QUANTUM-MECHANICAL THEORY OF MEASUREMENT

f increases linearly with electron energy, one
obtains the surprisingly good curve C shown in
Fig. 6. This agreement is probably partially
fortuitous, and a more rigorous development
must eventually involve allowances for the effects
of varying cross section, scattering angle, and
inelasticity of impact in detail. ‘The general
character of the problem, however, seems to be
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indicated by the above considerations, and fur-
nishes further evidence for the inelasticity of
electron impact in molecular gases.

These experiments are being continued to
determine electron mobilities in other gases.
The authors desire to thank the Research Com-
mittee of Stanford University for a grant which
has made these investigations possible.
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In recent notes by Einstein, Podolsky and Rosen and by
Bohr, attention has been called to the fact that certain
results of quantum mechanics are not to be reconciled with
the assumption that a system has independently real
properties as soon as it is free from mechanical interference.
We here investigate in general, and in abstract terms, the
extent of this disagreement. When suitably formulated,
such an assumption gives to certain types of questions the

1. INTRODUCTION

OME time ago there appeared a paper by
Einstein, Podolsky and Rosen! entitled ‘“Can
Quantum-Mechanical Description of Physical
Reality be Considered Complete?’”’ The writers
concluded that the answer must be negative, on
the ground that quantum mechanics forbids
simultaneous measurement of two noncommuting
variables even when both variables simultane-
ously possess ‘‘physical reality,” in the sense
that either might be measured ‘‘without in any
way disturbing the system.”” Recently Bohr? has
upheld the view that quantum-mechanical de-
scription of nature can be considered complete,
by demonstrating how the restrictions on simul-
taneous measurement which it imposes are
inherent in the character and use of the measur-
ing instruments. These measuring instruments
must always be included as part of the physical
situation from which our experience is obtained,
and by doing this one sees that quantum
L A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47,

777 (1935). Referred to as EPR.
2 N. Bohr, Phys. Rev. 48, 696 (1935).

same answers as does quantum mechanics; this is true of
the formulas usually given in discussions of the theory of
measurement. There exists, however, a general class of
cases in which contradictions occur. That such contradic-
tions are not restricted to the abstract mathematical
theory, but can be realized in the commonest physical
terms, is shown by the working out of an example. .

mechanics provides a complete and peculiarly
apt interpretation of experience.

Bohr has again clearly called attention to this
circumstance, and has remarked that one must
be careful not to suppose that a system is an
independent seat of “real” attributes simply
because it has ceased to interact dynamically
with other systems. The paper of Einstein,
Podolsky and Rosen has shown the sort of
situations in which this characteristic of quantum
mechanics may become especially prominent.
This indicates an extension of the usual discus-
sions of the theory of measurement.® In the
present note a discussion more comprehensive
in this respect will be summarized, and some
further consideration will be given to the possi-
bility of illustrating the point in question in
concrete physical terms.

We shall have to make use of the concepts and
results presented in von Neumann's rigorous and

3Cf. W. Heisenberg, -The Physical Principles- of the
Quantum Theory, particularly pp. 55ff.; J. von Neumann,
Mathematische Grundlagen der Quantenmechanik, Chap. VI;

W.lgguli, Handbuch der Physik, Vol. 24, No. 1, pp. 143ff.,
p. .
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detailed discussion?® of the theory of measurement
by means of an instrument. Since the mathe-
matical language of von Neumann’s work is not
that most current among physicists, it is de-
sirable first to explain the meaning of these
concepts in more usual terms. A similar re-
phrasing of the proofs of important results is
omitted in the interests of brevity, and the
results are simply stated.

2. PossiBLE TYPES OF STATISTICAL INFORMATION
ABOUT A SYSTEM

Our statistical information about a system
may always be expressed by giving the expecta-
tion values of all observables.* Now the expecta-
tion value of an arbitrary observable F, for a
state whose wave function is_ ¢, is

F=(¢, Fo). (1)

If we do not know the state of the system, but
know that w; (with > w;=1) are the respective
1

probabilities of its being in states whose wave
functions are ¢;, then we must assign as the
expectation value of F the weighted average of
its expectation values for the states® ¢;. Thus

F=Xwiles Fo). @

This formula for F is the appropriate one when
our system is one of an ensemble® of systems of
which numbers proportional to w; are in the
states ¢;. It must not be confused with any such
formula as

F= (Z(wi)ies, FX(wi)tes),

which corresponds to the system’s having a wave
function which is a linear combination of the ;.
This last formula is of the type of (1), while (2)
is an altogether different type.

An alternative way of expressing our statistical
information is to give the probability that

4v. Neumann, reference 3, p. 163. We confine ourselves
throughout to the case of discrete spectra. (¢, ¥) means
the Hermitian inner product, S ¢*¢dr. The same letters,
A, B - - -, are used to denote observables and the corre-
sponding operators.

5 For convenience we shall often refer to ‘‘the state y"
instead of ‘‘the state whose wave function is ¢.”" All func-
tions are normalized unless otherwise stated.

6 The usefulness of this concept has recently been re-
marked upon by Kemble (Phys. Rev. 47, 973 (1935)).
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measurement of an arbitrary observable F will
give as result an arbitrary one of its eigenvalues,
say 8. When the system is in the state ¢, this
probability is

1)

where x; is the eigenfunction of F corresponding
to the eigenvalue 6. When we know only that
w; are the probabilities of the system’s being in
the states ¢;, the probability in question is

ZwJ (ei, x5) | 2
k2

[-(«’, xs) |2

(27

Formula (2) is not the same as any special case
of (1’) such as

| (Z (‘wi)%%, X5) | %,

It differs generically from (1) as (2) does
from (1).

When such equations as (1), (1’) hold, we say
that the system is in the “pure state” whose
wave function is ¢. The situation represented by
Egs. (2), (2') is called a “mixture’’ of the states
o; with the weights w;. It can be shown’ that
the most general type of statistical information
about a system is represented by a mixture.
A pure state is a special case, with only one
nonvanishing ;. The term “‘mixture’ is usually
reserved for cases in which there is more than
one nonvanishing w;. It must again be empha-
sized that a mixture in this sense is essentially
different from any pure state whatever.

3. RepuctioN oF WAVE PACKETS

Let ¥(x;, x2) be the wave function for two
systems T and II which have at some previous
time interacted and have now ceased to interact.
One can show® that there always exists an
expansion, which is in general unique, in the form

(1, x2)=§(wk)%‘p)\k(xl)sﬂk(x2)7 3)

where the ¢, are eigenfunctions of an observable
L corresponding to eigenvalues \;, and the £,
are eigenfunctions of an observable R corre.

7v. Neumann, reference 3, pp. 167-168.

8y, Neumann, reference 3, pp. 225 ff. In the following
arguments we use the word ‘‘observable’” to mean ‘‘com-
plete set of commuting observables,” in the sense of Dirac,
Principles of Quantum Mechanics, §17 (1st edition). In
like fashion a set of eigenvalues of such a set of observables
is referred to as an ‘‘eigenvalue’ of the ‘‘observable.”
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sponding to eigenvalues p;. The A\, are all
distinct, and so are the p;. It can be shown®
that, so far as system II alone is concerned, the
statistical information available when (3) is the
wave function of the combined systems is
represented by a mixture of the states §,, with
the weights w;. A similar result holds, of course,
for system I. A measurement of L and R on
the total system can never give any other value
than p; for R to correspond to the value \; of L.
Thus a measurement of L suffices to predict the
value of R and the state of system II, which,
after’ such a measurement, is always in one of
the pure states &,,. Eq. (3) shows that the
coupling between the systems has been such as
to make system I a suitable instrument for
measuring the observable R on system II, the
quantity L serving as a ‘‘pointer reading.”

" Now the conclusions to be drawn on the basis
of these developments are just those we should
expect if we ascribed ‘real” characteristics to
system II as soon as it ceased to interact with
system I; this will be shown explicitly later.
The contradictions we wish to investigate can
be brought out only by going beyond the
considerations given in connection with Eq. (3).
We may either look for particular cases in which
the expansion (3) is not unique—e.g., the
example given by EPR and the one we shall
give in Section 5—or develop a way of inter-
preting expansions of a less special type.

The second alternative brings us directly to
the general method of ‘reducing the wave
packet.” This procedure is commonly known
and accepted among physicists, and is applied
by EPR; but the writer has been unable to find
in the literature an explicit description of its
application to the present case. Such a descrip-
tion is briefly as follows: If M is any observable
of system I, and y, its eigenfunction correspond-
ing to the eigenvalue u, then we can express
W(x1, x2) as a series in the orthogonal functions
Yu(x1), with coefficients which are functions!®

?i.e., immediately after. The wave functions used are in
general not stationary solutions of the wave equation, but
in our discussion we can abstract from the time, because
our statistical information about a system at one time can
be calculated from that at another time according to a
deﬁnit)e differential equation (v. Neumann, reference 3,
p. 186).

10 Unnormalized, and in general not orthogonal to each
other,
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Of Xo

W (x1, x9) = %‘I’u(xl) Culxa), 4)
Swr(x2) = S *(201) ¥ (301, %2)dx1. (5)

The statistical information which one will have
about system II after? a measurement of M on
system I has given the value u’ may be obtained
by the following process: We suppose a large
number of measurements made on combined
systems I-+II prepared so that their wave
functions are given by (4), each of these measure-
ments consisting in a determination of the values
of M for system I and some observable F for
system II. We then obtain the relative numbers
of times the different values § are found for F,
counting only those measurements in which the
value u” is found for M. These relative numbers
are by definition proportional to the quantities
[(T(x1, %), Y (x)xs(x2)) [ (cf. Eq. (1)), and
these quantities are, by (5), just equal to
| (€w, xs)|% Since this is true for all observables
F, we see that after a measurement on system I
has given the value u’ for M, system II is in the
pure state with wave function given—apart from
normalization—Dby (5).

where

4. PrOBABILITY CALCULATIONS AND
THEIR RESULTS

We are now ready to discuss in detail the
degrees of agreement and disagreement between
the results of quantum-mechanical calculations
and those to be expected on the assumption that
a system once freed from dynamical interference
can be regarded as possessing independently real
properties. For we can give a definite form to
this assumption, and base on it a method for
answering all questions which can be asked
about the probabilities of finding different results
by measurements on system II. This we call
Method A:

Assumption and method A. We assume that
during the interaction of the two systems each
system made a transition to a definite state, in
which it now is, system I being in one of the states
o, and system II in one of the states £,,. These
transitions are not causally determined, and there
is no way of finding out which transitions oc-
curred, except by making a suitable measure-
ment. In the absence of measurements we know
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only that the probabilities of the different
transitions are respectively wy, and that if system
I is in the state ¢, system II is in the state ,,.
This provides a sufficient basis for making all
needed calculations of probabilities, the methods
being those of ordinary probability theory.

Method B. We shall compare with the results of
Method A those obtained by quantum-me-
chanical calculations, using the facts explained in
connection with Egs. (3) and (4), (5).

There are four types of questions for which
answers may be required. The notation used in
discussing them is the same as that previously
described ; in particular, the reader is reminded
that the observables L and R have a special
significance through their connection with the
expansion (3), while M and S are arbitrary
observables. The questions and their answers are
as follows:

(a) If S, having eigenvalues ¢ and eigen-
functions %, is measured on system II without
any measurements having been made on system
I, what is the probability of obtaining the
result ¢’? Both methods give the same result

2] (G me) ", (6)

as is at once evident. (Cf. remarks following
Eq. (3).)

(b) If L has been measured on system I and
the value \; obtained, what is the probability. of
finding the value ¢’ for S in II? Both methods
at once give the answer

[ (piy mo7) |2 (7

When S=R and ¢'=p’, we get in particular
the value

| (Epiy &) |2= Bpin', (7"
so that a definite result is predicted. The possi-
bility of such definite predictions was taken by
EPR as a ‘“criterion of the physical reality’’ of
the observable R; it is, par excellence, the bit of
evidence which might incline one to believe
Assumption A to be true.

(c) If M has been measured on system I and
the value u’ obtained, what is the probability of
finding the value p; for R in 1I? Some calculations
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are required for this case, but are omitted, being
analogous to those which will be given in detail

- for (d). Both methods give the result

wi| (ors ¥ | 2/[§wk[ (orw ) [*]. (8)

(d) If M has been measured on system I and
the value u’ obtained, what is the probability of
finding the value ¢’ for Sin II?

Method A: If the measurements are carried
out on a large number of similarly prepared pairs
of systems, the fraction giving the value ' for
M is §wk| (¢rg ¥ur) |2 The fraction giving this

value and having system II in state &, is

Wi | (oagy Yur) |2 Then the fraction giving the

values u’ for M and o’ for Sis > wi|(or ¥ur)|?
k

X | (&s4s m0+) |2. Dividing this by the fraction
giving the value u’ for M, we find as the required
a posteriori probability,

[Zk:‘wk[ (onpy ¥u?) l 2I (&1 10”) | 2/
[%’wkl (o ¥ |71 (94)

Method B: The wave function from which we
must calculate this probability is, by (5), (3):

S Yu* (1) W (1, xz)dx1=§(wk)%(w, o) Eop(%2).

On normalizing this function and taking the
square of its inner product with 5, one gets for
the required probability

Cl Ek:(wk)*(%m,'l/n’)(&m 10') | 2]/
D:k:’wkl (one Y1) 2], (9B)

where the denominator comes from normaliza-
tion.

The difference between (9A) and (9B) comes
from the well-known phenomenon of ‘‘interfer-
ence’’ between probability amplitudes. The
absence of such an effect in case (a) is usually
stressed in discussions of the theory, since it
shows plainly the effect which the mere attaching
of an instrument must in general have on the
behavior of a system. Since case (d) is not
mentioned, it is possible for a reader to form the
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impression that the theory is consistent with
Assumption A.1t

The formal discrepancy between (9A) and (9B)
is a consequence of the fact that, according to
the remarks following (4) and (5), after a
measurement of M on system I has been made
system II is in a pure state, which is in general
not one of the £,,. Now no possible manipulation
of the w; will produce from the statistics of the
mixture those of any pure state other than one
of the £, Thus not only is Method A incon-
sistent with Method B, but also there is no
conceivable modification of Method A which
could produce consistency between Assumption
A and Method B.

The contradiction here, like that between
quantum mechanics and the classical doctrine of
causality, indicates a radical change in concept
rather than a mere change in the details of a
mechanism. The idea which is found to be
untenable may, roughly, be said to be that of
the independent existencé of two entities, the
state of system Il and one’s knowledge of its
state, only the latter being affected by measure-
ments made on system [. Quantum theory
shows that this is not an adequate concept of
the relation between subject and object.

5. A PuvsicaL EXAMPLE

The inconsistency of quantum mechanics with
the point of view which finds its definite formu-
lation in Assumption A has been demonstrated
mathematically. One may still wish to inquire
whether it can be realized in a concrete physical
example; for we may certainly suppose that not
all mathematical operators, even though subject
to the proper formal requirements,'? correspond
to experimentally measurable quantities.

An example has been outlined in mathematical
form by EPR. As Bohr has remarked, and as is
evident from the mathematics, the physical
realization of this example involves certain
difficulties, in particular the necessity of ab-
stracting altogether from the time in circum-
stances in which this is not really permissible.

1t Cf. Pauli, reference 3, p. 89. The remarks there given
are entirely correct, but liable to be misleading to an un-
wary reader with a predilection for Assumption A. The
same is to some extent true of the remarks in v. Neumann,

reference 3, p. 232, and Heisenberg, reference 3, pp. 59-62.
12y, Neumann, reference 3, pp. 75 ff. -
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We shall now outline an example in physical
terms, in which full account is taken of the
time-dependence of the quantities involved.

In order to give a physical example of the
point in question, it would suffice to describe any
case in which one system (I) is used as a meas-
uring instrument in observing another system
(IT), and in which, after interaction has ceased,
some other observable besides the one suited to
serve as a ‘‘pointer reading’’ can be measured on
system I. The resulting inferences about system
IT would in the main fall under case (d), in
which the contradiction between quantum me-
chanics and Assumption A is evident. A variety
of such examples could doubtless be given.!?
There is, however, a particularly neat and
striking special type of example, to.which EPR
have directed attention; and the one we shall
describe is of this type. Before describing it in
detail, we shall indicate the nature of this sort
of example and its connection with the argument
of the preceding section.

The characteristic feature of such an example
is obtained by choosing a case in which the
expansion (3) is not unique.'* An assumption in
the form of Assumption A can be stated corre-
sponding to each of two expansions of type (3).
Each of these assumptions is consistent with a
number of quantum-mechanical results of the
forms (6), (7), (8), and particularly of the form
(7); thus both of them are to be accepted as

13 e.g., the example we shall discuss could be stated in
this way. In the construction and discussion of such ex-
amples a difficulty arises owing to the fact that in experi-
mental practice the observables used are almost always
incomplete (cf. note 8), and that the theory of measure-
ments of incomplete observables is not altogether free from
ambiguity (cf. v.- Neumann, reference 3, pp. 184-185).
For this reason it is much easier and more satisfactory to
treat our example—which itself involves the use of incom-
plete observables—in the way we have here used.

14 The condition for this is that the wy be not all distinct
(cf. v. Neumann, reference 3, p. 232 and p. 175). In the
example of EPR, the w; are all equal and all states of
system II are included. This means that there are an infinite
number of different expansions of the form (3), and that
any measurement made is as likely to give any one result
as any other. Measurement in quantum mechanics has in
general a twofold aspect: it gives information (of a sta-
tistical nature) about the properties of the state of the
system before the measurement, and it enables us to predict
the state of the system after the measurement. In order that
it may serve the first purpose, care must be used in choosing
a suitable coupling of object and instrument. In the ex-
ample of EPR, the coupling has been so violent that all
trace of the original state of system II is lost, so that the
word ‘‘prediction’ is the only correct one to apply to one's
conclusions about system II.
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true, according to the general attitude under-
lying Assumption A. Now each assumption
asserts that system II has made a transition to a
definite (though unknown) state, and that it is
a state for which a certain observable has a
well-defined value. In the case chosen for the
example the two requirements thus imposed on
the state of system II cannot be fulfilled simul-
taneously by any quantum-mechanical state,
because of the limitations imposed by the
uncertainty principle. The point of view ex-
pressed in Assumption A is accordingly found to
conflict with quantum mechanics.

With this outline of the argument in mind, we
proceed to the detailed discussion of the example.
In this we shall use the language of experimental
physics rather than that of the mathematical
formalism.

We consider the determination of the position
of a heavy particle of mass M, say a proton, by
the use of a ‘“‘microscope.” This microscope is
designed for use, not with y-rays, but with light
charged particles of mass m, say electrons. If
we shine soft light in from the side of the ‘“‘barrel”
and let it be scattered from an electron which is
on its way to the ‘lens,” a transverse compo-
nent!s of the electron’s momentum can be calcu-
lated from the Doppler effect on the scattered
light. Under suitable circumstances this will
enable us to infer the momentum?!® of the proton
quite accurately. On the other hand, we have
only to let the electron travel undisturbed to the

5 je., transverse to the axis of the microscope. This
component of the momentum will be called simply the
“‘momentum,”’ and the corresponding coordinate will be
called the ‘‘coordinate’ x.

18 Of course the electron need not have been scattered
into the microscope; in any given case we can only go on
with the experiment in good faith, hoping that it will have
been so scattered. The experiment can fail; and from the
fact that it has succeeded when one choice was made,
quantum mechanics of course offers no such inference as
that it “‘would have” succeeded if the other choice had been
made. But under the proper circumstances, such an infer-
ence does follow from the point of view of Assumption A.
The circumstances required are, that in the Doppler effect
experiment enough quanta must be sent in so that ‘‘if the
electron is in the barrel,” several are sure to be scattered
back into a suitably small solid angle. The quanta must be
extremely soft, so that scattering a great many of them
will not change the electron’s momentum too much; and
their energy must be measured very accurately. This means
that the electron is in the barrel a long time; and it turns
out that, to secure the accuracy represented by Eq. (14),
the length of the microscope must be much greater than
(M /m)13Ax, while the lateral distance to the source and

analyzer of the light must be muchgreater than (M /m)%3/*Ax.
These requirements make in principle no difficulty.
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photographic plate in order to be able to infer
with considerable accuracy the corresponding
coordinate!s of the proton. The ‘“‘Assumption A”
which corresponds to the first experiment is:
During the collision between the electron and
the proton, the proton made a transition into
some state with well-defined momentum ; which
state this is can be determined by a measurement
made on the electron. Corresponding to the
second experiment one has an ‘‘Assumption A"
which reads exactly the same except that the
word “‘momentum’ is replaced by the word
“coordinate.” Since ome is still free to choose
which experiment is to be performed afier the
electron has been scattered into the microscope!®
and. ceased to interact with the proton, these
assumptions must both be true at once, if one
accepts the point of view on which they are
based. But we shall see that their simultaneous
truth can be in conflict with the uncertainty
principle.

Before deriving the actual expressions for the
uncertainties in the two alternative predictions,
let us consider briefly their physical origin. In
principle the Doppler effect experiment can be
made with arbitrary precision (cf. latter part of
note 16). The uncertainty Ap may accordingly
be regarded as fixed by the original uncertainties
in the momenta of the particles; to make it
small, we have only to prepare them properly
beforehand. Now the use of particles so prepared
will in some degree limit the accuracy of our
prediction of x. This comes about through the
fact that the predictions we want must refer to
a definite time, and that the prediction of x read
directly from the photographic plate refers to
the moment of the collision : this is not precisely
known, because our long wave trains take a
finite time to pass over each other. In making a
prediction for a definite moment, which we
choose to be that at which the wave trains cease
to overlap, we must allow for the distance the
proton may have moved since the collision. This
leads to the existence of a lower limit for the
product ApAx; but since the electron, with its
small mass, moves rapidly across the region
where the proton may be found, whereas the
proton’s motion after the collision is compara-
tively sluggish, this limit will be found to be
not %, but about (m/M)h.
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To show this, we shall discuss the possible
sources of uncertainty in the prediction of x.
These are: (1) The finite resolving power of the
microscope; (2) inaccuracy of focus; (3) allow-
ance for the proton’s motion between the
moment of the collision and the moment to
which the predictions refer.

(1) Finite resolving power. This gives an un-
certainty '

A~ (N )~ (h/pe), (10)

where € is the numerical aperture and A, p are
wave-length and momentum of the electron.

(2) Imaccuracy of focus. Let the electron!’ be
sent in through a slit of width s. At the far side
of the field of view the half-width of the beam
will have become, through diffraction, about
(s/2)+(LM\/2s), where L is the breadth of the

field of view. By proper choice of s, this expres-

sion takes on its minimum value, (AL)}. Now L
must be equal to (A/Ap), the whole length of the
wave train ; otherwise the restriction of the field
of view would cause enough diffraction of the
scattered waves to spoil the significance of the
contemplated Doppler effect experiment. Thus
we get for the uncertainty in x from this source

Asx~e(Nn/Ap)r=eh/(pAP)E. (11)

(3) Allowance for proton’s motion. The time
available for this motion is of the order of
magnitude

At~ (h/Ap)/(p/m),

which is the time required for the electron to
travel the length of such a wave train as must
be used. To make the proton’s velocity after
the collision as small as possible, we can send
the two particles into the field of view with
equal and opposite momenta. Then if the
electron were scattered exactly at a right angle,

17 Only one beam need be narrow. Under (3) we shall see
that it is expedient to make the wave-lengths of electron
and proton originally equal, so that Asx will be the same
whichever beam is limited. By admitting the proton through
a slit much broader than s, we can assure that the electron

escapes unless it is scattered through a fairly large angle,
thus avoiding the prevalence of spurious effects.
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the resulting x component of the proton’s ve-
locity would be zero. But on account of the
finite aperture we must take it to be roughly

vi' ~e(p/M).
We then get
Agx~v, At~e(m/M)(h/Ap). (12)
Thus we have finally
ApAx~Ap(Ax+Asx+Asx)
~h{(Ap/ep) +e(Ap/p)t+e(m/M)}.  (13)

By making Ap extremely small compared to p,
we can make

ApAx~ (m/M)h. (14)

By taking e also to be small, we can in principle
make ApAx arbitrarily small; also we could in
principle dispense with the advantage we ob-
tained by using the disparity in mass of two
known particles.

As explained in the preliminary discussion of
the example, the comparison of a result such as
(14) with the uncertainty principle shows that
Assumption A is inconsistent with quantum
mechanics.

CoONCLUDING REMARK

Both by mathematical arguments and by
discussion of a conceptual experiment we have
seen that the assumption that a system when
free from mechanical interference necessarily has
independently real properties is contradicted by
quantum mechanics. This conclusion means that
a system and the means used to observe it are
to be regarded as related in a more subtle and
intimate way than was assumed in classical
theory. It does not mean that quantum me-
chanics is not to be regarded as a satisfactory
way of correlating and describing experience; it
does illustrate the difficulty, often remarked upon
by Bohr, which is inherent in the problem of the
distinction between subject and object.



