The Isotopic Constitution of Rubidium, Zinc and Argon

With the same mass spectrograph as was employed for the study of potassium¹ a similar investigation has been made for rubidium and zinc. No new isotopes were found. From measurements of the peak heights of the known isotopes their relative abundances were computed. By measuring the background in the regions where one might expect other isotopes it was possible to set upper limits for their abundance.

For rubidium an abundance ratio $Rb^{85}/Rb^{87} = 2.68 \pm 0.02$ was found. Assuming a packing fraction of -8.2 for rubidium, the chemical weight computed from the above abundance ratio would be 85.45 in good agreement with the international value, 85.44. The following upper limits of abundances relative to Rb⁸⁵ can be set: Rb⁸⁰, Rb⁸¹, Rb⁸², Rb⁸⁹ and Rb⁹⁰, 1/100,000; Rb⁸³, 1/60,000; Rb⁸⁴, 1/12,000; Rb⁸⁶, 1/13,000; Rb⁸⁸, 1/22,000.

In zinc the isotopes 64, 66, 68, 67 and 70 were found. The relative abundances agree well with Aston's² revised values. With Aston's value for the packing fraction of zinc, the chemical weight of zinc, when calculated, was found to be 65.31. This is in fair agreement with Aston's value, 65.33, but is in distinct disagreement with the International value, 65.38. Recently, Stenvinkel and Svensson³ from their investigation of the band spectum of zinc hydride claim to have found the isotopes Zn65 and Zn63-both more abundant than Zn70. From the present work it is possible to say that Zn⁶⁵, Zn⁶³ and Zn⁶⁹ are present in zinc to less than 1 part in 40,000, 80,000 and 60,000, respectively. These abundances compared to Zn⁷⁰ would be 1/200, 1/400 and 1/300, respectively.

Argon was studied in another mass spectrograph very similar to that employed in the above investigations. The presence of the rare isotope, A³⁸, reported by Zeeman and de Gier⁴ was confirmed. From a measure of the peak heights it was found that $A^{40}/A^{36}=325$ and $A^{36}/A^{38}=5.1$. In addition, the following upper limits can be set for the abundances of hypothetical isotopes relative to A40: A41 and A³⁹, 1/10,000; A⁴² and A³⁷, 1/20,000.

I wish to express my appreciation to Professor John T. Tate for his valuable suggestions and criticisms of the work. Alfred O. Nier

Department of Physics, University of Minnesota, January 17, 1936.

Nier, Phys. Rev. 48, 283 (1935).
Aston, Mass Spectra and Isotopes (1933), p. 119.
Stenvinkel and Svensson, Nature 135, 955 (1935).
Zeeman and de Gier, Proc. K. Akad. Amsterdam 37, 3 (1934).

An Infrared Absorption Band of Heavy Water Vapor

An infrared band of D₂O vapor has been observed at 1.5291μ with a one-meter absorption tube heated to 100° C. Although the sample of D₂O was 98 percent, as given by the manufacturer, the maximum absorption in the zero branch was only 5 percent. This is considerably less than the absorption of the corresponding band of H₂O.

The line separation is irregular in the positive and negative branches, indicating a combination band, but the

μ	ν (cm⁻1)	$\Delta \nu \ ({\rm cm^{-1}})$
1.5090	6626.8	10.1
1.5118	6614.7	12.1
1.5134	6607.6	7.1
1.5157	6597.6	10.0
1.5184	6585.9	11.7
1.5207	6576.0	9.9
1.5248		17.7
	6558.3	18.6
*1.5291	6539.7	27.1
1.5355	6512.6	9,3
1.5377	6503.3	11.4
1.5404	6491.9	
1.5434	6479.2	12.7

* Band center.

resolving power was insufficient to obtain the fine structure. However the center of the zero branch was definitely located and the following comparisons are drawn.

Sleator and Barker¹ found the bands corresponding to the fundamental frequencies ν_1 and $\nu_3,$ and Bonner² has calculated ν_2 assuming the D₂O molecule to be identical with the H₂O molecule except for mass differences.

Molecule	ν_1	ν_2	ν_3	<i>v</i> ₃
$\begin{array}{c} \mathbf{D}_{2}\mathbf{O} \\ \mathbf{H}_{2}\mathbf{O} \\ \hline \nu_{n}(\mathbf{D}_{2}\mathbf{O}) \\ \hline \nu_{n}(\mathbf{H}_{2}\mathbf{O}) \end{array} =$	1179 cm ⁻¹ 1596	$(2655)^2$ $(3600)^3$	2784 cm^{-1} 3742	$(2790)^2$ $(3756.5)^2$
	0.7375	0.7387	0.7440	0.7427

From the average value of the ratio of the fundamental frequencies for D₂O and H₂O the band for D₂O found at 1.5291μ should correspond to an H₂O band at 1.1327μ . There is an H₂O band center at 1.1340μ . Mecke³ gives this band at 1.135μ and represents it by the vibration quantum numbers (1, 1, 1).

The calculated value of (1, 1, 1) vibration frequency for D₂O by Bonner's² equations:

$\nu_0 = W_1 V_1 + W_2 V_2 + W_3 V_3,$
$W_1 = X_1 - X_{11} - \frac{1}{2}X_{12} - \frac{1}{2}X_{13},$
$W_2 = X_2 - X_{22} - \frac{1}{2}X_{12} - \frac{1}{2}X_{23},$
$W_3 = X_3 - X_{33} - \frac{1}{2}X_{13} - \frac{1}{2}X_{23}$

gives $\nu_0 = 6544$ cm⁻¹ while the experimental value is 6540 cm⁻¹.

A similar calculation of ν_0 by Mecke's equations gives $\nu_0 = 6543$ cm⁻¹, so that neither set of equations is to be preferred in the light of the present experimental data. (See Table I.)

W. V. Norris University of Oregon H. J. UNGER University of Idaho, S. B. R. E. Holmquist University of Oregon

January 14, 1936.

¹ W. W. Sleator and E. F. Barker, Phys. Rev. 46, 336 (1934).
² L. G. Bonner, Phys. Rev. 46, 458 (1934).
³ R. Mecke, Zeits. f. Physik, 81, 313 (1933).