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On the Theory of Dispersion

KARL F. HE'RzFELD AND MARIA GQEPPERT-MAYER, Department of Physics, rhe Johns Hopkins University

(Received October 23, 1935)

I. The measured absorption is the difference between absorption and forced emission. This
has to be taken into account in the interpretation of measurements in the infrared and the
absorption of hot gases, particularly in the sun. II. According to Maxwell's theory, n'=op, .
The influence of the magnetic susceptibility on the dispersion is discussed for a gas. The para-
magnetic part depends on the frequency formally in the same way as the electric part, but is
determined by the magnetic absorption lines. The diamagnetic part is practically independent
of the frequency up tc x-ray frequencies.

I. INTRoDUcTIGN

"T has been customary to write the dispersion formula

fi~
n' —1=

&sj

Here X; is the number of molecules in the state j per cc, v the frequency of the incoming light, v„
the frequency emitted or absorbed in the transition j—, +s, f;, the "electron number" or strength of
the line, positive for an absorption line, negative for an emission line. The connection of f;, with the
strength of the line comes about in the following manner: Define the absorption coeAicient f~: of light
of frequency v so that e "' is the intensity at the depth x in the absorbing medium. If the lines are
sufficiently separated that the absorptions do not overlap, then the following relation holds between

f and the absorption coefficient integrated over the whole spectral line, i.e. , the total absorption
in the line: fr.;,dv = (N&re'/mc)f;. .

In this paper two points are investigated: The first is connected with pure rotation spectra in gases,
the second with the influence of magnetic properties on the refractive index.

I I. RoTATIQN SPEcTRUM

It is well known that the "orientation" or "low frequency" part of the dielectric constant is
simply the contribution of the pure rotation spectrum. This part of the spectrum is produced
not only by the ground state, but also by the highly excited states. If we rewrite (1) by arranging
according to lines instead of states and limit ourselves to diatomic molecules, we find the part due
to the rotation spectrum in the form

The apparent contribution of the line j—&j+1 to the refractive index is measured therefore by

Nf'&, i+& =f~, &+&» f~+~&N&+&.— ,

The question arises then: Is the connection between the strength of an absorption line and its
inHuence on dispersion, which is valid for transitions from the ground state, preserved, that is to say,
ls

cJ' ;;«d +&&(~e,'/m) Nf';;+, . ,

This is equivalent to asking whether the measured absorption is the difference between true absorp-
tion and forced. emission to the absorbing state, in other words whether the light emitted in forced
emission is coherent.
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A little consideration of the classical electrodynamic picture of absorption and dispersion shows
that this must be so.' In quantum mechanics likewise. the coherence follows immediately from the
fact that the forced emission is an emission into the eigenstate of the incoming light only; it
therefore is not a s'pherical wave but only increases the amplitude of the original radiation. This
means, however, that for a rotation line the total absorption is given by

8trk 28(j+1)2
P 2 Ie Bhj(j+1)—/kT e Bh(j+—1)(j+2)/kT}

lt 7+

8trh 28(j+1)2
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where S=p(2j+1)e "1'(1'+')/", 8=k/8tr'I, I=moment of inertia, p()
——constant electrical dipole mo-

j=0
ment of the molecule, v; =28 (j+1), and the following formula was used 2 e'f = (8212m/3k) v j+1/I'2 ,j, j+(.
The dipole moment of the rotator, summed up over all the states belonging to the same energy' is
given by I' j, j+1——P() (j+1).Similarly, the resultant transition probability is

Sm3 j+1
p 2 ~ (1 e—hvj/AT)"'

3h 2j+1
'

The bracket is a correction to be applied to former calculations. In the case of HC1, j=5, it amounts
to about -„which will slightly improve the agreement between theory and experiment' as indicated
by the following tabulation:

p=4 7' 10 ~theor old ~theor new

The contribution to n' due to the rotation spectrum has been developed by Debye' and has been
shown to go over into the formula for the orientation polarization for v=0. It is, however, possible
to get a simpler insight into the matter if one looks at the rotation spectrum with a spectroscope
of such low resolving power that the whole rotation spectrum appears as an unresolved broad band.
One sees then even from classical theory that according to the distribution law

kT/I (exp. Iv'/2kT) vdv—,

the average frequency is proportional T'~', v0' T and that therefore

const.

v=OV 2 V20

provided the total absorption in the band is independent of the temperature. That is actually so,
but only on account of the negative terms. One finds

16212 P()28
t/((f„—/hI Q(j +1)2(e Bh/(j+()/AT —
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K. F. Herzfeld, Zeits. f. Physik 23, 341 (1924). R. %.%'ood, Physical Optics, third edition (New York, 1934), p. 476,
See also S. KorA'and G. Breit, Rev. Mod. Phys. 4, 481 (1932) where this is implicitly stated.' A. Sommerfeld, Wellenmechanischer Ergansungsband (Braunschweig, 1929), p. 203.

'Reference 2, p. 69.
4 R. M. Badger, Proc. Nat. Acad. Sci. 13, 408 (1927).
~ P. Debye, Polar Molecules (New York, 1929), p, 164.
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Furthermore, one 6nds 1/vo'= 2m'I/kT which then gives the correct ~alue.
It might be of interest to state here that the disappearance of the usual maxima and minima in

the dispersion curve and the appearance of the shape given by Debye'" are due- to a sufficiently
large damping. If the denominator of the dispersion formula is written (vo~ —v')+ v2v, the transition
occurs at v' vo, the exact value depending on the way v' depends on v, i.e., on the exact shape of
the band.

III. THE INFLUENcE oF MAGNETIc SUscEPTIBILITY oN 6

Maxwell's theory shows that

where c is the dielectric constant, p the magnetic susceptibility. While it is always possible to replace
for practical purposes p, by 1, it is of interest to investigate the matter closely from a theoretical
standpoint. We restrict ourselves to a gag, where both ~ and p are nearly 1, and can then write

neglecting (e —1)(p. —1).
The question is now whether for higher frequencies this can be written in the form (1). This

investigation will then yield the dependency of p, on the frequency.
We are going to use Dirac's theory of dispersion. ' ' For this purpose we erst bring the Hamiltonian

in a form suggested by T. Ehrenfest and erst used by one of us:7 One starts with the usual
Lagrangian'

I.= (m, /2) q,2 —V+ (e,/c) (q;A,),

where the g are the coordinates of the electrons and nuclei, V the internal potential energy of the
atom, A the vector potential.

As the equations of motion are deduced by the variation of an integral over I. between fixed

time limits, it is always possible to add to I. a total differential in respect to time. If I"; are com-

ponents of an arbitrary vector depending on the q; we can write

m, f e, 8 ) (BF)=—q,' —V+( q, —A; ——(q;F;) (
—q, (

—(.
2 & c aq; ii 4 at)

One 6nds

with the abbr eviation

p; = BI./8q; =m;q;+ y,

p; =ef,/cA, —F; q;8F~/Bq, , —

(12)

(12')

(on the right side, sum over j, but not over i). II is found in the usual manner as

EI=p;q; L= (1/2m;) (p; ——p,)'+ V+ (q,8F~/Bt).

The Hamiltonian equations, applied to this formu. a, give the correct equations of motion. %'e

specialize now

' P. Dirac„Proc. Roy. Soc. A114, 243, 710 (1927). M. Born and P. Jordan, ZAsleitmng iI die Quontenmechumk (Berlin,
1930), G. Kentzel, in IIendblch der I'hysik, second edition, Vol. XXIV1 (Berlin, 1933).

' M. Goeppert-Mayer, Ann. d. Physik 9, 273 (1931).
If an index occurs more than once, one has to sum up over it. e;(q;A;) means ther'efore Ze;(q;A, ).
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and have

F„=(e~/c)A; (do not sum overi)

1 ~;
t BA;y e; t BA;q e;2 p BA;)'a= p, +v+—'-/q, 'f+ '

/
p,q, ')+-'

f Pq,
2m; c 0 Bt ) m, c 4 Bq„) 2m;c'0 t Bq;3

(14)

The last term is new; the two last terms can be neglected if the variation of the potential within
the atom is neglected.

The advantage of this form over the one usually taken lies in the fact that there the second order
term (+(e'/2mc2)A2) contributes to dispersion to the same order of magnitude as the first order
term, here however, much less.

The total radiation field can now be resolved into its I'"ourier components. Ke choose here pro-
gressive waves, requiring in place of boundary conditions that the waves repeat themselves period-
ically in adjacent cubes of volume V. This assures a discreet number of permitted eigenfunctions.
9,"e have

where

A =Q(A +A +),
a

2~i v

A =Q V la exp~ —— (ro) ~.
c

Here u and o-„are two unit vectors, orthogonal to each other. The cross means the conjugate com-
plex for t. numbers, for matrices the conjugate complex, transposed matrix.

KVe then apply the usual method of superquantization which makes Q~, Q + noncommutable
operators. Q has elements corresponding to transitions N +N 1only—(X —number of photons in

the vibration n) and Q +, the adjoined matrix, elements corresponding to X +N, +1 on—ly.
M~e now assume that light of frequency v, eigenfunction A, falls on the atom and calculate the

probability that in the time df a light quantum has been taken out of the state n and thrown into the
state P. The state n (incoming light) is characterized by two unit vectors a (direction of electric field)
and o (direction of propagation). The direction of the light vector in P is b, while the direction of
propagation r lies within the solid angle dQ. Ke consider only the case in which the atom has made
a double transition from the ground state n elsewhere and back. This is energetically possible only
if vp v. After integrating over all frequencies vp in the neighborhood of v we obtain

47r'v' 1 BA; e; BA; BA l'+ e; BA7~+
ro=dt VdU- —Q————Q e;q,— + p, q; Q—e;q;—+—p;q,-——

c' ah(vv„+v) ' dt m; Bq;. „v' Bt m; Bq;

7

e;q,
8A P+ e, BA .t'+

+2 + eq + pq
I: h(v, „—v) Bt m;

+ Pv
85 m; 8g;

e
t

BA'y t' BA,o+q
Z-'-I ~q,——'

l l ~q,— '
I (16)

~ m;E~ aq;I E~ aq; l
I'rom now on, the summation over the particles will not be written explicitly.

Develop now A

A =QV'o, 1—
27riv 1 (2vrvq 2

c 2&c)
8A;e 8A; e

q~ + p qii

c Bt mc

2~tv I 27/ Zv
= —Q V le—' (ra) ———(ra) (ro)

o 1

1 (2~v) ' 1 27riv 1——
~

——-

~
(«)(«)'+—(po)(rrt) — —(p )( )( ) ( )'"

2E 0) mc c mc

'" (po)(ro) is an abbreviation for,'(po)(ro. )+.,'(ro-)(po). As o. is normal to u, (ptT) commutes with (ra).
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One can furthermore write

8 e e} d 8—(Po)(ra) =—(r'o)(«) =—) (r'o)(r(s) —(ro)(ra)+ (r—(r)(ra) =M '+——(ro)(ra), (18)
saic C 2c t. dt 2c d$

where 3I is the nrbital magnetic moment in the direction normal to o, and 0., i.c., the direction
of the magnetic field. Of course, this is only the orbital part of the moment. If we had added, in the
half classical manner, the term (spin momentXmagnetic fieM) to the Hamiltonian function, we
would have found added to the orbital magnetic moment the spin moment. Therefore M shall be
from now on the resultant moment.

Ke And then, rearranging,

e BA; e BA; 2(ri v

q, +— ——p—;(g(
—= —Q V ' e(r(()+slIc'a1 mc

'
'aq, c I

2x'Z v e d
e(ra) (ro)+ —-- (ra—) (ro)

c 2c df,

8 (2mvg 2

pQ rO 2—
2E c)

—(r'o)(ro)(ra) . (19)

Here, the Erst term corresponds to the usual electric dipole transitions, the second to transitions of
magnetic dipoles, the third and fourth to electric quadrupoles. According to the selection rules"
there is no allowed transition in common to these three types, so that cross products do not occur.
The last two terms are tetraederpole transitions, which should have transitions in common with
electric dipole transitions. " These terms, however, are so small, that we will only consider cross
products with the electrical dipole terms.

The terms which arise from expressions of the type

e d——(ra)(«)—
2cdt

2rz
e(ra)(ro) = e(—', v—(.+ v) { (. r(()(ro) }., (;

r( 1c c

can. be transformed

4~'E
{
-'k.+v }

—{(«)(«)}-.{(r&)(«)}'.
E2 ) k(v(.„+v)

~1 q' 1
+{-vk. —v }

— {(r&)(rr)}.({(«)(«)}('
(2 f h(v( —v)

4~2
=—~ I

"+"+'+—-- }{(ra)(')}:{(')("')}:
4h A: Van+ V~

( V2

+{v(.—v —2v+ } {(rt)(«)} (;{(«)(«)}(»
VIn —V~

(2((v)' 1 1
{(«)(r ) }.'{(rt)(")}'.+-

4k k VI„.„+V

{(rb) (rr) }„k{(ra) (ro) } -„

2X'4
--(ra.)(r ), {(rb)(r )},.—{(rf')(r )}„,—(«)(r )

4k & dt

H. C. 15rinkman, Physica 1„93(1933);L. 4. ( onion, Astrophys, J. 29, 217 I', 1934); J. H. Van Vlt ck, Astrophys. J.
80, 161 (1934).

'~ H. M. Taylor, Proc. Ca1nb. Phil. Soc. 31, 407 (1935).
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The last two terms give, with the help of the commutation rules

f (r+) (rb) (~r)+(r~) (rr) (b)+(«) («) (~b)+(rb) («) (e ) }-.
4ns

(21)

This has to be taken together with the last term in (16), namely, the quadratic term of the inter-
action cncI'gy. This lattcI' ls, besldcs a COIQIQon factor ln front of thc bracket,

8 2xlv 8
(«) f(«)(rb)}-+ (~r) f(«)(rb)(r ~ —r) }-

t@C c mc'

K'c have then as 6nal formula for the transition probability, with X„X,as the average number of
photons in these states

(2~v) ' 1 e'(«) g(br) p. e'(br). g(«) v

m=Ch doc 'V 'X.(1+%,) f

—

}
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c ) b & vy~+v &Jere

M„p Mg,„" M„A,"MI,„1(2x v) '
+-P — + —+—

f }
e'P —

f («)(r~) }„,f (rb)(r&) },„
h~ vp„+v vy„—v 4b 0 c ) ~ vj, „+v

(2vrv) 2 e'
.

f (rb)(r') }.~ f (rc)(«) }~- —
I }

—2 —C(c"r)-~ f (r')'(rb) }~-
&Ice c ) 2h 4 vs~+ v

+f(r )'(«)}. (br) -1+ —r(br)- f(r )'(«)} +f(r )'(rb)}. («) .3

I 2'"E V 8
+ —f:f(rr)(«)(rb) }.~(«)~.—(br)-~f (re)(«)(«) }~-3 + f(«)(rb)(r ~-r) }-

6 SEC

2Ã'bV 8+, —Z — f:(«)-~f(rr)(rr)(rb)}I- —f(r~)(«)(«)}-~(br)~-j
&Ice+ &

We have now to buiM up the secondary plane waves, which are responsible for the refractive index,
out of the contributions of a system of molecules. "Ke know that an in6nite plane normal to 0,
61led uniformly with dipoles of alike character, will give the appropriate plane wave at a distance
su%cicntly large so that one can neglect the inHuence of the structure in the plane. Now the dc™
pendency on the angle of the contribution of the dipole of strength r to (22) is given by (rb).

If we want to consider quadrupoles instead of dipoles, we can get them by adding another plane
of opposite sign but like strength, displaced against the 6rst dipoles in the direction ~ by the distance
r'. This will give a factor

—(27ri v/c) (r'r)

On the other hand it is clear that if v lies in the plane normal to 0 there will be no secondary wave,
because each dipole has nearby a neighbor of equal strength and opposite sign so that the total
polarization of the plane is zero; its structure however does not count at large distances. Therefore,
only the component (r'o) a8ects the secondary wave and the refractive index. "

"See for example, R. W. %'ood, reference j.."It may be pointed out that in calculating the refractive index no assumption concerning the reality of the matrices is
necessary beyond that involved in the absence of rotatory power.
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In applying this consideration, we assume that the material is not optically active so that there
is no electric field in the direction J 0., 7.

We remember furthermore A &q = IA I„P= IA I
q„~. In the last term in (22), (ar) gives the

contribution (0.0) = 1, (ob) the contribution (oa) = 0, (ar) gives (ao) =0; (ab) corresponds to a dipole
of unit strength in the direction c.

In formula (23), n and N on the left side mean the refractive index and the number of molecules
per cc; three summation indices are used, nk meaning an electric dipole transition, nnz a magnetic
dipole transition, nl an electric quadrupole transition.

2yln

1 i g2

+P— —(ar) „~{(ro)'(r'a) }~„—{(ra)'(r'a) }„~(ar)~„— {3(ra)' —(ro)'}„„. (23)
Pls~ V 27l ~ 4mC2

2ylr, j 2myg 8
I(«)- I'+—2 I~-"I'+

{ }
—2 I{(«)(«)}.i I'

4mN k&vg —v k v —v ( c 2 k l v~2 —v&

The first term is the one which is usually given alone. For P =0 it goes over into the corresponding
value for the dielectric constant. " We see therefore, as is well known, that the dispersion of the
dielectric constant is determined by the position and strength of the absorption lines that correspond
to electrical dipole transitions. Similarly, the second term goes, for the statical case, over into the
paramagnetic part" of (p —1)/4s. ¹ This formula apparently has to be amended if 3II has diagonal
terms. This is the case for the single particle whenever orientation effects occur, i.e. , in all para-
magnetic atoms and most molecules. However, a method due to Wailer" shows that formula, (23)
is valid even then. %aller considers a paramagnetic crystal, in particular one in which the para-
magnetism is due entirely to the spin. The spins of the di.fferent atoms have an interaction energy.
If one quantizes now the whole crystal, each state n which would be present for the free particles
is split into a large (2~) number of states n' with energy Z„. Wailer shows that M„.„' '=0 where
M is the magnetic moment of the whole system, so that in the correctly quantized system no
diagonal terms of the perturbation energy occur. This can be understood because in the unperturbed
system opposite directions of the total spin are equally probable and there are therefore continuous
transitions from one to the other, just as in the familiar case of the NH3 pyramid the nitrogen atom
oscillates between the two possible positions.

Wailer investigates the behavior of this system in an alternating field and finds exactly the
paramagnetic part of (23), he is, however, not sure up to what frequencies this applies. The applica-
tion of the Dirac dispersion theory, however, as made here, can be made just as well to the new

system, showing that the general formula for the paramagnetic part is

I&- ~ I' N. —X
n' l' Q y~rli2 —V2

(24)

Here n', I' applies to alt the states including the new' ones into which the old levels, n, l have been
split by the interaction energy. '5 The negative terms come from the "negative" dispersion due to
forced emission.

If we take into account the smallness of E„—Bl., we find

N„N( ——+(kv„ i /k—T)Nv,

and ZZ
gp rn' l P zrlr —P

"J.H. Van Vleck, The Theory of Electric and Magnetic SNsceptib~lities {Oxford, $932).
14 I:. %'aller, Zeits. f. PhySik 79, 370 {1932).
'~ The factor 2 has been left out because in 24 every term occurs twice.
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For v=0 that goes over into"

NkT '
~ NkT' kT

the usual diagonal term of the unperturbed state.
One has always to take only the component of 2IIE in the direction of the external magnetic 6eld.
Wailer estimates the v„„"at about 1 cm '.
It is true that %aller has developed this idea only for a crystal, but it can probably be applied

similarly to a gas.
The next two sums have a different variation with the frequency than the two preceding ones.

Because of the factor u' in front, they give no contribution to ~ or p, in statics. The order of magnitude
of the third and fourth sum is the same, but they correspond to different absorption lines, the third
to those caused by electric quadrupole transitions, the fourth to electric dipole lines, which are
always also permitted in tetraeder transitions. (The factor f is multiplied by another i coming
from i'.)

Finally the last term corresponds to diamagnetism. It has not quite the usual sta.tic form, which
it takes only if we average over all orientations of the molecule, when

and therefore

(ra)' = («)'

3(ra)' (ro)'—= (ra)'+ (ro)'

We see that diamagnetism is independent of the frequencies up to x-rays, when we can not neglect
any more the form factor, i.e. , the phase differences of the light wave within the atom.

It is interesting to note that for atoms the ratio of the dielectric to the diamagnetic term at
vanishing frequency is

(2e'/k~~, „)(ar) „P/(e'/2mc') (ra)'„„or 4mc'/hv &„

The previous results are partly contained in Blaton's" investigation of dispersion in the neigh-
borhood of quadrupole lines; the diamagnetic term is present there also, although its meaning
is not mentioned; the paramagnetic terms are left out because in the absence of spin the transition
probabilities are zero.

J. Blaton, Zeits. f. Physik '74, 418 (1932).


