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21 ground state. Jevons? and Ferguson® have
analyzed the emission spectra of SnCl and found
two systems having a common lower 2II state
with a doublet separation of about 2360 cm™.
They, however, observed the bands in emission
and it is not certain that the II state is the ground
state. The lowest state of the PbCl bands re-
ported here must be the ground state since the
bands were observed in absorption. If the lower
state of the bands of Jevons and Ferguson corre-
sponds to the ground state of PbCIl, then the
ground state of PbCl would be expected to be a
1 state with a doublet separation of approxi-
mately 7000 cm™. Such a separation would place
the origin of the other part of a doublet system

4+W. Jevons, Proc. Roy. Soc. A110, 365 (1926).
5W. F. C. Ferguson, Phys. Rev. 32, 607 (1926).

in the neighborhood of either 7000A or 3500A.
No sub-system was observed in either of these
regions. Such a system should have been easily
observed had it been in the vicinity of 3500A
since the intensity of the high frequency part of
the doublet system should be greater than the
intensity of the low frequency part. However,
if the sub-system were in the neighborhood of
7000A it would probably not have been observed
in absorption, since even at 1600°C the intensity
of the high frequency part would be expected to
be about 750 times that of the other.

The author wishes to express his appreciation
to Professors Alpheus W. Smith, J. B. Green,
and R. V. Zumstein for valuable discussions and
suggestions given during the course of this
investigation.
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The piezoelectric method devised by Balamuth for measuring Young'’s modulus of a cubic
crystal for any chosen direction has been extended to permit the measurement of all the elastic
moduli of any solid crystal at temperatures below 0°C. Data are given which show the varia-
tion of the adiabatic and isothermal elastic moduli and elastic constants of rocksalt with

temperature between 80°K and 270°K.

INTRODUCTION

N a recent issue of this journal Dr. Lewis

Balamuth has described a method for meas-
uring Young’s modulus corresponding to any
chosen direction in a solid crystalline substance.!
This method utilizes the properties of a sepa-
rately excited composite piezoelectric oscillator
constructed by cementing an X-cut cylinder of
quartz to one end of a cylinder of specimen
material. The fundamental frequency of free
longitudinal vibration of this system is measured
by observing the variation of its electrical
reactance with the frequency of the applied
voltage, and Young’'s modulus of the specimen
material for the direction of the cylinder axis is

1 L. Balamuth, Phys. Rev. 45, 715 (1934); 46, 933 (1934).

calculated from this and other readily measurable
quantities. Now measurements of Young’s modu-
lus for various directions in a crystal yield some
but not all its elastic constants, while the
remainder can be calculated if, in addition, one
or more rigidity moduli are known. The object
of the present paper is to describe a method for
measuring the rigidity modulus corresponding
to any chosen direction in a crystal.

The success of Balamuth’s method depends
upon the fact that the electrically excited quartz
crystal produces longitudinal vibration of suffi-
cient purity along the whole oscillator. Now
Giebe and Scheibe? have shown that a suitably
cut cylinder of quartz can be excited to torsional

2 Giebe and Scheibe, Zeits. f. Physik 46, 607 (1928).
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vibration, and the present paper deals, in the
first instance, with the use of such a crystal as
the driver of a composite oscillator. It appears
that this forsional oscillator functions quite as
well as the other, so that all the elastic moduli
of a crystal can be evaluated with equal facility.

THe TRIPLE OSCILLATOR

In the case of a fragile substance like rocksalt
the differential thermal expansion at the ce-
mented interface, which accompanies any change
in temperature, produces longitudinal cracks in
the specimen. These are without effect upon the
frequency of the longitudinal mode of vibration,
but materially alter that of the torsional mode.
The difficulty is overcome by placing between
the quartz and specimen cylinders a cylinder of
stout material whose coefficient of thermal ex-
pansion is very nearly the same as that of the
specimen. Accordingly the present method de-
mands the use of a triple oscillator, a drawing
of which is shown in Fig. 1.

The three cylinders are of circular cross
section, about 3.5 mm in diameter, and are
uniform within 0.005 mm. The factors which
determine the lengths will be discussed later.
The cylinder axis lies, in the quartz, parallel to
an electric axis, and in the specimen, parallel to
the direction for which the rigidity modulus is
desired. In practice the cylinders of quartz and
other hard crystals are first cut to a square
cross section. The edges are ground off and the
final figure obtained by grinding in a series of
split, cylindrical laps. Rocksalt and other soft
crystals can be turned on a bench lathe.

When the oscillator is to be used below 0°C
the three cylinders are cemented together at
room temperature, in a vacuum, under a com-
pressive force of 500 g, with a sticky preparation
of para-rubber dissolved in vaseline. Cements

suitable for use at higher temperatures are

discussed in a following paper by Mr. Milo
Durand. Four electrodes of gold or aluminum
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QUARTZ MAGNESIUM Rock SALT

F16. 1. The triple oscillator.

leaf are pasted along the quartz cylinder and
cross connected as shown in Fig. 2.

The oscillator is suspended vertically between
rigid glass rods by means of fine silk threads
attached with shellac to opposite sides of the
quartz near a displacement node of vibration.
The assembly is mounted in a glass tube, which
is evacuated and immersed in the cryostatic
bath described by Balamuth.!

THEORY

The current which flows to the oscillator, and
hence the reactance between its electrodes, con-
tains a part which is associated with the piezo-
electric charge distribution accompanying the
vibrational stress in the quartz, and which is
directly proportional to the average value of this
stress taken along the cylinder. The object of
the theory is to express the stress in the quartz
in terms of the amplitude and frequency of the
applied voltage and the physical constants of
the oscillator. Its development, for the triple
torsional oscillator, follows very closely that
given by Balamuth for the two-part longitudinal
oscillator. Initially all components are assumed
to be isotropic, and the actual applied piezo-
electric stress in the quartz is replaced by that
which would result from equal normal torsional
stresses applied across the end faces of the
cylinder and varying harmonically with the
time. The only significant difference between the
theory of the torsional oscillator and that of the
longitudinal oscillator is the existence, in the
former, of functions competent completely to
satisfy the equations of motion and all the
boundary conditions. The final formulae are
obtained without approximation.

It follows from this theory, as from that for
any piezoelectric oscillator, that the reactance
of the oscillator varies critically with frequency
in the neighborhood of certain ‘‘resonance fre-

OPTIC AXIS
1
APPLIED VOLTAGE

FiG. 2. The electrical connections to the quartz cylinder.
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quencies’”’ at which the amplitude of the vibra-
tional stress passes through a maximum. In
analogy with Balamuth’s Eq. (14), these reso-
nance frequencies are, for the torsional oscillator,
given by the solutions for f of the equation

my tan y1/y1+ms tan yo/y.+ms tan ys/vs
— (myumgys/yiyems) tan y; tan y, tan y3=0, (1)

where m;=mass of a cylinder, (1=1, 2, 3)

yi=f/fs, (2)
f=frequency of applied voltage,
and fi=(n/2L;) (ui/pi)?, (3)

where n=an integer, L;=length of a cylinder,
us=modulus of rigidity for the direction of the
cylinder axis, p;=density, and the subscripts
refer, respectively, to the specimen material, the
quartz, and the intermediate material.

Eq. (1) is the fundamental working formula
of the piezoelectric method for measuring all the
elastic constants of any solid substance. For
example, the resonance frequencies of a triple
longitudinal oscillator are given by the solutions
of this equation provided that, in the calculation,
the symbols y; and f; be related to the physical
constants of the materials by the formulae:

yi=a(f/fo[1—F)r2e2(0:/ AL A —=F2/fH]° (4)
and
fi=m/2L;)(Gi/p:i)*(1 — n?n?e20:/24:L%), (5)

where ;= Poisson’s ratio, §;=moment of inertia
of cross section about the cylinder axis, 4;=area

of cross section, and G;=Young's modulus for-

the direction of the cylinder axis.

Again, the resonance frequencies of a two-part
oscillator, either torsional or longitudinal, are
given by the solutions of Eq. (1) with m; set
equal to zero, that is, by the solutions of

my tan ye/ys+m;, tan ys/y;=0, 6)

in which the subscript 3 now refers to the
specimen material and Egs. (2), (3), (4) and (5)
subsist.
If m; and m; are both set equal to zero Eq. (1)
reduces to
tan y,=0, @)

3 The plus sign in this expression as printed in Bala-
muth’s paper, reference 1, is an error.

the solutions of which yield the resonance fre-
quencies of the quartz cylinder alone.

Lastly, the left-hand member of Eq. (1) plays
exactly the same role in the description of the
electrical behavior of triple oscillators as Bala-
muth’s quantity A! plays in the description of
two-part oscillators.

EXPERIMENTAL METHOD

The electric circuit arrangements for measur-
ing the resonance frequencies are identical with
those of Balamuth.! The experimental procedure
is as follows: The fundamental resonance fre-
quency of the quartz cylinder alone is measured.
This frequency is the quantity f; by Egs. (7),
and (2), (3) or (4), (5). Next the intermediate
cylinder is attached, the fundamental resonance
frequency of the two-part oscillator is measured,
and Eq. (6) is solved for f;. If desired, the elastic
modulus of this material may be calculated with
the aid of Egs. (2), (3) or (4), (5). A roughly
approximate value only of Poisson’s ratio is
needed for an adequate evaluation of the terms
in ¢ in Egs. (4) and (5). Lastly, the specimen
cylinder is attached, the fundamental resonance
frequency of the triple oscillator is measured,
Eq. (1) is solved for fi, and Egs. (2), (3) or (4), (5)
for the elastic modulus.

In case the softness of the cement permits the
removal of a cylinder without demounting the
oscillator, it is desirable to obtain the resonance
frequency data in the reverse of the above order;
small remounting errors are thus eliminated.
This procedure is adopted when the rubber-
vaseline cement is used.

The lengths of the three cylinders should be
adjusted so that the fundamental resonance
frequencies of the single, double and triple
oscillators are the same within ten percent or
better. Such frequency matching minimizes the
effect of inequality of areas at the interfaces, of
the adhesive,! and of internal friction in the
materials, on the resonance frequency of the
oscillator. It will also be noted that the term in
o in Eq. (4) vanishes when f=f;. Furthermore,
the specimen cylinder should be long enough to
keep these frequencies below 100 kilocycles.

4 Zacharias, Phys. Rev. 44, 118 (1933).
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Above this value harmonics of low frequency
modes of vibration are very likely to appear in
the neighborhood of that under investigation,
which vitiate the observations. Such spurious
neighboring modes must always be sought and
their absence established. They arise, of course,
because the actual impressed piezoelectric stress
in the quartz does not correspond exactly to
that of any single mode of vibration, but their
effect remains negligible so long as none of their
resonance frequencies lies near that under ob-
servation.

Tue Evrastic MobpuLl AND ELAsTIC CONSTANTS
or A CuBic CRYSTAL

Formulae which relate Young’s modulus and
the rigidity modulus for any direction in a cubic
crystal to the elastic moduli are given by Voigt.®
The present research is concerned with only two
directions, namely (0,0, 1) and (0, 1, 1). If the
unprimed quantities refer to the former and the
primed to the latter, then for the elastic moduli,

1/G =81
1/G =s"11=%(su~+S12+35u) (8)
1/u=su
1/ =35 u+5"55) = S11— S1a+ 354
and for the compressibility, «,
k=3(s1u+2s12). )
Furthermore,
cu=(su+s12)/(s11— 512) (s11+2510),
c1a= — 12/ (S11— S12) (S11+ 2512), (10)
Cy4= 1/544.
From Egs. (8),
512=1/G"‘"%M’, (11)
or =1/G+3u—1/u". (12)

Poisson’s ratio for a (0, 0, 1)-cut cylinder is
given by the formula® ¢=s:2/511. When a right
circular (0, 1, 1)-cut cylinder is stretched the
cross section is no longer circular. The average
radial displacement is readily evaluated with the
aid of Voigt's analysis, and so the ‘“‘average”
Poisson’s ratio. Thus

o= (511+3512“%544)/(2811+2312+S44)-

5 Voigt, Lehrbuch der Kristallphysik, p. 739.
¢ Voigt, reference 5, p. 631.

TABLE 1. The elastic moduli and constants of rocksalt.

ISOTHERMAL

ApiaBAaTIC MODULI ADIABATIC CONSTANTS CONSTANTS
T X 103(cm?/dyne) X 10-11(dyne/cm?) X10-11
(°K) S =Sz Su Cn Ciz Cu Cu Cr
80 18.64 3.15 75.06 5.76 1.17 1.332 5.72 1.13
90 18.77 3.21 75.18 5.73 1.18 1.330 5.69 1.14
J40 19.55 3.54° 75.87 5.56 1.22 1.318 5.50 1.16
150 19.72 3.61 76.03 5.52 1.23 1315 545 1.17
160 19.89 3.68 76.19 5.48 1.24 1313 541 1.17
170 20.06 3.75 76.36 5.44 1.24 1.310 5.37 1.17
180 20.24 3.82 76.53 5.40 1.25 1307 5.33 1.17
190 20.43 3.89 76.70 5.37 1.26 1304 5.29 1.17
200 20.63 3.96 76.88 5.33 1.26 1.301 5.24 1.17
210 20.82 4.03 77.07 5.29 1.27 1.298 5.20 1.17
220 21.02 4.11 77.25 5.25 1.27 1.294 516 1.17
230 21.21 4.18 77.46 5.22 1.28 1.291 5.2 1.17
240 21.43 4.26 77.64 5.18 1.28 1.288 5.07 1.17
250 21.65 4.33 77.84 5.14 1.29 1.285 5.03 1.17
260 21.86 4.41 78.05 5.10 1.29 1.282 499 1.17
270 22.08 4.49 7826 5.06 1.30 1.278 4,95 1.17

In accordance with the theory of Voigt,” the
adiabatic and isothermal moduli and constants
are related by the formulae

(511) ad. — (S10) is. = (S12) aa. — (S12) is.

=—Ta*/pcy, (13)

‘(Cu) ad.— (€10) is. = (C12) ad. — (€12) is.

=Ta?/(pcyp) (su+2s12)2, (14)

where T is the absolute temperature, « is the
coefficient of linear expansion, and ¢, is the
specific heat at constant pressure. The adiabatic
and isothermal sy and ¢y are the same.

REsuLTS

The adiabatic and isothermal moduli and
constants for rocksalt over the temperature
range 80°K to 270°K are given in Table I.
The first column contains the adiabatic s;; as
measured by Balamuth. The third column is the
smoothed out mean of measurements of the
adiabatic s4 taken on four different (0, 0, 1)-cut
specimens. The values of s;; given in the second
column were calculated with Eq. (12) from su
and sy together with the smoothed out mean of
measurements of the torsion modulus on four
different (0, 1, 1)-cut specimens. The specimen
material was the finest grade of optical rocksalt
obtainable, and was the same as that used by
Balamuth. The adiabatic ¢’s were calculated

7 Voigt, reference 5, p. 789.
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TasLe II.

T S’ X 1018 —S12 X108
(°K) BALAMUTH RoSE Eq. (12) Eq. (11)
80 26.51 26.53 3.15 3.12
90 26.58 26.60 3.21 3.18
140 26.94 27.01 3.54 3.49
150 27.02 27.10 3.61 3.56
160 27.11 27.19 3.68 3.63
170 27.21 27.29 3.75 3.70
180 27.30 27.39 3.82 3.77
190 27.40 27.49 3.89 3.84
200 27.51 27.59 3.96 3.91
210 27.62 27.69 4.03 3.99
220 27.74 27.80 4.11 4.06
230 27.86 27.91 4.18 4.14
240 27.99 28.02 4.26 4.21
250 28.10 28.13 4.33 4.29
260 28.22 28.25 4.41 4.37
270 28.33 28.36 4.49 4.48

from the s’s with Egs. (10), and the isothermal
¢'s with Egs. (14).

The formula used in computing the density
was?

p=2.1680(1—11.2X10%—0.5X 107722).

Values of ¢, were taken from the International
Critical Tables.

PrECISION

Exhaustive tests, of the sort described by
Balamuth, were made to demonstrate beyond
doubt that the quantities calculated from the
observed behavior of the triple oscillators are,
in fact, the elastic moduli of the specimen
material. The results of two such experimental
checks are given in Table II. The first column
contains the values of 1/G’ measured by Bala-
muth with a two-part oscillator.of square cross
section. The second column contains values of
the same quantity measured on a different set
of specimens with a triple oscillator of circular
cross section. The agreement is noteworthy. The
third column contains values of s;2 calculated
with Eq. (12) from measurements of the Young’s

and rigidity moduli on a set of (0,0, 1)-cut

specimens and of the rigidity modulus on a set
of (0, 1, 1)-cut specimens. The last column con-
tains values of the same quantity calculated

8 A. Henglein, Zeits. f. physik. Chemie 115, 97 (1925).

with Eq. (11) from measurements of the Young’s
and rigidity moduli on a set of two (0, 1, 1)-cut
specimens. The agreement between the values
of s obtained with these quite independent
methods offers a very satisfactory overall test
of the piezoelectric method, particularly as a
small percentage error of measurement is very
greatly magnified in the calculation of the
difference quantity, s..

The accidental error in any observation on a
single specimen is never greater than 0.03 per-
cent. The source of largest systematic error is
nonuniformity of cross section in the specimen
cylinder. Such nonuniformity produces a shift
parallel to itself of the entire modulus vs.
temperature curve, and the curves for different
specimens are invariably parallel. This is ex-
emplified by, and accounts for, the systematic
differences in Table II. Balamuth gives an
observed average deviation among his specimens
of 0.4 percent in sy5. This could have been reduced
by using cylinders of circular instead of square
cross section, for circular cylinders are in general
more uniform. The average deviation for the
torsional measurements was about 0.08 percent
in sy The uncertainty in s;; is about 1 percent.

Steinebach® found the ratio of the value of s
at 291°K to that at 88°K to be 1.065. This
ratio, calculated from Table I, is 1.045. Voigt!?
gives s, ="78.85X107"* cm?/dynes, but does not
specify the temperature. This is the value here
found at 25°C. Voigt,'t Madlung and Fuchs,?
and Slater!® have measured the isothermal com-
pressibility at room temperature. They obtained,
respectively, the values 41.3, 41.2, and 42.0 for
kX 10" (cm?/dynes). The present value is 41.9 at
30°C, which was the temperature of Slater’s
specimens.

In conclusion, the writer desires to thank the
Physics Department of Columbia University
for the facilities generously placed at his dis-
posal, and Dr. S. L. Quimby for helpful sugges-
tions during the progress of the research.

9 Steinebach, Zeits. f. Physik 33, 674 (1925).

10 Voigt, reference S5, p. 741,

U Voigt, reference 5 p. 742.

12 Madlung and Fuchs, Ann. d. Physik 65, 289 (1921).
13 Slater, Phys. Rev. 23, 488 (1924).



