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On the Process of Space Quantization
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The effect of a rapidly varying weak magnetic field on an oriented atom possessing nuclear
spin is discussed. The results are applied to an experiment by Frisch and Segré. It is shown
that by methods embodying these principles one can measure nuclear spin even when the
h.f.s. separation is very small. A possible further application is discussed whereby it is possible
to measure the sign of nuclear magnetic moment vector with respect to the spin vector.

N two papers! under the equivalent of the title
carried by this paper Phipps and Stern and
later Frisch and Segré in the same laboratory
have studied experimentally the following prob-
lem; a beam of neutral potassium atoms on
traversing an inhomogeneous magnetic field is
split up into two beams (Stern-Gerlach experi-
ment). One of these beams is selected by means
of a slit and permitted to pass through a region
in which the field changes rapidly both in direc-
tion and magnitude. The resultant beam is then
analyzed by means of a third field similar to the
first. The question is what will be the resulting
space quantization with respect to the field.
This question has been discussed theoretically
by Giittinger? and a complete solution for a
particular type of field which is very simple to
realize experimentally has been given by Ma-
jorana.? It is this latter type of field which was
used by Frisch and Segreé.

However in evaluating their experimental re-
sults these authors neglected to consider the
effect of nuclear spin. It is the purpose of this
paper to complete the interpretation of this
interesting experiment. It will appear that experi-
ments of this type may be used to measure
nuclear spin even in cases where the hyperfine
structure (h.f.s.) separation of the levels is
extremely small. Further it will be shown that
by using  these nonadiabatic processes it is
possible to measure the sign of the nuclear
magnetic moment, i.e., to discover whether the
nuclear moment is parallel or antiparallel to the
angular momentum vector. Such information is
of particular interest with regard to the proton

1T. E. Phipps and O. Stern, Zeits. f. Physik 73, 183
219313; R. Frisch and E. Segre, Zeits. f. Physik 80, 610
1933).

2 P, Giittinger, Zeits. f. Physik 73, 169 (1931).

3 E. Majorana, Nuovo. Cim. 9, 43 (1932).

and deuteron moments, and cannot at present be
obtained in any other way.

THEORY OF THE EXPERIMENT

An atom moving with constant velocity
through a magnetic field varying in strength
and direction along its path is equivalent, for
these questions, to an atom at rest subject to a
field varying in time in the same manner. The
results of the theory may be summarized in
the statement that if the angular velocity of
rotation of the field is small compared with the
Larmor frequency w=2wguH/h the atom will
remain space quantized with respect to the field
direction with the same component m of its
total angular momentum F (adiabatic transform-
ability); if the angular velocity is of the same
order of magnitude as the Larmor frequency
there will be nonadiabatic transitions to states
m' #Em.

For the exact theory including nuclear spin we
will consider:

(a) The magnetic levels in an external magnetic
field

The discussion will be limited to atoms in a
normal %S, state, since the normal states of H,
D and of the alkalis fall under this head. An
atom with nuclear spin I will have two energy
states in zero external magnetic field with angular
momentum (in units of %/2w) given by F,
=J+% and Fy=I—% The energy difference
between these states due to the interaction of
the nuclear and electronic spins is AW=hcAy.
If the magnetic moment of the nucleus is positive
the state with F=I+% will have the higher
energy level and if the nuclear magnetic moment
is negative the opposite will hold. In an external
magnetic field each of these levels splits into its
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F16. la. Variation of the energy with the magnetic field.
Nuclear moment assumed positive. The dotted lines are
the magnetic levels arising from the F=I—1} state.

2F+1 magnetic levels. The energy shift of each
level measured with respect to energy of the
state unperturbed by either external magnetic
field or nuclear and electronic-spin interaction is*

—AW AW 4m 3
mzw""*—_“:[’:“_ 1+_‘—x+x2) (1)
202I4+1)" 2 2I+1
x=2ucH/AW (2)

if the nuclear moment is positive and

AW AW 4m
wmz————;—(1 -

202I4+1) 2 27+1

x+x2)% (3)

if negative. H stands for the external magnetic
field, uo for the Bohr magneton. The upper sign
in Egs. (1) and (3) is taken for the levels arising

4 Breit and Rabi, Phys. Rev. 38, 2082 (1931).
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F1G. 1b. Same as 1a but with nuclear moment negative.

from Fi=I+3% and the lower for Fe=I-—1.
All states with a given m are double except when
m=I+3%).

In Fig. 1 the energy, together with the assign-
ment of each level to the magnetic quantum
number and F from which it arises, is plotted as
a function of the magnetic field in terms of x
for I=% and for I=3/2. The diagrams are
similar to those giving the transition from the
anomalous Zeeman effect to the Paschen-Back
effect, but simpler because the nuclear moment
may be neglected compared with the electronic
moment.

In deflection experiments the effective mag-
netic moment of the atom is the important
quantity. The effective moment for each state is
proportional to the slope of the energy curves
and is given by

pm=—0Wn/0H,
@2m/2I+1)+x
+ ~Mo
(14+@m/(2T+1))x+a?)}

(4)
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F1G. 2a. Variation of moment with magnetic field. The
dotted lines are the moments of the magnetic levels arising
from the F=1—} state. Nuclear moment assumed positive.

for nuclear moment positive, and

x—2m/21+1
=+ Mo
(1—@m/2I+1))x+x2)}

(5)

M =

for nuclear moment negative. The same sign
convention holds as for the expressions for the
energy. The upper sign is for states arising from
F=I+%1 and the lower from F=I—% The
values of the moments are plotted as functions
of x in Fig. 2. The dotted curves represent the
moments of the F=I—% levels. At high fields
these moments all become =puo to a very close
approximation.

(b) The effect of the varying field

As previously stated, the influence of the
varying field will in general cause transitions
from the state m to other states m’. These
transition probabilities are given by Majorana as
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F1G6. 2b. Same as Fig. 2a, but with nuclear moment

assumed negative.
W, m, m") = (cos a/2)*
X (F4+m) \(F+m') \(F—m) (F—m')!
(—1)"(tan (a/2))>=m™

(6)
2
'Lo (v —m+m) (F4m—rv) ((F—m'—») !] '

The value of « which occurs in this expression
is obtained from the dynamical theory of the
process which also shows that it is the same for
all m.

The field which is considered is the field in the
neighborhood of a point where the field vanishes.
The value of the field is to a sufficient approxi-
mation proportional to the distance from this
point. If d is the distance of closest approach of
the path of the atom to this point, the minimum
value of the field is 4 =>0bd. If we define C=bv
we have from Majorana's calculation

()
©))

a=2 arc sin e~ "5/4,

k= (2m/h)guo(4%/C).
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The physical significance of this expression can
be seen by rewriting k= (2w /h)gu.d)(v/d).
The first factor is the Larmor frequency at the
minimum field in radians per second and the
second represents the angular velocity of rotation
of the field at this point. If the first is large com-
pared with the second k is large and « small
(adiabatic case). When the reverse holds we
have the nonadiabatic case as expected.

If the atom has a nuclear spin I, we have
two varieties of atoms with F=I+4+% and F
=I—%. In the weak rotating magnetic field
which causes the nonadiabatic transition the two
states are independent since the energy interval
between them is large compared with the energy
of the states in the field. We may consider each
state separately as if we had a mixture of gases.
The magnetic moment for the first species
(F=1I1+3%) is po and the g value is therefore
1/(I+%). The magnetic moment of the second
species (F=I—3%) by Eq. (4) is (I—3)/(I+3)mo
and the g value is therefore also 1/(I+3%). The
angle « is thus the same for each state.

THE EXPERIMENT OF FRISCH AND SEGRE

In this experiment both the deflecting and
analyzing fields were so strong that the Paschen-
Back effect for the decoupling of the nuclear
and electronic spins was complete.

On the other hand the Majorana field was so
weak that the spins were practically completely
coupled. To analyze the experiment from the
data one must consider four possibilities; the
nuclear moment may be either positive or
negative and the selecting slit may have been
placed on the side toward the stronger field which
selects positive over-all moments of the atom or
on the other side which selects negative over-all
moments.

From Fig. 2 it is seen that for case I (nuclear
moment +, and over-all moment +) the selected
beam consists of the m = — (I+%) magnetic level
of the F=I+7% state and the 2I levels of the
F=1I—% state. All the 2I+1 levels are equally
populated. Transitions between the 27 levels of
the F=I—3 state do not lead to any change in
the high field moment as is evident from Fig. 2.
However the transitions which the atoms in the
m=—(I+%) level may make all result in a
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change in the sign of the high field moment.
If all the atoms go over (a=m) the subsequent
analyzing field will split the beam into two
separate beams with a maximum intensity ratio
of 1/21.

In case II (nuclear moment -, over-all
moment —) we have selected 2741 out of the
2142 levels of the F=I+3% state. Obviously
transition from one of these levels to another
does not lead to a change of sign of the over-all
strong field moment. Transition to the m=
—(I+3%) moment does change the sign. The
fraction of the total number of atoms which
make such a transition is

1 I+4

- Z am™_(; )
2141 m=—u-4 R

and since a”_(r.y) =a,~ It this is equal to

1 I+3

DR a2 )
2141 m=—+h

and is thus the same as the fraction which in
case 1 made a transition resulting in a change in
sign. It is thus evident that no matter which
side of the beam is selected the maximum ratio
of intensities of the two beams resulting from
the analyzing field is 1/2I. The other two cases
give the same result on analysis. The inter-
mediate ratios can be obtained from Eq. (6).
The maximum intensity ratio is thus seen as a
direct measure of the nuclear spin. Since the
Majorana field is very weak the method will
apply even when the h.f.s. separation of the states
is very small.

In the particular case of potassium which was
used by Frisch and Segré we know from Mill-
man’s experiments® that for K?®, I is 3/2. The
ratio of the two peaks of Frisch and Segré
should be §. To within their experimental error
this is the value which they obtained rather than
the complete disappearance of the original peak
which they expected. If one uses the correct
value g=1% rather than g=2 used by the authors,
one obtains good agreement with their experi-
mental results as given in Fig. 4 of their paper.
This is not the case when nuclear spin is neg-
lected.

® Millman, Fox and Rabi, Phys. Rev. 46, 320 (1934);

Millman, Phys. Rev. 47, 739 (1935).
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THE SIGN OF THE NUCLEAR MAGNETIC MOMENT

From the spectroscopic methods of measuring
nuclear spin the sign of the nuclear moment is
obtained by noting which of the F states has
the higher energy. To obtain this information
with atomic beam methods we must know
whether we are dealing with Fig. 2a or 2b.
Owing to their symmetry it is impossible to
obtain this information by deflection experi-
ments alone. However if deflection is combined
with the nonadiabatic transitions, sufficient data
can be gathered to deduce the sign of the nuclear
moment. However, in a two-field system the
arrangement must utilize at least one weak field
deflection. The experiment of Frisch and Segré
which used two strong field deflections does not
yield sufficient data.

Example 1. Hydrogen

If we first deflect the hydrogen atoms in a
weak field corresponding to about x=0.4 the
deflection pattern has two components m= 41,
F=1 which are deflected more than the com-
ponents m=0, F=0 and m=0, F=1. We can by
means of a slit select atoms which are in one
of these inner states. We select the atoms which
are deflected toward the stronger field (posi-
tive over-all moment), pass them through the
rotating field, and follow this by a strong
analyzing field. If the state we have selected is
the F=0 state then no transitions are possible
and we obtain only one component. If the state
is F=1, m=0, there will be transitions to the
other levels with the nonadiabatic field properly
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chosen. Some of these levels have moments of
opposite sign which the analyzing field can re-
solve into two components. If one component is
obtained the proton moment is positive; if two
are observed the moment is negative. A check is
obtained by a similar observation of the side
deflected into the weaker field, where the opposite
situation prevails. The angle « should be /2
for these transitions as is evident from Eq. (6).
Many modifications of this procedure, but de-
pendent on the same principle will readily sug-
gest themselves.

Example 2. Potassium

Although the pattern as given in Fig. 2 for
I=3/2 is more complicated than for I=%, a
similar procedure can be applied. With a weak
deflecting field we select the atoms from one of
the levels by means of a slit on the strong field
side and subject them to the rotating field.
In the subsequent strong field analysis the line
will be either single or double. If single the
nuclear moment is positive, if double, negative.
This is so because transition amongst the F
=I1—1% levels does not affect the strong field
moment, but the F=I1+1% levels always have the
possibility of making transition which will result
in a strong field moment of opposite sign. The
treatment of any other case is along similar
lines.

In conclusion the writer wishes to express his
indebtedness to Professor E. Segré for discussions
on the details of the Frisch and Segré experiment
and to Messrs. Clark, Heller and Motz of the
theoretical physics seminar for discussions on the
details of the interpretation of Majorana's paper.
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Does the Alpha-Particle Possess Excited States?
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The kinetic energy operator for the internal motion of
the alpha-particle can be expressed without cross deriva-
tives in-terms of a suitable set of internal coordinates.
The usual methods when applied to a restricted class of
Hamiltonian operators then yield sum rules from which
are deduced upper limits to the excitation energies of the
2p levels. These upper limits involve certain diagonal
matrix elements which are easily evaluated by using an

approximate normal state wave function. Computations
on three different nuclear models indicate definitely the
existence of a singlet 2p level in the discrete eigenvalue
spectrum of the alpha-particle if the range of the intra-
nuclear forces exceeds 2.0X1072% cm. A simple variation
calculation gives excitation energies which fall slightly
below the upper limit fixed by the sum rules.



