these values of the F's, we
have J=7430 cm™! approximately.

Next we wish to average the second term of
(3) over all pairs of wave functions. We recall
that this term is present only when %, and #;
have the same m values, which occurs only 1/5 of
the time, so that we wish 1/5 of the average
over 7 and j of this term. Strictly, the quantities
k; and k; should be allowed to range over a

TaBLE [.

OBSERVED COMPUTED
3SF—1D 12,550 cm™t 13,250
3F—3P 14,750 15,950
3SF—1G 21,150 20,750
SF—1S not obs. 51,600

SLATER

polyhedral cell in the & space, but it will make
only a small error if instead we allow them to
range over the interior of a sphere of the same
volume. It is easy to show that the average of
exp (tk-R) over the interior of a sphere of radius
K in k space is 3 (sin KR—KR cos KR)/(KR)3.
Thus the average of the second term of (3) is

3sin KR,—KR,cos KR,)?
} / R, (5)

1

—(p2

R
Here K is to be so chosen that (4/3)7K? is the
volume of one cell in & space. If R is the distance
from an atom to its nearest neighbors in a face
centered lattice, it is not hard to show that this
leads to KR=6%2x% Inserting this value, the
bracket above becomes 0.000352 for the case
where ¢ is one of the nearest neighbors, and it is
much less for more distant neighbors. The
nearest ones are then the only ones which need
be considered, and since there are 12 of them, the
expression (5) becomes approximately

(12/5)(0.000352) (e2/N)/R. (6)

The distance R from an atom to its nearest
neighbor is about 4.67 atomic units in Ni.
Inserting this value, and converting to cm™, the
expression (6) becomes 36 cm™'/N. It is thus
evident that the terms for ps£qg are almost
negligible in finding the exchange integral, which
arises almost entirely from the atomic integral.

Adding our two expressions, we have I=7466
cm™!/N, and

Exchange energy of magnetic state—exchange
energy of nonmagnetic state
= — (n?/4)(7466) N
= —1866 #* cm™! per atom.

™)

On account of the discrepancies between the ob-
served multiplets and those calculated from our
F values, we may expect this value to be uncer-
tain to between five and ten percent. We must
recall, furthermore, that it represents only an
average value, and that the exchange energy for
particular pairs of wave functions can differ
widely from the average.

CALCULATION OF CHANGE IN BINDING ENERGY

We must next find the change of binding
energy involved in shifting #N/2 electrons from
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the states of negative spin to those of positive
spin, remembering that they must go into states
previously unoccupied. Since the binding energy
is known only in the form of numerical calcula-
tions, as summarized in Fig.Ll, this calculation
must be made numerically, not analytically. In
terms of the function f(E) plotted in Fig. 1,
giving the number of states per unit energy range,
the total energy of the electrons between two
energy values, assuming them to fill all energy
states between the limits, is S Ef(E)dE between
these limits, or rather a corresponding summa-
tion, since f(£) has been computed for discrete
values of E. We must find the energy in two
cases: (1) the state of no net spin, in which all
states are filled from the bottom of the band to
an energy such that there are #/2 states per
atom of each spin vacant above this value; and
(2) the state of maximum spin, in which all
states of positive spin are filled, but in which
states of negative spin are filled only to such an
energy that there are # states per atom of this
spin vacant above this value. These energies
have been computed, as a function of #, by
obvious numerical methods, and their differ-
ence E;— E; has been found, giving the increase
in binding energy in going to the ferromagnetic
state.

NET ENERGY CHANGE FROM NONMAGNETIC TO
MAGNETIC STATE

We have now found that on account of the
exchange effect, as given in (7), the energy of the
crystal decreases by 1866 #2 cm™ per atom when
the electrons change from the state of no net
spin to the state of maximum spin. On the other
hand, the energy arising from binding increases
by the amount E,— E;, as discussed in the last
paragraph, when the same change is made. The
absolute values of these two quantities, as
functions of #, are plotted in Fig. 2. It is seen

that, for small #’s, the increase in binding energy

is less than the decrease in exchange energy, so
that the net result is a decrease of energy, the
ferromagnetic state is more stable than the
nonmagnetic state, and the metal should be
ferromagnetic. On the other hand, as # increases,
the two curves are seen to cross, so that for too
large a value of # (too small a total number of
electrons in the d shell, or in the atom), the in-
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Fig. 2. Magnitudes of exchange and binding energy
changes between ferromagnetic and nonferromagnetic
states (in cm™ per atom), as function of # (number of net
electrons spins per atom). The condition for ferromagnetism
is that the exchange energy term be greater numerically
than the binding energy term.

crease in binding energy becomes greater than
the compensating decrease in exchange energy,
so that the state of zero spin is the most stable
one. The question now is, in which part of the
curve is nickel located? We have already pointed
out that, according to our extrapolated copper
energy bands, nickel should contain about 95.
electrons per atom in the 3d bands, so that
n=0.5. Mott® has shown that according to ex-
periment # is nearer 0.6. This is near enough our
theoretical results so that the uncertainty in the
extrapolation could easily account for the differ-
ence. In either case, Fig. 2 very definitely shows
that nickel should lie in the ferromagnetic part
of the curve. It is tempting, as we have remarked

‘above, to extend the extrapolation further down

the iron group, using these same curves for
cobalt and iron, though of course they are really
not accurate, since both the exchange energy (as
computed from the spectrum) and the binding
energy (as computed from the metallic energy
bands) will really change as we go from atom to
atom, and furthermore cobalt and iron have
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different crystal structures from copper and
nickel. We have seen that approximately n=1.5
for cobalt, 2.5 for iron. Mott® has shown that
experimentally #=1.7 for cobalt, 2.2 for iron,
approximately. These values of # are all obtained
from the observed saturation magnetic moments
of the metals. From Fig. 2, on which the values
1.7, 2.2 are indicated, it is seen that the curves
cross at approximately the # value for iron,
instead of between iron and manganese (that is,
for n>2.2) as they should from the observed
ferromagnetism of iron. But the error is one
which we can easily attribute to the errors in our
extrapolation. Both curves rise rapidly with #,
and comparatively small changes in them would
shift the intersection by the required amount.
We may reasonably say, then, that our theory
not only predicts the ferromagnetism of nickel,
but also predicts that the phenomenon of ferro-
magnetism should persist for some distance down
into the iron group of elements, approximately
as far as it is observed experimentally, and then
should cease.

MaGNETIC ENERGY AND CURIE POINT OF
NickeL

Let us adopt for nickel the value 0.6 for =,
as indicated by experiment. Then we find the
exchange energy to be 1866 (0.6)? cm1=672
cm~. The difference in binding energy between
the two states is found to be 401 cm™!. The net
decrease in energy on going from the nonmag-
netic to the ferromagnetic state is thus 271
cm~! per atom. This of course is at the absolute
zero of temperature, for with both nonmagnetic
and ferromagnetic states we have considered
only the lowest possible energy level, all elec-
trons being in the lowest state consistent with
the given total spin. This quantity is not sus-
ceptible of experimental measurement, but it is
closely related to the Curie point. For nickel,
the Curie temperature 8 is about 630° absolute,
and the corresponding energy k6, where k is
Boltzmann’s constant, is 440 cm™!, when con-
verted to spectroscopic units. This is obviously
of the same order of magnitude as the quantity
found theoretically. We can, however, make a
more definite comparison, on the basis of avail-
able theories of ferromagnetism. For the present,
we shall not try to replace these theories of the
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temperature variation of the magnetic moment
by a more suitable theory based on the present
model.

In the Weiss theory of ferromagnetism* in the
absence of an external magnetic field, one writes
the internal magnetic field in terms of the
magnetic moment per unit volume as H= NI,
where N is an empirical constant, large com-
pared with unity, and I is the magnetic moment
per cc. The magnetic energy per unit volume is
then —3H-I=—31NI? in the magnetic case, as
compared with a nonmagnetized state. The
formula for the Curie point on this theory can
be written 0=0.,2Np/3mR, where o is the
magnetic moment per gram molecular weight
(equal to our #, times the Bohr magneton, times
Avogadro’s number), p is the density, m the
molecular weight, R the gas constant per gram
molecular weight. In an obvious way on, can
be written in terms of 7, the magnetic moment
per unit volume, so that 6 is plainly proportional
to the same quantity NI? appearing in the
energy per unit volume. In fact, if we multiply
this magnetic energy by the volume of an atom,
to get the energy per atom, we have very simply

k0=2 magnetic energy per atom (Weiss). (8)

We can proceed similarly in the Heisenberg
theory.t The magnetic energy of the whole
crystal is then written in terms of certain ex-
change integrals (not to be confused with our
exchange integrals) denoted by J, a number of
nearest neighbors z, and a total spin §’ of the
crystal, equal to NS, where .S is the spin of one
atom, N the number of atoms in the crystal.
It is then, as given by Van Vleck’s formula (22)
equal to —zJS”/N. The Curie point, on the
other hand, is given by Van Vleck’s formula (37)
as 0=22JS(S+1)/3k. Thus we are led to the
relation

k9=2S(S+1)/S? times magnetic energy
per atom (Heisenberg). (9)

It is observed that Heisenberg’s result ap-
proaches Weiss’s in the limit S=, as it
does in other respects. However, as Van Vleck

* See for example E. C. Stoner, Magnetism and Atomic
Structure, p. 75. .

tSee for example Van Vleck, Electric and Magnelic
Susceptibilities, p. 328.
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points out, the experimental results for nickel
are best represented by S=1/2, leading to
25(S+1)/52=2. Thus we may expect the Curie
energy to be somewhere between % and twice
the energy of magnetization at the absolute
zero, with the probabilities favoring the latter
value. The experimental Curie energy 440 cm™
is 1.62 times the magnetization energy 271 cm™!
which we have found. The agreement seems en-
tirely satisfactory, considering the nature of the
approximations which we have made.

ELEcTRONIC SPECIFIC HEAT OF NI1CKEL AT Low
TEMPERATURE

It has been recently observed by Keesom!
.that the electronic contribution to the specific
heat, which, being proportional to the tempera-
ture, outweighs the contribution of the lattice
vibrations at low temperatures, is many times
the normal amount in nickel. Both Keesom and
Mott have suggested that this arises from the
large concentration of energy levels in the neigh-
borhood of the top of the Fermi distribution, on
account of the 3d levels. We can easily test this
hypothesis. Sommerfeld and Bethe (reference 2,
p. 430) show that the specific heat per gram
molecular weight on account of free electrons in

11 Keesom and Clark, Physica 2, 513 (1935); W. H.

Keesom, Proc. Roy. Soc. A152, 12 (1935); N. F. Mott,
Proc. Roy. Soc. A152, 42 (1935). I am much indebted to
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a normal metal is C,=(27%/3)N({0)k*T, where
N(E)dE represents the number of energy levels
of one spin in dE, if we are dealing with a gram
molecular weight, and { is the maximum energy
occupied at the absolute zero. Thus his N is half
our distribution function f. For a ferromagnetic
metal, however, at low temperatures all levels of
positive spin are filled, so that they do not con-
tribute to the specific heat, and we count only
electrons of negative spin. This removes the
factor 2 in the formula above. Furthermore, ¢
must be taken to be the maximum energy of
electrons with negative spin, when the electrons
of positive spin occupy the whole band. In this
case, from the numerical data from which Fig. 1
is drawn, we find that N(E) is 26.15 times
Avogadro’s number, if energy is expressed in
atomic units. Substituting this value, and appro-
priate constants, we find C,=0.00117 calories
per mole per degree. Keesom’s experimental
value is 0.0017447. The agreement is not very
good, but still it is correct in order of magnitude.
To get better agreement, the peak in Fig. 1 at
energy —0.45 atomic unit would have to be
about half again as high as it is, presumably
being correspondingly more narrow. This does
not seem impossible, though it is unlikely. In
any case, the high specific heat is definitely
connected with the high peak in the 3d distribu-
tion curve of Fig. 1, verifying again this general
feature of our curve.

Mr. R. H. Fowler for calling my attention to these
references.
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The origin of the infinite light-quantum proper energy
which follows, according to Heisenberg, from the creation
of matter by the field of the photon, is examined in some
detail. We are led to investigate the inconsistencies which
appear on the incorporation of the Dirac positron theory
into the formalism of the quantum theory. These incon-
sistencies make it impossible to regard with confidence any
predictions of the theory for which a consideration of the

N a field free vacuum, the infinite distribution
of electrons in negative energy states envis-

* National Research Fellow.

singularities of the density matrix is essential. It is shown
that when the off-diagonal distance in the density matrix
is taken different from zero, the proper energy of a light
quantum and the electromagnetic energy of an electron are,
in order ¢?, finite, and that the off-diagonal distance plays
in these calculations the part of a generalized electron
radius.

aged in Dirac’s theory of the positron clearly
should contribute nothing to the expectation
values of observables of the system (charge and



