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.The chance, 8'„(0, t}, that e atoms of a radioactive
source wi11 disintegrate in the interval (0, t} may be found
if we know f,(t)dt, the chance that a disintegration will

occur in dt at t after r have occurred in (0, t). Baternan's
differential equation is generalized to cover the case in

which f, depends on t and r. The solution is given for the
case in which it depends only on t. A detector of efficiency g
subtends a solid angle 4xA at a source (decay constant X),
containing N atoms at time zero. The probability of n
counts in the interval (Tl, Ti+T2) is

(T T +T ) C ~(~~&2 1)ng-tv~(&1+&2)

X (ZA)-L1+e»2(e'~& —1)+(1—qA) (e"~& —1)g&-".

Putting g and A equal to 1 we get the probability
8"„(Tl, Tl+T2) of n disintegrations in this interval. Bort-
kiewicz's formula W„(0, t) = C (e~' —1)"e "', is a special
case. If we measure a great number, r, of intervals between
the disintegrations of atoms in a single source, the ff'ection

of the intervals that exceed t has the "expected" value

The Problem of determining fluctuations in the disintegration

of a single substunct'. from jluctuations ie counting is solved

for the case in which each disintegration gives a single ray
capable of actuating the counter. Fluctuations in counts
produced by two or more independent sources are con-
sidered. Since gamma-rays and secondary beta-rays are not
emitted by every disintegrating atom, the distribution of
counts due to such rays is discussed. The effect of the
recovery time, r, of the counter is discussed, using at first

the assumption that r is the same for all counts, an ap-
proximation useful at low counting rates. Kith a source
that would produce f counts per sec. if v were zero, the
probability of n counts in the interval (0, t) is obtained for
two cases: (1) The counter is not clogged at time zero;.
(2) it is clogged. The second case has practical interest; the
probability of an interval greater than t between counts is
1if t~v and e f(" ') if t~v. Differential-difference equations
for the Auctuation-functions are derived. The Auctuations
of counts due to a constant source, in a counter with
variable recovery time, are obtained, using Skinner's formula
for the frequency distribution of recovery times. For
t values greater than the maximum recovery time, the
probability of an interval greater than t is e f('—"&; g' is a
constant. Formulas are derived for the stock jfuctuutions
of each substance in a source con.taining several members of
a radioactive series, subject to any desired initial condi-
tions; recurrence equations governing the stock probabili-
ties are given. The probability of a stock n of the daughter
of a constant parent which yields f disintegrations per sec.
is S„=(f/))"e (ft~&/mf; here X is the decay constant of the
daughter, General methods for 6nding the fluctuations in
the emission of an entire radioactive series, or any part of a
series, are given. The disintegration-fluctuations of the

daughter of0, constant Parent obey the formula 8„=(ft)"e f'/~!
which applies also to the parent. However, fluctuations of
parent and daughter are coupled, so that the Bateman type
of formula does not apply to their combined emission.
Instead, the probability of an interval greater than t is
exp E—ft —(f/&) (1—& ')j

A. FLUCTUATIONS IN THE DISINTEGRATION OF A

SINGLE SUBsTANcE

l. A generalization of Bateman'8 differential
equation

""
N 1910 Bateman' derived his famous formula

- - for the probability that e atoms will disin-.

tegrate in time f, in a source whose diminution
during the experiment can be neglected. It is

W =(ft)"e r'/rt!,

where f is the a~erage number of disintegrations

per unit time. Bortkiewicz', gave the formula
which applies to a decaying source. %e shall
present a differential equation which covers a
much broader range of possibilities, yielding the
formulas of Bateman and Bortkiewicz as special
cases. Suppose we know f, v(t)dt, the prob. ability
that one disintegration will occur in dI, at I, when
r have occurred in the interval (0, t) Then there.
are two cases to be considered:

A. f„is a function of t or a constant, but does not depend
on r, so that we may omit the subscript.

B.f„depends on both r and t.

* Preliminary communication, see Phys. Rev. 48, /72
(1935}.' Bateman, Phil. Mag. 20, 698 (1910).

' Bortkiewicz, Die Rgdioaktive Strahlung als Gegenstand
mahrscheinh'chkeitstheoretischer Vntersuchungem (Springer,
1913), p. 75.
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FIG. 1.Two independent ways in which n events may occur
in time t+dt.

In each case the primary problem is to 6nd
W' (0, t), the probability that n disintegrations
occur in the interval (0, t). When this is known
we can obtain other useful functions, such as
W. , (T&, T&+To), the probability that n events
occur in the interval from T~ to T~+T2 when s
events are known to have occurred in the
interval (0, T&). We shall drop the time-argu-
ments when they are not needed for clarity.

To obtain a differential equation obeyed by
W (0, t), we note that the probability of n events
between 0 and t+dt is the sum of two terms
(Fig. 1): the probability of n 1events in t—he
interval (0, t), times the probability of one event
in dt at t; (2) the probability of n events in the
interval (0, t), times the probability of no events
in dt at I,. Thus,

or

dW„/dt= f. gW. & f.W—n= 1, 2, , (2)

When n is zero, f„ i is zero, so that

d Wo/dt = foWo— (2a)

These equations are a generalization of the
Bateman equations, reducing to them when f
is constant. The initial conditions are Wo(0, 0)
= 1; W„(0, 0) =0 when n is not zero. Therefore

g
—J fpdt

and we can obtain the other Ws in succession
by using the general solution of (2), namely,

it

W„=e J~"o' f &W„,ej ~"~'dt;
0

n= 1, 2, (4)

W.(0, t+dt)
= W'„,(0, t)f„,dt+ W„(0, t) (] f„dt);—

2. General solution when f is a known function
of t

If the chance f(t)dt of an event in time dt at t
depends only on t, Eq. (2) becomes

dW /dx=W r —W,

wherein
t

x= l f(t)dt.
0

(6)

The solution of (5) is

Also, we have

where now

W (0, t) =x"e '/n!—
W.(t„ t, +t) =x"e */n!,-

t1+t
x= f(t)dt

(7)

(8)

The mean number of events in the interval E~,

t~+t is found to be x, and the standard deviation
(r.m.s. Huctuation about the mean) is xI. The
Lexian ratio, —that is (standard deviation) '/
mean, —is therefore unity, as it also is for a
source of constant strength. Eqs. (7) and (8)
give approximate information about the Huctu-
ations of a preparation containing a large
number of atoms, where variations of the stock
are negligible. For a preparation whose decay
constant is ), containing N atoms at time zero,
f approaches Ne "9, as N increases. Putting
x =N(1 —e "') in Eq. (7), we may compute
approximate values of the Huctuation of ioniza-
tion current, and other useful quantities. Eqs.
(7) and (8) cannot be applied to a source that
contains only a small number of atoms and has
a decay constant so high that the strength of
the source falls off considerably during the ex-
periment. For such a source, the more general
Eq. (2) must be used.

3. The case of a decaying source

Probability of n counts in a definite interval
beginning at a definite time. If a source contains
N atoms at time 0, and n disintegrate in time t,
the probability that one of the remaining atoms
will disintegrate in t, t+dt is

f.dt = (N —n)),dt.

Then the solution of (2) is

W (0 t) —Q oi(ex& 1)oe—oixi

where C„n=N!/(N —n)!n!. A simple way to
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show this is the following. If we observe the
source continuously during the interval (0, t)
we are really making N experiments, each one of
which consists in seeing whether a particular
atom disintegrates. The chance that a particular
atom will disintegrate is p—= I. —q=1 —e

—~', and
the probability of n disintegrations in N "trials"
is C„~p"q~ "which ma'y be converted into (10).
If we study a great number of identical sources,
the "expected" average of n is pN, or X(1—e "'),
and the standard deviation is

(Npq)'= [Ã(1—e "')e "')'. Therefore,

=C ~(e)' 2 —1)~e (~ '" 2. (11)

Let us now obtain W„(T„T)+T~), the prob-
ability that n events will occur in the interval
(T), T)+T2) when we do not know the number
that occurred in the previous interval (0, T&).

By Eq. (10), the probability that n events occur
in (T), T(+Tg) when s have occurred in (0, Tq)
1s

W„(T, T,+T2) = p W, (0, T))W, , ~(T), T)+T2)
s=o

N—n—C~&(ex&2 1)ne—Nx(r&+Tm) p C A' n[e) T2—(e) Tl I)
a=o

= C N(e).Tg 1)me—N) (Ti+Tz)[1+ekTa(e) rl 1)Jg n— (12)

The average number of disintegrations and the
standard deviation may be obtained from Eqs.
(18a) and (18b), as special cases.

Methods for testing fluctuation theory. Eq. (12)
can be used to test the Huctuation theory for
substances of any desired half-life, whereas
previous work has dealt with approximately
constant sources. The appropriate procedures for
experimentation and for summarizing the data
are somewhat different from those employed in
the past. When dealing with a constant source,
one obtains chronograph records showing the
times of occurrence of a great number of disin-
tegrations, and then two convenient methods of
preparing the data for statistical analysis are
available, associated with the names of Marsden
and Barratt, and of Rutherford and Geiger,
respectively. They are as follows:

(1) The fraction F0(t) of the intervals between disinte-
grations that are longer than. t is determined for various
values of t. These fractions should obey the law F0(h) = e ~',

according to Eq. (1).'

' This statement is often questioned by those who meet
it for the first time. Eq. (1) with n=0, really gives the
probability that zero events will occur in a time t after an
arborary initial instant. Therefore it seems unfair in analyz-
ing data, to make every interval begin at the instant when

(2) The record is divided into equal intervals of length h,

and the fraction of the intervals containing n events is
determined, for different values of n.

In dealing with decaying substances, several
plans are available. One may obtain chronograph
records from a number of sources, all of the same
initial strength as nearly as possible. Then, re-
ferring to Eq. (12), one may fix the value of Tm

and find the fraction of the sources that give n
particles in the interval (0, T~); n particles in
the interval (Tm, 2T2); and so on, taking T)=2T~,
3T2, etc. , in succession. The process can be
repeated for other values of T2, and the de-
pendence of the results on n, T~, and T2 can then
be compared with Eq. (12). This method is ob-
viously desirable when one must deal with weak
sources that decay rapidly, so that only a limited
number of counts can be obtained from each
source. On the other hand, when sufficiently
strong preparations are available, one will desire
to analyze records obtained from a single source.

a disintegration occurs. This mental difficulty may be dis-
pelled by noting that the .probability fdt for an event to
occur in Ct is not affected by the occurrence or nonoccur-
rence of an event at the beginning of Ck. The constant
source may be considered as one having an "infinite" stock
of atoms and an "infinitesimal" decay constant.
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Assigning to T~ a fixed value t, one counts the
number of particles in the intervals 0, t; t, 2t;
etc. , as before and determines the fraction of the

intervals in which n particles occur. Let there be
r intervals altogether. In the jth interval, the
probability of n particles is W„(Lj—1]t,j t)
For fixed values of n and t, these probabilities
depend only on j, and by a known theorem, 4

this means that out of r intervals tbe fraction con

tainting n particles has the expected value

r—&g N(s&'rs 1)wps &'&r& Ts(1 —sxrs+s&'&Ts)&r

Unfortunately this sum cannot be simplified, as
one may see by examining the trivial case r=2.
For practical purposes, it is necessary to use
another method of analysis, now to be explained.

Sise distributi-on of intervals between emissioms

from a single source It is. possible to find a
formula for the fraction Fp(t) of the intervals
between emissions that exceed t. Let the source
contain X atoms initia. lly. By Eq. (10), the
probability that the first interval will exceed t

is e ~"'. After the First disintegration has oc-
curred, the probability that the second will

exceed I; is e &~ "~', and so on. For a given value
of t, each of these probabilities is fixed, so that
out of r intervals the expected number exceeding

t is g e &" '+'&"; that is, the fraction of the r
j'=1

intervals that exceed t has the expected flu'e

F —(s—x& t s—(N r» t)/y(1 sit)—(13)

This generalization of Bateman's formula makes

it possible to carry out a Marsden-Barratt
analysis of the fluctuations of a single decaying
source.

B. FLUCTUATIONS IN COUNTING WITH A DETEC-

TOR OF NEGLIGIBLE RECOVERY TIME

4. Effect of solid angle subtended at source by
the detector, and. of detector eRciency

So far we have dealt with the time-distribution
of all the disintegrations occurring in a source.

4 Czuber, Wuhrscheinlichkeitsrecknung, Vol. 1, p. 78.

A direct test of the formulas derived would.
require a detector of perfect efficiency, which
catches all the emitted particles. Therefore we
now discuss the inHuence of the solid angle sub-
tended by the detecting device, and of its failure
to record all particles that reach it, To bring out
clearly the effects of these factors, we assume in
Sections 4 to 6 that the finite time-resolving
power of the instrument can be neglected, which
means that the results in these sections are valid
only for low counting rates. In nearly all count-
ing experiments on radioactive Huctuations made

up to the present time, the detecting device sub-
tended only a small solid angle at the source, ' so
that randomness in the direction of emission was
superposed on the time distribution of the disin-
tegrations. It has often been stated' that experi-
ments in which the detecting device subtends a
very small solid angle at the source cannot serve
as a test of Huctuation theory. This is easily seen

by considering an extreme and fantastic case,—
a hypothetical source, emitting particles at uni-
form intervals. If it yields f particles in unit time,
the probability that in time t n particles will

pass through a very small solid angle co is, by
Poisson's formula, (Aft) "e "I'/&i!, where A =cp/4&r",

but this is exactly what we would expect
from a source subject to Huctuations, yielding
an average of Af particles per unit time, in the
solid angle co. Similarly, if the efficiency, g, of the
counter' in detecting a single particle is very
small, the time-distribution of counts will

follow Bateman's formula even though the
counter receives the entire output of the above-
mentioned hypothetical source.

However, we can prove that if g and A are nor

very small compared with unity, ri definite test of

' There are two exceptions. Kohlrausch and Schweidler
(Physik. Zeits. 13, 11 (j.912)) attempted to utilize the en-
tire emission, but Kohlrausch says the observations did not
get beyond a qualitative stage. Curtiss (Bur. Standards J,
Research 8, 329 (1932)) used nearly the entire emission
from a polonium source deposited on a thin foil between
two counters.

'See for example, Kohlrausch, Rudhoaktivitat, p. 789.
7 Such an efficiency factor may arise in many ways. For

example, in recording x-rays with a tube counter, only a
part of the rays undergoes absorption or scattering in such a
way that counts, occur. The efficiency will of course be
different for different kinds of rays or particles. (Section 6.)
If several efficiency factors are active in sequence, we simply
use an overall factor equal to their product; thus, if e is the
probability that a photon will liberate an electron in the
wall of a counter, and m the probability that this electron
will produce a count, g=vm.
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we have the Bateman formula for the probabilzty of
n counts zn any interval of length Tz.

%or
tticles

Source gives s particles

FIG. 2. In a typical case the source emits s particles in the
interval (T1, T1+T2); the detector records n of them.

the fiuctuation theory can be made Fo.r generality,
we discuss a decaying source containing N atoms
at time zero. The chance that the source will

emit s particles or rays in the interval (T&, T&+Tz)
is W, (T&, T&+Tz), given by Eq. (12); when this
event happens, the chance (Fig. 2) that any one
of the s particles will be recorded is gA, and the
chance that n of them will be recorded is

C '(gA)"(1 —gA)' "

Therefore the chance of recording n particles in
the interval T&, however many are emitted by
the source, is

pm(Tlp Tz+ T2)
N

=ZW(T~, T~+Tz)C-'(gA)"(1 —gA)' "
s=n

"'(rl+r2) [1+e"»(e»' —1)]~

gA q"" (N n)!—
X{ {E x, (15)

E1 —gA) = (N s)!(s—n)—!

where

x =
I
(e"r' 1)(1 —gA)/[1—+e"r'(e"r' 1)]I. —

The summation in Eq. (15) isx"(1+x)~ ",so that

P„(T„T'+Tz)= C„"e ""&r'+'»(e'r2 —1)"(gA)"—
[1+e"rm(e" ' —1)+(1—gA)(e" ' —1)]n n(16)—
This is a generalization' of Eq. (12), and from

it certain interesting facts emerge.
(1) If N approaches znfinzty, but N) and n

remain finite, then Tz drops out of Bq. (16) and

' Unfortunately Eq. (13) cannot be generalized to take
account of g and A. It can be shown that when r counts
have been observed, the probability that the interval be-
tween the rth and (r+1)th counts will exceed t is

L1 —e &&rgb(1 —g &~)jN ~z

where T„ is the time of occurrence of the rth count. Since
this expression depends on T„as mell as r, the method of
proof which led to (13) can no longer be invoked.

P„(Tz)=(N) gATz)~e ~~g" 2/n!

(2) While the time-distributions of counts and
of disintegrations are of the same form for a
"constant" source, this is not true for short-lived
sources.

(3) The mean number of counts in the in-
terval T2 is

n Ne —xT&(1 —e hT2)gA— (18a)

and the mean square deviation is

n' —n'=Ne —"r&(1—e—"rm) gA

x[1—e "»(1—e "»)gA]. (18b)

' Bortkiewicz, reference 2, p. 72.
Reference 2, pp. 5—15.

Many writers have used the value of the
Lexian ratio, as a criterion for the random char-
acter of radioactive disintegration. For sources
whose decay during a single experiment can be
neglected, this ratio should be unity, whatever
solid angle is subtended by the counting device.
The case of a decaying source was discussed by
Bortkiewicz' but he did not consider the inHuence
of counter eKciency and solid angle. His dis-
cussion covers the frequency distribution of c,-

values in equal intervals of time, for a single
source; that is, T2 is constant, and T~ increases
by equal steps. For this case, the expected value
of the Lexian ratio is greater than unity. On the
other hand, the Lexian ratio given by Eqs.
(18a) and (18b), is less than unity. It refers to
the case in which we choose 6xed values of T~
and T2, make experiments on a great number of
sources, and consider the frequency-distribution
of n values in the interval T2. The complicated
form of Eqs. (12) and (16) and of similar equa-
tions which follow, makes it inconvenient to use
the Lexian ratio in studying decaying sources.
On the other hand, Pz(T&, T&+Tz) is simPle in
form, and if we determine by experiment the
dependence of this function on T~ or T2, a com-
parison with theory can be made by a method
employed by Bortkiewicz. "This is the most con-
venient procedure.
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5. Determination of Quctuations in disintegra-
tion when the distribution of counts is a
known function

Suppose the functions P„(T&, T)+Ti) have
been found by experiment. When X is finite, and
T) and Ti are given fixed though arbitrary values,
Pg. (tj) constitutes a set of linear e(Iuations that
can be sotved for the functions W, in terms of the

functions P and the solution is unique. Thus
experiments on the time distrib-ution of counts can
give us a defi'4e test of the probability theory of
rod~ogctive decay.

To solve the Eq. (15) when Ti and Ti are
given fixed values, we omit the arguments of the
functions W, and I'„, and write

(1—gAi "-

v. = W, (1—gA)'; p =P„i (
. (19)

gA )
Then (15) assumes the simple form

P C.'v, =p, .

The work is done in Appendix 1 and the result is

W;=(1—gA) '( —1)'
N 1 —gAy

gA

Since this result holds for every choice of Ti
and T2, it is the general solution of our problem.

6. Distribution of counts due to gamma-rays
and, secondary beta-rays; counts due to
two or more ind. epend, ent sources

Gamma-rays and secondary beta-rays are
emitted very quickly after a disintegration, but
this does not mean that their time-distribution
is the same as that of disintegrations. Some
transitions leave the daughter nucleus in the
ground state and in general, a given gamma-ray
is emitted only in a certain fraction of the disin-
-tegrations. The distribution of counts due to
gamma-rays is found as follows. Let G; be the
probability of emission of a gamma-ray of fre-

quency v; when a given atom disintegrates, and

g; the counter efficiency for this ray. The effective
solid angle subtended at the source by the de-
tector may also be different for the various rays,

Fzo. 3.

because of differences in their penetrating power.
The value of this solid angle for the jth ray may
be denoted by A;. Then, the probability that a
gamma-ray of this frequency will be emitted and
will produce a count is G;A;g;; and if the gamma-
rays are mutually exclusive the total probability
that the given disintegration will result in a
count is PG;A;g;. Replacing gA by this sum, the
problem is treated exactly as in Section 4.

The situation is diAerent if some of the gamma-
rays are emitted in sequence without measurable
time lag, which is often the case. To illustrate
this, consider a hypothetical nucleus that emits
only three gamma-rays, shown in the energy
diagram (Fig. 3). Let the emission probabilities
be G~, G~, G3, where G~ obviously equals G~ and
let the counter ef6ciencies be g~, g2, gs. Then we
can show that the probability a count will
result from a given disintegration is G)(A)g)
+Aigi —A&A&g(gi)+GiAig&, this quantity re-
places gA in the analysis of Section 4.

Let us now discuss the distribution of counts
when two or more sources are superposed, or
mixed. The superposition of any number of
independent sources obeying Bateman's formula
gives a resultant distribution obeying Bateman's
formula; to be exact, if the average numbers of
events caused by the individual sources in time
t are xj, x~, etc. , then the probability that all of
them together will yield n events in time I, is
(gx) "e ~*/n! The sources may be at different
distances from the counter, may give rays of
different absorbability, or may differ in any
other respect; still the formula holds. The situ-
ation is quite different for decaying sources. By
Eq. (16), the probability of n counts due to two
such sources in the interval T2 is

Q P, (&)P„",(&)

j=0

where the superscripts refer to the individual
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sources. This is not of the form (16), unless the
decay constants are equal and the products gA
are the same for the two sources. Of course,
when these quantities are equal we are dealing
essentially with a single source.

C. DISTRIBUTION OF COUNTS IN A DETECTOR
%'ITH FINITE RECOVERY TIME

Preceding sections dealt with the distribution
of counts in a detector characterized by constant
efficiency factors for the different classes of
particles or rays which it receives, but having a
negligible recovery time. Now we shall consider
the distribution of counts in a detector whose
eAiciency drops to zero when a count occurs. Ke
shall suppose (1) that it remains zero for a fixed
time r; and (2) that the counter then returns to
a state of perfect efficiency. "We wish to find
P„(0, I), the probability that n counts occur in
the interval (0, t). The general problem is com-
plex, and we shall deal only with the case of a
constant source.

7. Counts due to a constant source; counter not
clogged at 1=0

P.
0.5
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FIG. 4A. Probabilities of no counts and of one count in
detector which is not clogged when t=0; and diagram il-
lustrating derivation of, Eq. (23}.

B. Probabilities of no counts and of 1 count in detector
which is clogged when t =0. The curves are drawn for the
case f=1/r.

Let the counter receive f events per second, on
the average. Then Po ——e f'. Up to the time t = T,

P~, P3, etc. , are zero, for if one count occurs
anywhere in this interval, the counter is clogged
for the remainder of the interval. Therefore, if

Therefore, if t~7. :

t—r t

e f~' '~fds+ -e ~'fds
t

= e f (&—~) [I+—f(I r) j e f&—(23)

Pg ——1 —Pp ——1 —e ~' (22)

Now, let t be greater than or equal to ~, and
consider the probability of just one count, oc-
curring between s @nd s+ds. There are two cases,
as-shown at the bottom of Fig. 4A.

{1}If s~t —7., the probability of one count in ds is
(prob. of no event up to s))&(prob. of 1, count in ds) X
(certainty that no further count occurs up to s+r, the
counter being clogged) X (prob. of no event from s+r to t)
=e fsfdse f(' s ')

(2) If s~t —r we omit the last factor.

"In a tube or point counter, the recovery time is not
constant, and the efficiency increases as recovery proceeds.
These matters are discussed in Section 10, but our present
purpose is to construct an approximate theory, applicable
at low counting rates. When such complications are neg-
lected, we need not retain the factors g and A in discussing
a constant source, for we may confine our attention to the
class of events which would be counted if the recovery time
were zero; these events, of course, constitute a Bateman
distribution.

P„(0, t) =F„(t)—F„,(&),
where

F (&) =e-«'-"'&I1+f(I nr)+—
(24)

+[fQ
—nr) g"/n! I. (25)

If we choose a'value of t between (s —1)r and sr,

s—1

n=sF, —P F;.
j'=O

(26)

By similar methods P„may be computed. The
work is greatly shortened by the following facts:
(1) P„=0 if t ~ (n —1)r. (2) In the range (n —1)7.

to nr, P„+~ and all higher P's are zero, so in this
range P„=3 —P& . —P„&.Thus we only need
to compute P„ for the case t~n~. In this range
its analytic form does not change. The work is
carried out in Appendix 2, and the result is
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8. Counts due to a constant source: count occurs
at 1=0

The above formulae are not quite what we
want for the analysis of experimental data, where
it is convenient to know the probability P '(0, t)
of n counts in the interval (0, t) after an initial
count at t=0. Up to time r, Pp'=1 because the
counter is clogged by the initial count. At time r
conditions are the same as at t =0 in the previous
treatment, so that we may write

t —nr .. P„'=0,
nr=t=(n+1)r: P.'=1 P&' —P'. &,

—

t (n+1)r: P„'=G „& G, —

For practical purposes, we usually need oniy
Pp', the fraction of the intervals between ad-
joining counts which are greater than t. %'e may
obtain this fraction experimentally for various
values of t and plot the results on semi-log paper.
Beginning at abscissa r, we have log1p Pp'=
—0.4343f(t —T), so the experimental points
should lie in the neighborhood of a straight line
whose slope is 0 4—343.f Th.us f can be deter
mined without a knowledge of r, and the "good-
ness of fit" of the experimental points can be
tested by several methods which need not be
explained here.

9. General equations governing P„

where

G =e—f&'—"'I1+f(t nr)+—

P p' —e f && ~) ~ —(27) In setting up general equations for P„, one
naturally defines a function I', such that F„dt
is the probability of a count in t to t+dt when
there have been ri counts between 0 and t. Then
we have

+[f(t—nr)g" '/(n —1)!I. (28) dP„/dt = F„&P & F„P„, —(31)

To obtain n, suppose t lies between sr and
(s+1)r. Then

P,'=1—P P„'=1—e f&'-') —P P„',
0 1

where the terms in the summation are given by
the last line of (27). Therefore

n=g nP„'+s se f&' "& —s Q—P„'.
1 1

the derivation being exactly like that of Eq. (2).
However, the F's are discontinuous in analytical
form, and study of their properties leads one
to other equations which will now be ob-
tained directly. Consider the probability of n
counts in time t+dt. They may be realized in
three ways:

(1) n in (0, t —T); zero in (t —r, t); zero in dt;
(2) n —1 in (0, t —r); zero in (t —T, t); 1 in dt;
(3) n —1 in (0, t T); 1 in (t —r—, t); zero in dt

s—1

Now, P P„' is a telescoping series whose sum
Let „P,(t —T, t) be the probability of s counts
in (t r, t), when n h—ave preceded in the interval

(0, t r). Then a little —reflection will show that
is Q, —G1, and

P nP. '= Q [(n+1)G„+g—nG„g —P G„+„
1 1 1

here the 6rst sum telescopes, and is equal to
sG, —G1, so that

n=s —g G„,
1

and by similar methods

P„(0, t+dt) =P„(0, t T) .H, (t—T, t) (1—fdt)—
+P &(0, t —T') ' —&Pp(t —r, t)fdt

+P &(0, t —T) &P&(t —r, t)(unity).

Separating the 6nite terms and the terms con-
taining dt, we get

P (0, t) =.P (0, t —T) Wo(t —r, t)

+P &(0, t r) „,Pg(t —r—, t); (32)

S

n' = s' g(2n ——1)G.. (30)
dP„(0, t)/dt =fP (0, t —T) &Pp(t —T, t)

fP„(O, t T) „P—,(t T, t) —(33)— .
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The evaluation of the functions „I'0, etc. , by
integration is difficult, so Eqs. (32) and (33) are
not very useful as a means of finding the func-
tions P . On the contrary, they enable us to get
the functions „I'0, etc. , from the values of P,
given in Section 7.

10. Distribution of counts in counter with
variable recovery time

Skinner" has obtained the distribution of re-
covery times in a counter exposed to a "con-
stant" source. His results are based on Dan-
forth's" studies of the way in which the counter
voltage V varies when a discharge is initiated,
Two classes of counts are considered. In the first,
obtained at voltages close to the threshold, V
drops with great rapidity to a value below the
threshold, and recovers exponentially, with a
time con~tant determined by the capacity of the
counter and by the resistance in series with it.
The recovery time depends on the time required
for V to rise to the threshold. In the second type,
encountered at higher voltages, V falls, recovers
to the threshold value and remains close to the
threshold for an indefinite period. The mechan-
ism of the second type is not fully understood
and we confine our remarks to the first type.
Skinner adopts the reasonable view that there
is space charge in the counter when effective
ionization ceases, and that the voltage goes
below the threshold because this'charge is swept
to the electrodes. How far V goes below the
threshold depends on the voltage existing when
the count occurs, and we must refer the reader
to Skinner's paper for details. He tacitly assumes
that the counter returns to complete efhciency
when the voltage rises to the threshold. Of
course this is not true, but it is a very desirable
simplifying assumption which probably does not
affect the results to any great extent at low
counting rates.

Bearing in mind that our results depend on
these assumptions, let us suppose that the
probability of an ionizing particle in dt is fdic,

f being constant. Skinner finds that when the

«' S. M. Skinner, Phys. Rev. 48, 438 (1935).Ke are in-
debted to Dr. Skinner for placing his results at our. disposal
in advance of publication.

"Danforth, Phys. Rev. 46, 1026 (1934). The authors
have often made visual oscillographic observations which
agree in a qualitative way with those of Danforth.

counter is recording such a distribution of events,
the probability of a recovery time between 7 and
7'+dT. 1S

~(r)dr f(d l)fec(d e~lsc)fsc ie~—lecdr (34)

where

&max

IIO ~(~)e ~" '&dr=e " "' (35)
0

~mRx

ef"= co 7. ef'd7.
0

This can be evaluated in series, but we only need
to note that Ho is of the same form as I'0, with 7'

replacing ~. Therefore the introduction of a
variable recovery time does not alter the form
of the distribution of intervals; but we must
remember that variation of efhciency with volt-
age was neglected.

D. FLUCTUATIONS IN THE STOCK AND THE DIS-
INTEGRATION OF DAUGHTER SUBSTANCES

It was clearly recognized by Adams" that the
emission from an entire radioactive series has
Ructuations which do not obey the Bateman
formula, even when the substances in the series
are in equilibrium. He showed that if the interval
of time for which probabilities are calculated is
very short compared with the mean lives of
some of the substances, and very long compared
with those of others, the Auctuations can be
computed approximately in terms of Bateman

~' N. I. Adams, Phys. Rev. 44, 651 (1933).

where RC is the time constant of the counter,
and d is the maximum voltage drop divided by
the difference between operating and threshold
voltages; thus d is a constant which can be deter-
mined experimentally. The ~'s have all sizes
between zero and a certain maximum, 'T

which is RClog, d.
The probability that no count occurs in an

interval t, after a count whose recovery time is
between 7 and e+dr, is unity if $~7, and
e ~&' '& if f~r. Averaging this over all possible
recovery times with the aid of Eq. (34), we get
the over-all probability IIO, of no count in an
interval t after any count whatsoever. If t~ ~,„,
which is the only case of interest here,
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functions. He did this for the alpha-particles of
the thorium series, using an interval of 5 minutes
which roughly satisfies the above requirements.
Adams' analysis refers to the equilibrium case,
and he did not consider the inHuence of Huctu-
ations in the stocks of the various substances.
We shall now develop methods for dealing with
all cases rigorously.

x being the "expected" number of B-atoms at
time t. Thus, when t approaches infinity, so that
equilibrium would exist according to simple dis-
integration theory, the stock Huctuations of
8-type atoms are given by S„,= (f/Xs) "s ~'"&/I!
Similarly, the stock-Huctuations of all substances
except the parent and the end-product obey
the formula

11. Theory of stock Quctuations
5„=x"e '/n!, — (41)

where x is the "expected" value of the stock. '"
At time zero, let a sour'ce consist of N atoms

of the parent-substance of a radioactive series
whose members are labeled A, 8, J. The
decay constants will be denoted by )&, X&,

where 'the subscript A belongs to substance A,
and so on. The results of simple disintegration
theory give us the probabilities a, b j that
onc Qf these N atoms, chosen Rt random, w111 be.
of type A, B, J, respectively, at a later time t.
The probability that the stocks of A-atoms, etc. ,

will be sg @g' ' Rt time t 1s

12. Recurrence equations governing stock 6uctu-
ations

A differential equation governing the functions
5„(t) 'wi. ll now be obtained. Consider a given
kind of atom, say the kind B, and let f„dt and
p„dt be the probabilities that an atom of this
kind wi11 be formed, or will decay, respectively,
in the interval dt at t, if the stock of 8-atoms is e.
(The function f„depends on this stock, because
the probable stock of the parent A depends on n,
among other variables. ) Now let us consider the
value of 5„(t+Ch). There are three ways" in
which a stock of n B-atoms can be realized at
time t+dt.and the probability of a stock n of B-atoms,

without regard to the nature of the others, is
simply

(1) stock =e —1 at t; j. is formed and 0 decay in Ct;

(2) stock =e at t; 0 are formed and 0 decay in dt;

(3) stock =n+1 at t; 0 are formed and 1 decays in dt.()) —g Ngn(1 $)N n—
5(ng, ns. , t) = nn4gna. . fnz (36).

mg! ng!. . mJ!

In a series composed of a parent A, a daughter
8, and an end-product C, with only the parent
present at the start, these probabilities are

The probability sought is the sum of three
probabilities:

S (t+dt) =5 g(t)f„ ddt

a —e ~~' b— (s x&t —e»t)
+5-+~(~)L(1 f-+~dt) p-+~dt—3 (42)

It follows that

dS„/dt= f„rS„g (f.+p„)S„—+p„„gS+g(43),

Nb~(f/). s) (1 e »') =——x, -

5.(t) =x"s */n!,

(39)

which will be useful farther on. To treat the im-
portant case in which the parent A is very long-
lived, and is the only substance present initially,
we let N approach inhnity and X& approach zero,
keeping NX~ equal to a constant f Then a ap-.

proaches i and b approaches 0, but

%'hcn n=o, the 6rst term drops out. Because of
the presence of 5„+i, this is not a differential

'~ %hen t approaches in6nity, the amount of the parent
approaches a value which depends on the value assigned
to Xt. Also, the amount of the end product is infinite and
fluctuations of these substances have no meaning and no
interest"Cases in which several 8-atoms are formed and several
decay in dt can be neglected because they give rise to in-
finitesimals of higher order than those which must be
retained.
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equation which we can integrate to get S„when
we know S„». It is really a recurrence relation
for the seriatim computation of S», S2, etc. , when
we know So.

probabilities of all such cases. If n is even, the
result is

13. Fluctuations in the disintegration of a
d.aughter atom and. of a series

When a parent substance and its descendants
are present in the same source the fluctuations in
the total emission do not follow the simple for-
mulas derived in Sections 3 to 6. The problems
which arise are very numerous, and when the
decay of the parent must be taken into account
the algebra is complex. To illustrate as compre-
hensively as possible the methods of solving such
problems, we limit the discussion to a hypo-
thetical three-member series composed of parent,
daughter and end-product substances, called A,
B, and C, respectively. It is convenient to refer
to the disintegrations of parent and daughter as
A-emissions and B-emissions, respectively.

The new feature that arises is this: if the
stocks of A- and B-atoms are n~ and n~ at time
zero, 8-emissions in the interval (0, t) may arise
in two ways. (1) Some of the 8-atoms present at
time zero may disintegrate, the Huctuations
being given by Eq. (10); and (2) some A-atoms
may undergo two disintegrations, thus contrib-
uting to the B-emissions. The problem is to 6nd
the Huctuations in the B-emission, and also the
Huctuations in the total emission. We shall solve
a simple problem in which the decay of the
parent stock must be allowed for, and shall then
deal with cases in which the parent is very long-
lived.

Fluctuations token all atoms are initialty of
kind A. Let there be NA-atoms initially. The
probability of n 8-emissions in the interval (0, t)
is the probability that n of the A-atoms change
into C-atoms in time t. This is

)&a)r ' 1(" ')b"c'*(" '), (45)

where k=0, 2, - n. If n is odd the summand is
the same but k =1, 3 . n.

To obtain the Huctuations in B-emission when
the parent is very long-lived, and there are no
B-atoms initially, we allow N to approach
in6nity and )& to approach zero in such a way
that Ãk~ =f The. n (44) is replaced by

W„=exe '/n!; x =ft (f/Xe—) (1—e "e') (46)

Q n(e'kt 1)ke—nxtx(e —z/t ] (47)

To get the total probability of s B-emissions we
must sum (47) over all allowable values of n
and k. Obviously, n must be at least equal to
k so n runs from k to ~ and k runs from 0 to s.
Replacing l by s —k, and n by m+k, we have,
after some reductions,

x is simply the number of atoms which should
pass into the C-state in time t according to disin-
tegration theory.

Fluctuations of emission by daughter in ectui

libris with long-lived parent. Suppose that the
daughter B should be in equilibrium with its
parent, but that owing to Huctuations the
daughter stock at time zero is n, a value which
may or may not be the equilibrium one. Suppose
k of these B-atoms emit in time t, and that l of
the parent atoms change into C-atoms; and let
k+t=s. By using (40) and (46), and replacing
X& by X for simplicity, the probability of this
composite event is

14r„, &(0 t) =C ~c"(1 c)—
where c is the probability that any given atom
will be of kind C; c is given by Eqs. (38). To get
the probability of -n emissions from the whole
source, we consider a typical case in which k A-
atoms go into the B-state and remain there until
time t at least, and l A-atoms go into the C-state;
it is understood that k+2l=n. Ke sum the

(48)

Thus the emission of the daughter atom ftuctuates
in the same u)ay as that of the long lived parent-'7.

"The simplicity of this result is surprising, when we
consider that Eq. (48) results from stock-variations and.
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Fluctuations of totctl emission under ectuilibrium
condhtions. It must not be supposed that the
total emission of parent and daughter follows
the Bateman formula. In Section 6 we remarked
that the superposition of Asdependent sources
fluctuating according to the Bateman formula
gives rise to a distribution of events obeying that
formula, but in the present instance the sources
are not independent; fluctuations in the emission

by the parent have a direct influence on the sub-
sequent emission of the daughter. To illustrate
this, if for a time the parent disintegrates at
a rate higher than the average the stock of the
daughter will be raised and it will emit at a rate
higher than average. Before working out the
general case, let us clarify our ideas by getting
8"o, the chance of no emission by both parent
and daughter in time t. Now, the probability that
(1) there are n 8-atoms at time zero; (2) no
A-a, toms disintegrate in time t; and (3) no
B-atoms disintegrate in time t, is S„e f't,' "~', and
averaging over n,

~o —g
—f &

—(fl&) (j—~ ) (49)

where a, b, and c are given by Eqs. (38), and in
the limit this becomes

c-~'y'x™/l!m!, (5o)

where y is an abbreviation for (f/X)(1 —e "'),
x= ft y, an—d ) is written in place of Xs. Finally,
replacing / by s —0 —2m, the total probability of
s disintegrations by both parent and daughter is,
when s is even,

s/2 s—2m

gr —Q Q Q g g„n(ok' ])kc nkt—
m=o I =o

Xe I'y' " '"x"'/(s k 2m)—!m!—.

Putting n=k+j for convenience, the result is
this:

s/2

W, , g+s = (2y)'e- '-&Q (x/4y')"'/(s —2m)!m!. (51)
m=o

and pass to the limit X—& ~, X~—+0, NX~ f.——The
probability that both (2) and (3) occur is

[X!/(X—l —m)!l!m!]a~ ' "b'c",

When 'At approaches zero, this function behaves
like e 'f', and when Xt is large compared with
unity, it'behaves like e f'. lt is instructive to
consider the limiting case in which the life of the
daughter is very short compared with the aver-
age interval between disintegrations of parent
atoms. Then nearly all the events occur in close
pairs. The average spacing of the events com-

posing a pair is of the order 1/X, and the longer
intervals between pairs are distributed approxi-
mately according to the law e f', being governed
mainly by disintegrations of the parent atoms.

Now we shall obtain the probability of s emis-
sions by both parent and daughter. , Consider the
case in which there are n 8-atoms at time 0, and
in time t, (1) k 8-atoms disintegrate; (2) l A-
atoms undergo one disintegration each; (3)
mA-atoms undergo two disintegrations each.
We first require the probability that both the
events (2) and (3) occur. Consider a source con-
taining NA-atoms with finite decay constant,

emission-Huctuations of the kind considered above. The
reasoning has been checked by passing to the limit after
setting up the problem for the case of a parent having a
6nite decay constant.

When s is odd, m runs from 0 to (s —1)/2.
The results of this section can be tested in a

very direct way. Suppose we prepare a source of
an alpha-raying substance whose daughter is an
alpha-rayer of short life, adjusting the strength
so that both parent and daughter give only a few

particles per hour when equilibrium is attained.
Using a tube electrometer, the particles emitted
by these two substances can be distinguished
from those due to their descendants, and also
from each other. Thus we can obtain all the data
needed for tests of Eqs. (48) and (51), and also
of Eq. (10).

In conclusion, the formulae derived in this
paper are sufhcient in scope to facilitate the
solution of a wide variety of fluctuation problems.
To keep the paper within bounds, we have
omitted applications to experimental data and
have made no mention of Huctuation-velocities,
an important though neglected subject. It is a
p]easure to acknowledge our indebtedness to
Professor Forrest Western, who collaborated in

experimental work which suggested the writing
of this paper.
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Z C„'v, =p; n =0, 1, ~ ~
¹ (20)

If we differentiate the identity

(a+b)'= 5 C„'a' nb"
n-O

with respect to b, j times, we get

s{s—1) ~ ~ (s—j+1)(a+b)' 7

6

~ Cnsas —nn(n 1), ~ (n j+1)bn—7'

n=7

Putting a = 1, and b = —1, we find that

Z C.sC n( —1)n-7 =b.;
n-7'

where 8„.is 0 if s/j and 1 if s =j.This suggests that to get
e;, we should multiply the typical equation in (20) by
C; {—1)n 7. (Since C;" has no meaning if n is less than j,
we begin, of course, with the jth equation. ) Doing this

,and adding the results we have

~ CnsC7n( 1)n-7'ps 2 C7n( 1)n—
7pn

Interchanging the order of summation on the left, we have

V

Z~, 2 C„C;-(—1)--.
6=7' n=7'

By the identity derived above, the coefficient of e, vanishes
unless s =j, and we have

N
v;= Z C;n( —1)n 7'p„.

APPENDIX 2. COUNTS IN A DETECTOR WITH CONSTANT

RECOVERY TIME, r.

Let the counter receive, on the average, f events per
second, distributed according to the Bateman formula.
Ke wish to obtain P„, the probability that n counts occur
in the interval (0, t). The counter is not clogged at t=0;
and in accord with Section 7 we are interested only in the
case where t~nr. %'e shall call a period during which the

APPENDIx 1. SQLUTIQN oF EQ. (20)

The problem is to find the quantities v, from the
equations

I
l

(1) kX% M" ''' kM''''' M
t t

8& S+7 5 @+7 S«S«+7 6& 5„+T&t

I
I
I
I
I
I

(2) IM kM ~ ~ ~ ~ ~ B8 ~ ~ ~ ~ MM
:spy $~ gtT' Si Si+y sy, 4 &g+W

FIG. 5.

counter is clogged an interlude. Two cases must be con-
sidered, as shown in Fig. 5. In Case 1, the nth interlude
ends before the instant t, and in Case 2, it extends beyond
this instant.

Ke begin by writing the probability that the n counts
will occur, respectively, in the intervals (si, si+dsi);
(s~, s2+ds~), ~ ~ ~, (s„sn+dsn), where it is understood, of
course, that s~ is greater than or equal to si+7, and so
forth. In Case 1, this probability is e ~s&fds&e ~&'& 6»fds2

e-f (sn—sn y
—

fdsne ~ sn ' = e ~&™&fndsi dsn. This
must be integrated for all possible positions of the counts
that can occur in Case 1, ranging from the case in
which all the interludes are closely packed at the left in
Fig. 5, upper diagram, to that in which they are closely
packed at the right, with the end of the nth interlude at
the instant t. For example, the limits for si are 0 and s~-r,'
for s„ i they are (n —2)r and s —r, and for s„ they are
(n —1)r and t —r.

Similarly, in Case 2, the probability of having counts in
dsi at si, etc. , is

e~&" '&'e ~'nj' dsi ~ ds„

and the limits are the same as before, except for s„whose
limits are now t —r to t. Therefore

p —f(s —nr) f' ' f" ' f's 'f 's r7 nd

+sf(n —))rJ' f n f s f s
e fsynd&—

The substitution x;=f$s; —(i—1)rg makes it simple to
carry out the integration over si, s2 ' s i, and the
result is f" 'Ls„—(n —1)rjn '/(n —1)!,so finally

P„=e ~' '" f" [s„—(n —1)rg" /(n —1)! ds„(8—«)r

+e~~" '~ f" e I'n[s„—(n —1)rg" «/(n —1)!ds„$-T

= e ~&' "'~[1+f(t—nr)+ ~ +f"(t —nr)n/n! j
&n && &l 1+f(t—(n —1)r)+

+f"-'(t—(n —i)r)" '/(n —1)!),
which is Eq. (24).


