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Remarks on the Polarization Effects in the Positron Theory

W. PAUI I AND M. E. RosE, Institlte for Advanced Stldy, Princeton, New Jersey

(Received January 30, 1936)

A simple method of obtaining the induced charge-density four vector on the basis of the
subtraction formalism of the positron theory is given. Further, in the general case of time-

dependent fields the result is calculated directly without use of the Lorentz invariance of the
theory.

one gets according to Heisenberg' for the differ-
ence between the density matrix in the cases of
the presence and of the absence of the external
field in the approximation in question, after
multiplication by the electron charge e and sum-
mation over the spin index, the expression
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A p = ap exp (iL (k x) —kpt]) +conj. ,

A= a exp (iL(k x) —kpt])+conj.
(1) with

o = [1+(q+k/2)']**, p' = [1+(q —k/2)']'*. (6)

T is the purpose of the following paper to
- - show that the integrals which determine the
additional polarization density bjo and the corre-
sponding current density 8j, produced by an
original charge density jo and a current density

j according to the positron theory, can be
evaluated in a simplep way than has been done
previously. ' We shall consequently restrict our-

selves, however, to the approximation in which

effects proportional to powers of the fine struc-
ture constant n=e'/kc higher than the first will

be neglected. Then the connection between bjo

and bj with the scalar and vector potential Ao

and A of the original field is a linear one and
therefore there is no loss of generality if we use

plane waves

for the potential field. In the following we employ
k/mc as the unit of length, k/mc' as the unit of
time and the electron mass m as unit of mass.

For the sake of simplicity we shall treat
explicitly the particular case in which A =0
and we shall be interested only in the charge
density jo not in the current density j.According
to Serber' it is then not difficult to treat also
the general case characterized by (1). In the
particular case

For large values of q, or what turns out to be
the same, for small values of k one has the
expansion

o~o'~(1+q )
'*

and more exactly

op' ~1+q'+ k'/4 —-', (q. k)'(1+q')

so that we can separate F into two terms.

Ap=go exp (iL(k x) —kot])+conj. , A=0 (1a)

where according to Maxwell's equations one has

F(k, ko, x) = Fo(k, x)+Fz(k ko, x) (7)

jo = (k'/4or)Ao,
1 q' cos' 0 exp (i(q x))

(2) Fp(k, x) =— 1 —— — — dq, (g)
4m 1+q' (1+q'o)

' W. Heisenberg, Zeits. f. Physik 90, 209 (1934); R.
Serber, Phys. Rev. 48, 49 (1935); E. A. Uehling, Phys.
Rev. 48, 55 (1935).

' W. Heisenberg, reference 1, p. 221, Eq. (34) and p. 222
below.
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8 being the angle between the direction of g and
x and where I'~ is finite for x=0 and has there
the value

f(k, kp) = Fy(k, kp, 0)

where «and «' are given by (6). From the latter
equations one gets, by computing the functional
determinant, for the volume element of the g
space the simple expression

1 ««' —(q'+1 —k'/4)

m-k' («+«')' —k P

d q = (2/k) ««'dvdwdpp = (1/~) ««'dvdwd p (.12)

Here we introduced the convenient abbreviation

k2 Q2 cos~ - 1——1 —— (9)
4 1+g' (1+g') l

k/2 = ~.

From (6) we get further

(13)

~i«= (~/~)f(» k—p)ip,

where the function f is given by (9).

(10)

THE EVALUATION OF THE INTEGRAL

While Serber evaluates the integral (9) only
for the particular case of kp ——0 (time-independent
fields) and uses the Lorentz invariance of the
subtraction-formalism to get the result for the
general case, we shall here. directly compute
the general integral (9). For this purpose we
introduce, besides the azimuth q around the
coordinate axis parallel to k the variables v, m

defined by

-';(« —«') =v, —,'(«+«') =w,

While each of the parts in the latter formula
decreases like ~q~

P for large values of ~q~ and
therefore the corresponding parts of the integral
are logarithmically divergent, the difference in
the integrand decreases with the higher order

~q~
' so that the total integral is convergent.

On the contrary the integral (8) which can be
expressed by means of cylindrical functions is of
the order log ~xi +const. for small values of x.

The formalism of the positron theory, which is
accepted at present and which unfortunately is
not yet substituted by a more satisfactory one,
does not identify, however, the physical electric
charge density with the value of the left side of
(3) for x=0 but introduces first properly chosen
subtractive terms depending on x in such a way
that the difference is finite for x=0 ("sub-
traction-physics"). One remains in agreement
with the more general prescription of Heisenberg
if, in the case here considered and in the approxi-
mation in question (terms proportional to a),
one identifies the subtraction terms with Fp(k, x)
given by (8). Then one gets, according to (3),

-', («'+«' ) =v'+w'=q'+~'+1,

—,'(«' —«") =vw= —', (qk).

(14a)

(14b)

From these equations there follows the in-
equalities

vo~ z —1
'v w & K (w —K —1+v ), 'v

QP —z2

and after that w runs from (~'+1) i to ~.
(~'+1)l&~w& ~, (16)

the point v=0, w=(~'+1)* corresponding to the
origin q=0.

Before we definitely compute the integral (9),
we remark that it would not be convenient to
use the variables v and w for the second (sub-
tractive) part of (9) also. To avoid this we use
the circumstance that for large values of W the
surface m=const. = W is nearly a sphere. More
exactly we see from (14a).that the least and the
largest values of q on this surface corresponding
to v = 0 and v,„,„, given by

g '= S"—fi.
"—j.

g
p —('fly« —«« —1)(1+ fp/( pi « —g&) )

have a quotient q«/q& converging to unity as W
approaches infinity. Now we should first in-
tegrate both parts of (9) over a volume limited
by the same surface a=const. and then go to
the limit TV~ ~. Instead of that we shall extend

We get the whole g space if we first for a given
value of m integrate over the surface m=const. ,

where v runs through the interval

(w —~' —1y *' (w' —~' —1q '

w2 «2 l E w2 g2 )



W. PAULI AND M. E. ROSE

the subtractive integral only over the sphere
inscribed in the surface in question with the
radius g2-—(W' —»2 —1)&. The error caused by
this procedure is certainly smaller than the
subtractive integral extended over the spherical
shell with the radii q~ and q2 given above, because
its integrand does not change sign in the domain
in question; and even the latter integral con-
verges to zero for t/t/'~ ~ because the sub-
tractive integral diverges only logarithmically
and lim gp/g4= 1.

Performing the integration over the azimuth
and introducing spherical polar coordinates in
the subtractive integral, we now get from (9)

z s2 s4/3
Jp(W) = ds.

0 1 8
(20a)

The integrand of the difference JI —J~ is finite
for a=1 and we can now easily perform the
lim Z—&1 (corresponding to lim W—+pp) and get
the final result

' (»' —kpp/4) (s' —s4/3)
f(k, kp) = — — ds. (21)

p 1+(»' —kpp/4) (1 —s')

The most important fact is that f does not
depend on k and ko separately but on the simple
combination

f(k, kp) =lim LJ&(w) —J2(w)], L = »2 —kp2/4 = (kp —kp2)/4 (22)

I s2 s4/3
f(k, kp) =f(L) = —L — ds. (21a)

p 1+L(1—s')
where

and s is an abbreviation for

and

1 '~ md'
J&(W) = — (»2 v')dv —(18) This result is a consequence of the Lorentz

invariance of the formalism and was assumed by
Serber with this argument without direct proof. '

For small values of L one can neglect the term
2vp —»2 19 proportional to L in the denominator and get

at once

( t+2 pr2 I) 1

J.(w) -f0

g'/3 g'dg

1+9' (1+g')'*
(2o)

Performing the integration over v in (18) and
introducing s given by (19) instead of 2v as
integration variable, one gets

1+»2(1 s2) Cd'
) 'Mdtro =

1 —s' (1 —s')'

f(L) = 4L/15 fo—r )Lt &(1 (23)

1 5 1 (L+1)(2L—1) .
J(L) = ——+—+ p (L) (24)

3 3 L L

in accordance with Heisenberg's original result.
Further one gets from (21a) for f(L) a power
series in L which converges for tL

~

(1.
The exact evaluation of (21a), which is ele-

mentary, leads to the following result:

J4(z) =
z Z2 s4/3

p 1-s' 1+(»'-ko'/4)(1-s') where p(L) = ds L1+L(1—s')g '. (25)

where Z is connected with the upper limit W in
One has

(18) analogous to (19).

Z = ((W' —»' —1)/(W' —»')) '

Z tending to unity when W—+~.
In (20) we substitute

g/(1+g')'=s dg/(1+g')'=ds

(19a)
LL) = LL(1+L)1 ' log L(1+L)"+L'j

for L )0, (26a)

' In the particular case k0 ——0 Serber gives for f(k') (our
function is connected with his function X by f=X/7fk2) the
formula (comp. his Eq. (7)),

and then the upper limit of the integral (20) in

the new variable z coincides exactly with Z given
by (19a) and we get

1 1f= —— (1—z2) log L1+(k'/4) (1 —z2) ]dz.
2 0

Using (1 —z')dz=d(z —z'/3) and integrating by parts, one
gets at once from it our expression (21) .for k0=0.
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p)(L) =t ~L~ (1 —~I ~)] I arcsin ~L, ~I

for —1 &L, &0, (26b)
p, (x )='( )4 ')J(((r)Oj, (x")dx";

r =
~

x' —x"~. (29)
p(L)= —LILI(ILl —1)] 'log DILI —1)'

This formula is valid for the case of the time
independent jz. According to Uehling' this func-
tion also determines the interaction energy U(r)
of two particles with charges Z'e and Z"e
separated by a distance r.

+
~

L
~

'] for L & —1. (26c)

In the latter case the denominator in the in-

tegrand in (21a) and (25) becomes zero at one
point of the integration path and one has there
to take the principal value. For large positive
values

U(r) =Z'Z"e'L1/r —(0(/vr) U(r) ].

f(k')
(((r) = f exp (—f(k x))dk

As far as the general case is concerned which
we have mentioned in the beginning, where a
vector potential given by (1) is also present,
one can again check Serber's general result

2 f(k') sin kr
kdk. (30)

k' r

of L one gets the asymptotic expression
From the definition (29) and (28) it follows

5 2 that
f(L) =——log (2I ') for I.&)1.' (27)

9 3

~i p = (~/x)f(L—)i p

~j = (~/~)—f(L) 1',
(28)

THE FUNCTION U(r)

We shall finally add some remarks concerning
the function U(r) defined by

where f is again given by (21a), with the method
here considered. Only the subtractive integrals
due to the singularities, become more compli-
cated in this case. '

If one now introduces the integral (21) (with
kp ——0) for f the integral over k can be evalu-
ated in an elementary manner and the re-
maining integral over s can, by the substitution
s = (q' —1)I/q and by partial integration, be
reduced to the well-known integrals for the
Bessel functions of the second kind,

pea

Xp(x) = dq,
~ (q'-1)'*

X,(x) =x e-'*(q' —1) rdq

1

' In the case k0 ——0 one has L=k'/4 and the formulas
(24) and (26a) lead to the result

1 5 4 (k'+4) &(k' —2) (k'+4) &+k
3 3 k' k' 2

This result is contained indirectly in Uehling's Eq. (22),
p. 61, reference 1. Indeed, in order to calculate the scatter-
ing of two particles surrounded by a continuous charge
distribution according to the Born approximation, one
has to make the Fourier expansion of the electric density
and to identify k with the difference of the wave-vector
for the incident and the scattered beam of the particle
(measured in the unit mc/A).' The fact that the polarization effects here considered
do vanish for L =0 even if k and k0 are different from zero,
has the consequence that Heisenberg's conclusion about
a correction of the relative order n to the Klein-Nishina
formula for the scattering of light by free electrons (comp.
Heisenberg, reference 1, p. 223) cannot be maintained.
Indeed the effect considered by him vanishes because for
the intensity of the scattered light only the terms with
L = 0 give any contribution. A definite answer to the ques-
tion of the corrections to the Klein-Nishina formula in the
approximation here considered needs however a more
detailed investigation.

and an indefinite integral of E.p

CD oo g
—Qs

B(x)= Kp(y) dy = dq.
q(q' —1)I

The final result is

1 (r'
U(r) = -—2( -+1 Imp(2r)

3r E3

2r p4r'——( r'2+5)E'~(2r)+r~ —+3 ~B(2r)
3 E3 J

From this expression one can obtain easily the
asymptotic forms for U(r) for small and large
values of r. These have been given by Uehling. '

' Reference 1, Eq. (21).' Uehling, reference 1, Eqs, (9) and (10).


