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THE SIGN OF THE NUCLEAR MAGNETIC MOMENT

From the spectroscopic methods of measuring
nuclear spin the sign of the nuclear moment is
obtained by noting which of the F states has
the higher energy. To obtain this information
with atomic beam methods we must know
whether we are dealing with Fig. 2a or 2b.
Owing to their symmetry it is impossible to
obtain this information by deflection experi-
ments alone. However if deflection is combined
with the nonadiabatic transitions, sufficient data
can be gathered to deduce the sign of the nuclear
moment. However, in a two-field system the
arrangement must utilize at least one weak field

deflection. The experiment of Frisch and Segre
which used two strong field deflections does not
yield sufIicient data.

Example 1. Hydrogen

If we first deflect the hydrogen atoms in a
weak 6eld corresponding to about x =0.4 the
deflection pattern has two components m = +1,
F= 4 which are deflected more than the com-

ponents m =0, F=0 and m =0, F= 1.Ke can by
means of a slit select atoms which are in one
of these inner states. %'e select the atoms which
are deRected toward the stronger Geld (posi-
tive over-all moment), pass them through the
rotating field, and follow this by a strong
analyzing field. If the state we have selected is
the F=O. state then no transitions are possible
and we obtain only one component. If the state
is F= 1, m =0, there will be transitions to the
other levels with the nonadiabatic field properly

chosen. Some of these levels have moments of
opposite sign which the analyzing field can re-
solve into two components. If one component is
obtained the proton moment is positive; if two
are observed the moment is negative. A check is
obtained by a similar observation of the side
deflected into the weaker field, where the opposite
situation prevails. The angle n should be 7r/2
for these transitions as is evident from Eq. (6).
Many modi6cations of this procedure, but de-
pendent on the same principle will readily sug-
gest themselves.

Example 2. Potassium

Although the pattern as given in Fig. 2 for
I=3/2 is more complicated than for I= ', , a-
similar procedure can be applied. Kith a weak
deflecting 6eld we select the atoms from one of
the levels by means of a slit on the strong field
side and subject them to the rotating 6eld.
In the subsequent strong field analysis the line
will be either single or double. If single the
nuclear moment is positive, if double, negative.
This is so because transition amongst the F
=I——', levels does not affect the strong field
moment, but the F=I+—', levels always have the
possibility of making transition which will result
in a strong 6eld moment of opposite sign. The
treatment of any other case is along similar
lines.

In conclusion the writer wishes to express his
indebtedness to Professor E. Segre for discussions
on the details of the Frisch and Segre „experiment
and to Messrs. Clark, Heller and Motz of the
theoretical physics seminar for discussions on the
details of the interpretation of Majorana's paper.
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The kinetic energy operator for the internal motion of
the alpha-particle can be expressed without cross deriva-
tives in terms of a suitable set of internal coordinates.
The usual methods when applied to a restricted class of
Hamiltonian operators then yield sum rules from which
are deduced upper limits to the excitation energies of the
2p levels. These upper limits involve certain diagonal
matrix elements which are easily evaluated by using an

approximate normal state wave function, Computations
on three different nuclear models indicate definitely the
existence of a singlet 2p level in the discrete eigenvalue
spectrum of the alpha-particle if the range of the intra-
nuclear forces exceeds 2.0)&10 " cm. A simple variation
calculation gives excitation energies which fall slightly
below the upper limit fixed by the sum rules.
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ECENT experiments' on the artificial dis-
integration of light nuclei appear to estab-

li» the existence of excited states of the alpha-
particle. It is therefore of interest to determine
whether or not the current nuclear models allow
the alpha-particle to possess excited states.

The straightforward procedure for the dis-
cussion of this problem involves the specification
of a nuclear Hamiltonian and the use of the
variation method in conjunction with suitable
approximate wave functions to compute the
excited state energies. These calculations are
difficult and as yet not very satisfactory. Fortu-
nately it is possible to supplement the straight-
forward procedure by a simple calculation based
on certain sum rules.

SEcTIQN I. - THE SUM RULEs

Consider a nuclear Hamiltonian of the form

H o (6]+AQ+63+64) + V(x~, xone xone x4) (1)

with the eigenvalues Eo, Ei, . The sum rules
are most simply expressed in terms of new
coordinates

$y ——xy+xo —xo —x4,

$Q —X], Xo1

$3 xo xg)

4x =xg+x2+x3+x4,

(2)

which is useful because it expresses the kinetic
energy operator for the internal motion in terms
of relative coordinates and yet contains no cross
terms. The usual methods yield the sum rules

Q(E —E ) I (el g lm) I'=2, (4)

2(&-—&-) I (~l t l~) I'=1, (f=2, 3), (5)

with the understanding that the schematic sum-
mation over all states includes an integration

'H. R. Crane, L. A. Delsasso, W. A. Fowler and C. C,
Lauritsen, Phys. Rev. 48, 100, 102, 125 (1935).

and corresponding q, 2 components. The sub-
scripts 1 and 2 refer to protons; 3 and 4 to
neutrons. One consequence of the transformation
(2) is the operator identity

6,+Ao+Ao+64= 4hr, +26),+2Ag, +46„—(3)

over the continuous spectrum. The inequality

A~ —&o)& I (~ I &~l o) I
'&2

follows at once from Eq. (4) if Z& is the eigen-
value of the state for which the excitation energy
is as small as possible subject to the condition
that the matrix element (1 I gq I 0) does not vanish
(clearly the 2p singlet state). There exists a
level Eo (singlet 3d or 2s) which is rela'ted to E&
in the same way that Ej is related to Eo. Then

(&o —&i) Zl(mltilf) I'
n~o

&2+(&i—&o)l(1lbl0)l'. (&)

But pl(lip, lo) I'=(olg, 'Io), (8)

2 I (~I K I1) I'=(114 'I 1)—
I (1l 6 I o) I' (9)

n&0

Consequently

Zs —Zo &2/(0
I
$z'

I 0), (10)

&o—&~&4/L(1I k~'I 1) —
I (1I ~~I0) I'3

Similar relations follow, of course, from Eq. (5)
for levels Zq' (triplet 2p), Zo' (singlet 2s) having
properties with respect to the matrix elements of
(2 identical with those of Ej, E2 with respect to
the matrix elements of t~. Nonvanishing matrix
elements connecting singlet and triplet states
occur because the coordinate $o itself has the
symmetry property of a triplet state wave
function and the spin coordinates and spin wave
functions do not appear in the problem.

The presence in the Hamiltonian of operators which
interchange the spin coordinates of unlike particles intro-
duces a dependence on spin orientation which destroys the
possibility of obtaining states with a definite multiplicity.
In this case Eqs. (4) and (5) are rigorously true only if
the complete space-spin wave functions are used in con-
structing the matrix elements. However, when the spin
dependence is small the interaction operator can be
replaced by an effective ordinary potential function which
is the same for all states of a given symmetry type with
respect to interchange of the space coordinates of like
particles. ' The inequalities (10) and (11) will then remain
valid if the matrix elements are constructed from solutions
of the modified spin free wave equation containing the
proper effective ordinary potential. Levels belonging to

' Feenberg and Knipp, Phys. Rev. 48, 906 (1935), Eqs.
(18-22). To obtain the case discussed above replace the
Majorana exchange operator by unity and the Heisenberg
exchange operator by I™I'~.Added in Proof: see also J.H.
Bartlett, Phys. Rev. 49, 102 (1936).
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the symmetry type of the normal state are not changed in

any way by the substitution of saturation type potentials
for ordinary potentials in the operator representing the
interaction between like particles. '

The Eqs. (4) and (5) are not valid for Hamiltonians
containing neutron-proton potentials of the Majorana type
because the coordinates (I, g2, g3 do not commute with the
Majorana exchange operators. In this case a familiar
argument leads to the relations

4(m le/Shin) = (& —& ) —(ml bin)(ml t~V Vk~—
l n) (12)

2(m aI/ sg( nI) = (8,„P)—(m—
I t & I )n( mI)& V—Vf &

I n),
(1=2, 3),

'

(13)
and the sum rules

2~(& —~ ) I (n
I o~Im) I'

TABI.E I. v, p, and A asfN,nctions of n.

1/ak A V IJ
a (cm) I II III IV I II III IV I II

10 2.8 X10» 65 65 44 83 10.0 8.9 8. 1 8.9 6.8 6.2
20 2.0 X10 '3 100 100 68 127 15.1 13.6 12.5 12,0 10,4 9.5
30 1.6 X10 &3 132 132 90 167 19.7 17.7 16.2 14.5 13.5 12.4

effect, if it occurs, can hardly be important
enough to reverse the sign of the error. The con-
clusion seems warranted that the use of the
approximate matrix element (OI )roIO) in (10)
actually strengthens the inequality. Thus Eq.
(10) may be replaced by

E1—EO (4V.=4 —(nI tPU+ VPP —
2&~Vt~ In), (14)

2Z(P„—L„)
I
(n

I &(I m) I'
m

(21)

=2 —( In&PU+ UpP —2&i &ViI )n, (l=2, 3).

Now if 1/" = —Zf(rv4„,)P „;—f~(r12) —f&(r34),

The parameters v, p, and the potentials re-

(15) quired to 6t the binding energy of the alpha-
particle are determined by the equations'

these last equations reduce to

~(&-—&-) I (nlblm) I'

=2+2( ln& '.
n..f(r, ,..)P~,, In), (17)

2 Z(B„—B.) I
(n I t; I m) I'

m

= 2+(n I
Zx', , f(r...)P~~, , In), (l = 2, 3). (18)

The matrix element on the right in Eqs. (17) and (18) is
positive and has the order of magnitude unity when n

designates the normal state. Consequently the upper
limit on the excitation energy which can be deduced from
these equations will generally lie too far up to be useful,

II. APPLICATIONS OF THE SUM RULES

The function

Pp ——N exp L
—(v/2) (rjo +rgo +roo +roo )

—(n/2) (rgo'+ro4') g (19)

is perhaps the simplest approximate wave func-
tion for the normal state. Using fp we obtain

(oIt~'Io)-pv (oIb'Io)-o(v+1) (2o)

It is important to know the direction in which
these matrix elements are in error. Since the
approximate wave function vanishes too rapidly
for large separations of the particles the immedi-
ate inference is that the matrix elements (20)
are too small. The possibility that for very small
separations the correct wave function may be
larger than Pp cannot be excluded, but this

3 Reference 2, italics below Eq. (3).

&o(v, y) =f fP—pII&odr = —56rnc', (22)

(3/»)&p(» ~) = (3/3V )&p(v, 1)=o (23)

These equations have been solved for the follow-

ing nuclear models:

I. The interactions occur between unlike particles only
and are given by the potentials Ae

II. Same as model Iwith Majorana potentials A e " P~,
III. Equal interaction potentials, Ae ", between all

pairs of particles,
IV. Same as model III with the potentials Ae &3 &'".

The energy function Zp(v, p) has already been
found for the first three models. ' For the fourth
model an elementary calculation yields the
result

&o(v, v) =27n/So' —6A I (1+2oo)e"

X(1—2n
'*Jo'e 'doo) —2vr 'o}, (24)

8vo' = 3n.

Table I lists values' of v, p and 2 computed from
Eqs. (22) and (23). The results for Model II
are included because it is thought that they may
prove useful in other calculations.

Stability against spontaneous disintegration

4The value 56mc' is obtained by adding 2mc' to the
experimental binding energy to correct for the neglect of
the coulomb repulsion between protons.

'Feenberg, Phys. Rev. 4'7, 850 (1935), Eqs. (17) and
(21); reference 2, Eq. (9) (replace A, and A„byA and
set p=1).

'Unit of energy —me~=510, 000 electron volts; unit of
length —(fi'/mm„c') & =8.97)& 10 "cm.
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and therefore

&~
I (1I SlI o) I'&2mo' (26)

At )3.8 X 10'mc'/Slo'. (27)

into H' and H' is assured if the excitation energy
lies below 40mcs (since the binding energy of
H' is about 16mos). This condition is satisfied
for 1/n&)2. 8X10 " cm. However the quantity
4v is certainly considerably larger than the
excitation energy. If it exceeds the excitation
energy by at least one-third, which does not
seem unlikely, the stability condition is satisfied
for 1/n&) 2.0X10 " cm. Calculations on the
binding energies of the hydrogen and helium
isotopes with error function potentials' determine
a radius of action 2.2 X10 " cm. Thus the
existence of a singlet 2p level is definitely indi-
cated. Since 2(s+ts) —4v, the triplet 2P level
will be stable also if the forces between like
particles are of the ordinary type (without
exchange operators).

The sum rules (4) and (17) can be used to fix
an upper limit to the half-breadth of the singlet
2P level. The average lifetime of this level is

4'' e'5'
I(1ls(lI0)I' (25)

3AC tVP1 pC

(lo is the radiation frequency expressed in radians
per second). By Eq. (4) or Eq. (17)

TABLE II. On the singlet Zp state (Model III).

(1I41'I 1) (1l t1 I
0)' (0 I 81'I 0)

10
20
30

6.5
9.0

10.0

24
11

0.231
0.167
0.150

0.057
0.035
0.023

0.061
0.040
0.031

yields a value for the singlet 2p energy level
determined by the equations

»(r)= J' f&PA,«,
(8/Br)Zl(r) = 0.

(32)

(33)

By using model III,

El(o) =5.5ao —A(o/(o+1))'{6 —2/(o+1) I, (34)

2 T = AO'.

Exactly the same energy equation is found with
the triplet wave function

Neither of these approximate wave functions is
suitable for the investigation of a model with
Majorana type forces because gl and $s are not
invariant under the interchange of the coordi-
nates of a pair of unlike particles.

The approximate matrix elements are

1Ps N)s exp [—(r/2) (rls +r»'+ rl4'

+rss'+rsss+rsss)g. (35)

The half-breadth hB satisfies the relation

(28)
(1 I

$1'
I
1) -3/2T, (36)

which together with Eq. (27) implies

&A&2 6X10 '(fuo)'/mc'. (29)

The energy of the hardest gamma-ray observed
in disintegration experiments is 16&10+' electron
volts or 32mc'. With this value for k~ we obtain

AE (1300 electron volts. (30)

SEcTIoN III. APPRoxIMATE WAvE FUNcTIQNs
AND MATRIX ELEMENTS FOR 2P STATES

The wave function

0'2 =Xgl exp [ ( /2)(rrls +rls +fls
+rss'+rss'+rss') j (31)

(1{)lI 0)' [2(vr)~/(a+r) j"/2v (37).
Numerical values for v, E, and the matrix
elements are listed in Table II.

The table shows that the simple variation
calculation yields a slight improvement in the
determination of the excited state energy level
over the upper limit set by the inequality .(21).
Obviously a considerably more complicated cal-
culation would be required for an accurate
determination of the excitation energy. The near
equality of (1

I pl I
0)s and (0

I )is I 0) is noteworthy.
No useful information can be obtained from the
inequality (11) since it puts the upper limit on Zs
far out in. the continuous spectrum.


