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A new approach to the relativity theory, suggested by
the theory of E. A. Milne, is developed. This approach,
like Milne's, dispenses with the concepts of measuring
rods of undefinable rigidity and clocks of undefinable
periodicity. A new category of equivalent relatively
accelerated reference systems with Euclidean geometry
and constant light-velocity is described, and the space-

time transformation for such systems is developed. It is
shown that in an effectively empty world Einstein’s
assumption of an invarient physical interval and an
absolute four-dimensional space-time is in contradiction
with the underlying principle of the relativity of motion,
and therefore either the one or the other must be aban-
doned.

HE fundamental assumption underlying

Einstein’s theory of relativity is that the
physical interval between two nearby events
(the square of the element of measured distance
minus the square of the product of the velocity
of light by the element of measured time) is an
invariant having the same value for all reference
systems. This assumption is a natural inference
derived from the Minkowskian complex four-
dimensional space-time representation of the
Lorentz transformation, and has led to cosmo-
logical predictions which have been verified by
observation. Nevertheless, the author of the
present paper believes that Einstein’s postulate is
too restricted to include all possible motions of
material particles. In this paper he will present
an alternative theory, and will give reasons for
believing that it, rather than Einstein's theory,
represents the proper formulation of relativity
in an effectively empty world.

The present investigation was prompted by
the perusal of a recent book by E. A. Milne,! to
whom the writer wishes to make due acknowledg-
ment. In this important work Milne offers an
approach to the relativity theory which avoids
the undefinable concepts of rigid measuring rods
and periodic clocks. In spite of their great
advantages, the writer believes that Milne'’s
methods are faulty in certain respects, particu-
larly his definition of equivalence, in that it
implicitly involves synchronism as well, and
his apparent belief that physical geometry is
conventional. The fundamental principles pro-

1 E. A. Milne, Relativity, Gravitation and World-Structure
(Clarendon Press, Oxford, 1935).

pounded here, while suggested by Milne’s treat-
ment, differ from his in many essential particu-
lars, and the space-time transformations for
relatively accelerated reference systems are be-
lieved to be altogether new.

This contribution is divided into four parts.
In Part 1 fundamental methods will be outlined
and the principle of relativity will be stated in
its general form for the effectively empty world
in which we are interested; in Part 2 applications
will be made to one-dimensional systems; in Part
3 the special theory for a three-dimensional space
will be shown to follow immediately from the
fundamental principles; and in Part 4 the new
transformations for relatively accelerated three-
dimensional reference systems will be developed
and contrasted with Einstein’s theory. It is the
author’s intention to follow this paper shortly
by another in which the transformation of the
electromagnetic field between accelerated sys-
tems will be developed and the necessary revision
of the fifth or force equation of electromagnetic
theory, which is demanded by the new relativity
principle, will be obtained. In the conclusion to
this paper some qualitative comments on the
motion of an electron, which are expected to be
developed quantitatively in the succeeding
paper, will be presented.

ParT I. FUNDAMENTAL PRINCIPLES

To emphasize the fact that a single observer’s
measurements are confined to the single point
occupied by himself, we shall designate such an
observer as a particlesobserver. Each observer is
supposed to possess a temporal intuition, that is
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to say, if two events E; and E, occur at himself,
he can judge without ambiguity whether E,
takes place before E;, simultaneously with E,, or
after E;. We shall provide each particle-observer
with a device for assigning numbers 71, 72 - -+ to
events occurring at himself in such a way that,
if event E, occurs simultaneously with E;, the
numbers 73 and 7, assigned to the respective
events are the same, whereas, if E; occurs after
E,, then 79>7, and vice versa. This device,
which may be quite arbitrary in all other
characteristics than the one specified, we shall
call a clock, and we shall name r the local time
of the particle-observer under consideration.

Next we shall adopt certain conventions which
will enable a particle-observer P to employ
light-signals, timed by his clock, in such a way as
to describe quantitatively the motion of any
moving-element M. Let P dispatch a light-signal
to M at time 7. On arrival at M the signal is
immediately sent back to P, whom it reaches at
time 73 Choosing an arbitrary constant ¢ (a
constant whose numerical value, once chosen,
remains the same for subsequent repetitions of
the experiment) we define the distance v, of M
from P when the signal reaches M by

(1

and we define P’s value of the time ¢, at which
the signal reaches M by

ty=3(rs+71). (2)

re=3%c(m3— 1),

Since 7/(ta— 1) =r2/(72—15) =¢, the constant ¢
represents the velocity of the light-signal in
terms of the conventions adopted for measuring
distance and time at a remote point.

It should be noted that both 7, and # are
computed by P from coincidences occurring at
himself. The first represents P’s estimation of
the distance of M and the second P’s estimation
of the time at M at which the signal reaches M.
We shall call ¢ the extended time of P at M. If a
second particle-observer is attached to M, the
local time of the second observer when the signal
reaches him may be quite different from P’s
extended time /5, and his estimation of the
distance of P may not agree at all with 7. The
notation used designates local time measured at
a particle-observer by the Greek letter r, the
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computed time at a distant point being denoted
by the Italic letter f. The only measurements
made are carried out at the particle-observer
under consideration, and no yardstick of unde-
fined rigidity nor clock of undefined periodicity
is assumed.

Evidently each one of two particle-observers
P and P’ constitutes a moving-element in the
experience of the other. Thus P, acting as
observer, may describe the motion of P’ relative
to himself, or P’, as observer, may describe the
motion of P. We shall designate by letters
without primes local times measured by P or
quantities computed therefrom, and by corre-
sponding letters with primes local times meas-
ured by P’ or quantities computed from these
times. We attribute to light-signals dispatched
from one particle-observer to another the fol-
lowing property: If two light-signals are sent from
one particle-observer to anmother, the light-signal
which is dispatched later from the ome will be
recesved later by the other. This fundamental
principle underlies all the theory to be developed.
In effect it is equivalent to limiting our consider-
ation to particle-observers with relative velocities
less than the velocity of light.

Now suppose that a light-signal is dispatched
from P toward P’ at time 7; and is received by
the latter at time 7.’. Let a second light-signal
be dispatched from P’ toward P at a time 7/
earlier than 7o’ and be received by P at a time
e later than 4, the time 7," being so chosen that
¢ — 7' =7y— 7. Then we say that r; and 7/ are
corresponding times. Evidently this condition can
always be fulfilled, for if 7/ —7/>7r—7 the
light-signal from P’ can be replaced by one sent
a little later, which will increase both 7' and 7
by virtue of the principle stated in the last
paragraph, making 7' —7; smaller and 7.—7;
larger. The pair of light-signals under discussion
are illustrated by the lower solid lines in Fig. 1,
the time being plotted vertically and the sepa-
ration of P and P’ horizontally.

The statement that 7, and 7.’ are correspond-
ing times does not necessarily imply that . and
o’ are corresponding times also, for, if the signals
received by P’ and P at the times 75’ and 5 are
immediately returned and reach P and P’ at
the times 75 and 73’ respectively, the fact that
9’ — 1 =1— 1 does not of necessity lead to the



256 LEIGH

Fi16. 1.

equality of 7’ —7’ and 73—7.. In conformity
with our present notation we shall always
designate corresponding times by identical sub-
scripts.

Next consider a pair of corresponding times
r1+A7 and m/'+A7/ defined by the pair of
light-signals represented by broken lines on the
figure, which are dispatched from P and P’ at
times respectively A7; and A7y later than the
signals sent at the corresponding times 7, and
71/, and received at times A7, and A7’ later. As
the times of dispatch correspond, Ar'—A7r/
=Ars—A7. Now, if Ar/=Ar, and hence Aty
= A7y, whatever Aty may be, we say that the clocks
of P’ and P are equivalent, or that the two particle-
observers are equivalent. 1f, in dddition, the clocks
of the two particle-observers are sef so that
=7, and therefore all corresponding times
are identical, the clocks of the two observers are
said to be synchronized. In future we shall deal
only with particle-observers who are equivalent,
and, when we are concerned with two particle-
observers alone, we shall generally suppose their
equivalent clocks to be synchronized.

It follows from the definition of equivalence
that all pairs of corresponding times at two
equivalent particle-observers differ by the same
amount. Therefore, if 71" and 7, are corresponding
times, 72’ and 7, are also. Conversely, if all
pairs of corresponding times differ by the same
amount, the particle-observers are equivalent.
If the clocks of two particle-observers are
synchronous, corresponding times are identical.
Hence synchronism implies equivalence, although
equivalence may exist without synchronism.
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Let P and P’ (Fig. 1) be equivalent but not
necessarily synchronous. Let the signals dis-
patched at the corresponding times 71 and 7,
and received at the corresponding times 7, and
7o’ be immediately returned toward the particle-
observers from whom they originated, reaching
the latter at the corresponding times 73 and 75’
In this case we may say that the signals interlock,
the signal dispatched from P at the time 7,
being received by P’ at the time 7’ and immedi-
ately returned to P whom it reaches at the time
73. Evidently 7o is some function of 71, which
could be obtained empirically by observing the
values of 7, corresponding to different values of
71. Now, if 7, becomes 72, 79 becomes 73. So 73
must be the same function of 75 as 74 is of 7.

If we are given the law of motion of P’
relative to P, that is, if we know 7, as a function
of P’s extended time £, at P’, we can express 73
as a function of 7 by (1) and (2). Let this
functional relation be 73= F(r1). Since we must
have

m3=f(r2), ra=f(r1), (3)

it follows that our problem is to find the function
f such that

J(f(r)) = F(ry). (4)

Not only are relations (3) necessary for equiva-
lence; they are also sufficient. For all we need do
is to assign the values 71+k, 2-+k, 3+%& - -+ to
the times i/, 7/, 73’ +-+ at which the various
signals in Fig. 1 are dispatched from P’, where k
is a constant. Then the clocks of the two particle-
observers are equivalent. If k=0 they are
synchronous as well.

An alternative condition for equivalence arises
from the fact that Egs. (3) imply that drs/dr,
is the same function of 73 and 7y as dra/d7; is of
7o and 71. Let this function be denoted by g. Then

dTg/d7'2=g(T3, 7'2), dT2/dT1=g(T2, 7'1). (5)

But, from the equation of motion of P’ relative
to P, we get drs/dr1=G(73, 71), where G is a
known function. Consequently

(6)

If we can find a function g satisfying (6), we can
then integrate (5) and determine the common
constant of integration so as to satisfy (4), thus
obtaining the relations (3). Consequently this

g(Tv'h 72)g(72» Tl) =G(T3’ Tl)'
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condition, like the preceding one, is both neces-
sary and sufficient for equivalence.

Consider two equivalent particle-observers P
and P’. From (1) the distance of P’ from P at
time 7o’ at P’ is

(7)

whereas the distance of P from P’ at the corre-
sponding time 75 is

Vo= %C(T;;—" Tl),

(8)

But 73’ — 79’ = 73— 75 as the observers are equiva-
lent. Hence #’ =7, that is, the two distances are
the same at corresponding times. As regards the
velocity v, of P’ relative to P, taken as positive
if P’ is receding from and negative if P’ is
approaching P, we find from (1) and (2),

d?’g dTa/dTr"l
V==,
dts  dr3/dri+1

1’2,=%C(73/— 71,).

(9)

whereas the velocity »;’ of P relative to P’ is

d?’z’ dra'/dn'—l
v =— = (10)
dty  dry/dr/+1

As the two particle-observers are equivalent,
dTa/szz lf d'rl’=d-r1. Therefore 712,-‘:7}2, that iS,
the two velocities are the same at corresponding
times. Evidently the conclusions reached here
hold also for accelerations or for higher deriva-
tives with respect to the time.

As dr3/d 1 is necessarily positive, we see from
(9) that v, can never have an absolute magnitude
greater than c. For, as drs/dr; increases from 0
to o, v, increases monotonically from —c¢ to c.
If we solve Eq. (9) for dr3/d we get

drg/dn: (1 +B2)/(1 —'62))

a relation we shall find useful later.

If P and P’ are synchronous as well as equiva-
lent, corresponding times are identical, and 7/,
v’, etc., are the same functions of the extended
time ¢’ of P’ at P as 7, v, etc., are of the extended
time ¢ of P at P’.

To pass from a pair of equivalent particle-
observers to a group of such observers, it is
necessary first to consider three. So let us
introduce in addition to the two equivalent
particle-observers P and P’ a third particle-

(11)
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observer P”’. The readings of the clocks of P
and P’ are fixed to within an arbitrary additive
constant by the condition that they be equiva-
lent. If P” has a specified motion in terms of P’s
already assigned time scale such that (4) or (6)
is satisfied, P’ can be furnished a clock equiva-
lent to that of P. Indeed, if P’"’s motion relative
to P is of the same type as P’’s, then the fact
that P’ is equivalent to P is sufficient to insure
that P" is also equivalent to P. The equivalence
of both P’ and P"” with P, however, does not
necessarily imply equivalence with each other,
which calls for separate investigation in each
individual case.

In a space of more than one dimension, motion
cannot be completely defined by reference to a
single observer, for, in addition to motion along
the line of sight, an angular motion about the
observer may exist. We have recourse, then, to a
reference system, which is defined as a dense
assemblage of particle-observers filling all space,
such that each particle-observer is synchronous
with and at rest relative to every other particle-
observer. Let P and P’ be two equivalent
particle-observers not relatively at rest with each
of whom a reference system may be associated.
If these two reference systems have the same
geometry with respect to P and P’, respectively,
they are said to be equivalent. If, in addition, we
may take as P and P’ anmy pair of particle-
observers in the two reference systems, the
reference systems are homogeneous. In this case
each particle-observer in the one reference system
is equivalent to every particle-observer in the
other. The Euclidean inertial systems of the
special relativity theory are equivalent and
homogeneous, but the Euclidean reference sys-
tems with constant relative accelerations, the
discovery of which is reported in Part 4 of this
paper, are equivalent but not homogeneous.

Insofar as electromagnetic theory is con-
cerned we are interested in an effectively empty
world. The philosophy underlying the relativity
principle for such a world is that no preferred
reference system exists in nature. Hence it is
impossible to avoid the conclusion that the laws
of physics must be identical relative to all equivalent
reference systems, that is, reference systems with the
same geometry and the same constant light velocity
associated with equivalent particle-observers. This
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is our statement? of the principle of relativity for
an empty world.

In particular all equivalent reference systems
with Euclidean geometry and the same constant
light velocity must be physically indistinguish-
able. The inertial systems of the special relativity
constitute such a category, which possesses the
incidental property that the physical interval
dx?*+-dy*+dz*—c?ds? is an invariant. If this were
the only group of equivalent reference systems
with Euclidean geometries and constant light
velocities, there would be no need for a restate-
ment of the principle of relativity. The signifi-
cance of the present contribution lies in the
discovery of a new category of reference systems
with Euclidean geometries and constant light
velocities which have constant relative accelera-
tions (in the relativity sense) and for which the
physical interval is not an invariant. In all
probability there are many other such categories
as yet unsuspected.

PART 2. ONE-DIMENSIONAL REFERENCE
SYSTEMS

As a space of one dimension has no geometry,
it is much simpler to treat than a space of three
dimensions. Consequently we shall confine our
attention in this Part to equivalent particle-
observers and equivalent reference systems in
relative motion in a space of one dimension.
First we shall consider a one-dimensional refer-
ence system.

Reference system

Let P and P’ be two synchronous particle-
observers such that P’ is at rest relative to P.
Then the distance 7, of P’ from P at the time #,
is not a function of #. Hence 7s=r (a constant).
Putting 3¢c(rs— 1) for 7;, 73— 711=2r/c, and Egs.
(3) are

To=T11+7/cC.

Since the distance 7’ of P from P’ as computed
by P’ must be the same function of ' as 7, is of

Ts=T12}7/c, (12)

2 The principle of relativity was stated in almost identical
terms in the author’s Introduction to Electrodynamics,
published in 1922, but the full significance of the statement
was not realized at that time.
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by, 7'=7r,=7r and P is at rest relative to P’
Moreover, as the clocks of the two particle-
observers are synchronous, 7,/=r,, the identical
subscripts indicating corresponding times. As

(13)

t=3(rstm)=r="r

from (12), the extended time of the one particle-
observer coincides with the local time of the other.

If we introduce a third particle-observer P’/
at rest relative to P it is easily proved that P”’
is at rest relative to P’ and may be synchronized
simultaneously with P and P’. Furthermore the
addition law of distances is readily obtained.
This law states that the distance of P from P
as calculated by P is equal to the distance of P’
from P as calculated by P plus the distance of P
from P’ as calculated by P’.

As the local time of an event at P’ or P" is
identical with P’s extended time of the event,
there is no need of distinguishing between the
local time of an event at one of the particle-
observers and the extended time of the occur-
rence of that event in the experience of one of
the other particle-observers. We may time dis-
tant events at P’ or P"' by means of the extended
time ¢ of P, secure in the knowledge that the
local time of the event is the same as P’s extended
time of the event. Furthermore, as the distance
between P’ and P” as computed by either of
them is the same as the excess of the distance of
P from P over that of P’ from P as calculated
by P we may introduce a coordinate system
with P as origin and employ only distances as
computed by P. The aggregate of these distances
we shall call the extended space of P.

It follows from the above that we can adjoin
to any particle-observer P a dense linear assem-
blage of particle-observers P’, P"', P'"" ... at
rest relative to P and synchronous with him.
Each one of these particle-observers is at rest
relative to every other, and synchronous with
every other. The aggregate of particle-observers,
therefore, forms a reference system. As all time
and space measurements made in the extended
time and space of P are identical with those
made in the local time of the particle-observer
concerned, we may refer without ambiguity to
the extended time and space of P as the time
and space of the reference system.
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Constant relative velocity

Next consider two equivalent particle-ob-
servers P and P’ the second of which has a
constant velocity relative to the first. Then
ra=uv(ta—to) where #; is a constant. In accord
with the conventions adopted in Part 1, 7, is
essentially positive, and the velocity v is equal
to a positive constant for >t (particles sepa-
rating) and to the same constant with the
opposite sign for #<fy (particles approaching).
Putting %c(rs— 1) for 7. and 3(7s+71) for fo,
this equation becomes

(rs—to)/(r1—te) =(14+B8)/(1—B), B=v/c,
from which it follows that Eqgs. (3) take the form

T3—bo 148\? 79—t 148\ *
() ()
Ta—lo 1-86 T1—ko 1-8

which may be written as

(14)

T2 — ko 79 7g
=T —to——“= Tl_t()-l“—_‘.

— 3 16
(1—p7? ¢ ¢ (o)

Hence P’s extended time of the event 7 is
given by

’ !’
Ta— o T2 —bo

(1—-g)! (1—p)

where £y =t, if P and P’ are synchronous.

In addition to the two equivalent particle-
observers P and P’ moving with constant relative
velocity we shall now introduce a third particle-
observer P” moving with constant velocity vp:
relative to P and therefore equivalent to P.
We shall show that the velocity vp.’ of P”’
relative to P’ is constant and therefore that P’
is equivalent to P’ as well as to P. Also we
shall obtain the addition law of velocity. In
order to make our notation consistent through-
out, we shall designate here the velocity of P’
relative to P by vps, and that of P relative to
P’ by vp'. As shown earlier, vp' =vp:.

Consider the interlocking signals 7;—73’" and
73"'— 75 of Fig. 2. By (11) we have

drs/dry=(14Bp)/(1—Bp),
drd/dre’=(14+Bp")/(1—Bp:"),

where Bpi=vp-/c is constant by hypothesis.

17)

to—to=3%(rs+11) —to=

(18)

and (19)
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Now as P and P’ are equivalent,

drd dre

dr, dr \1—Bp

1+5P')% dry drs 1+BP’);
dT4,—dT4- 1—6/>' '
from (15). But

dT4/ dT4, dT5 dTl 1+ﬂpn 1—61”

dry  dry drydry 1—Bpo 1-4Bpr

Comparing with (19) we have
1—=Bp 1—=Bp 1—Bp:’
14+8p 14+Bp 14+Bp"

(20)

which shows that Bp:’ or vp.’ is constant. Hence
P is equivalent to P’ as well as to P. It is
easily shown that the same clock which makes
him equivalent to P makes him equivalent to P’.

Eq. (20) is the addition law of velocity obtained
by Einstein in 1905. It may be put in the more
usual form

vprr = (oprvpr') /(L4 vpwps'[ct).  (21)

Let us adjoin reference systems S and .Y,
respectively, to two synchronous particle-ob-
servers P and P’ moving with constant relative
velocity v. It can be shown very simply that each
particle-observer in S is equivalent to every
particle-observer in .S/, and hence that the two
reference systems are homogeneous as well as
equivalent. Taking P and P’ as origins of axes
fixed in their respective reference systems and
making 7=7'=0 when P’ passes P, we can
obtain the relations between P’s and P’’s
specifications of the position and time of the
event Q (Fig. 3) by means of the light-signals
indicated in the figure. From (15)
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Ts

5%

T

Fia. 3.

(1=B)ira=(1+)'r4,
as ty=0 and 7,/ =1, and

v=5(rd+1)

(1=B)iry’ = (14B)*rs,

t—(8

= —l{%(‘fﬁ‘i‘ﬁ)-‘%ﬁ(m—rl)}:-_(_/_c.)_‘gf,

(1_62)2 (1_62)7

(22)
x'=3c(rs —12)
{1e( )= o(rs+ o)) x—ut

=—130(1s—71) —2U(7T5FT1) } =

(1"32)‘!“ (1_ﬁ2)’2—

These constitute the Lorentz transformation of
the special relativity theory for one dimension.

Constant relative acceleration

We shall now investigate the properties of the
linear reference systems adjoined to two syn-
chronous particle-observers P and P’ which
have a constant relative acceleration ¢ (in the
relativity sense). The differential equation of
motion of P’ relative to P is

@ry/dts = (1 —v2/c) 1,

the integral of which is

1+¢ra/ct=(1+¢/c)},

if the particle-observers meet at rest at time
zero. Expressing 7, and f in terms of 7, and 3
as usual we find

(23)

1/n—1/m=¢/c, (24)
and Egs. (3) become
1/T2—1/7'3=¢/26, 1/’7’1—1/T2=¢/2(5. (25)

First we shall obtain the addition law of
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acceleration by introducing a third particle-
observer P’ who has a constant acceleration
¢p relative to P, and who meets P without
passing at the same time that P’ does. Then
P" as well as P’ is equivalent to P. We shall
make P as well as P’ synchronous with P, with
r=7"=7"=0 at the instant of meeting. For
uniformity of notation we shall here denote the
constant acceleration of P’ relative to P by ¢p-.
Considering the interlocking signals 7,—73’" and
13"’ — 75 of Fig. 4 we have from (24)

Un—=1/ms=dp/c,
and from (25)

1/7’1—1/1'2/:(1)[:'/26, 1/74/—1/75=¢P1/26,

as 7/=r1, since P’ and P are synchronous.
By combining,

17 =1/7d = (¢pr—dr:)/c,

which shows that P’ has the constant accelera-
tion ¢pr/ =¢pr—dp relative to P’ and therefore
is equivalent to P’. It can be shown very simply
that the same clock which makes P’ synchronous
with P makes him synchronous with P’. The
addition law of acceleration, is, then,

bpr=gp+p.

We can adjoin to each of the synchronous
particle-observers P and P’ moving with con-
stant relative acceleration ¢ a dense linear
assemblage of synchronous particle-observers
relatively at rest. The two reference systems .S
and S’ so formed are equivalent but not homo-
geneous. To find the space-time transformations
we shall take X and X’ axes in the direction of

(26)
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the acceleration of P’ relative to P with P and
P’ as origins of S and ', respectively, and
consider the signals (Fig. 5) necessary to specify
the event Q. From (25)

Ts T
1+(/26)75 1—(9/20)71
as 7,/ =71, So P"’s extended time of the event Q is

V=3(rd+r)

’

3(rs+71)

¢ (ms—Ti\)|? ¢ /st Ti\?
() ()
2c 2 4c? 2
!
_— @)

qu 2 ¢2t2'
2¢? 4c?

and P’’s estimation of the distance x’ of Q is

' =%c(rd — 1)

o (227 ()
RG]
(50)-%
()

462
Note that .S” extends only from —2¢2/¢+ (c2?)%
to =,

(28)
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If we put
f=1+¢x/2¢2, T=o¢t/2,
F=1—9¢x'/2¢?, T =¢t/2c,

which amounts to taking a new origin in S at
—2¢%/¢, and a new origin in S’ at 2¢2/¢ combined
with a change in sense of the axis, then the
space-time transformation assumes the simpler
form

=TT, T=T/E-TY,
¥=8/@-T9, =8/ -T7).

This transformation gives

(B-T) (=T =1, (30)
and yields the invariants
T'/¢=T/¢ (31)
dx?—cdt”®  dx?—cde

and (32)

-1 p-T¢

It is seen from (32) even in this one-dimen-
sional case that the physical interval dx'®—c%dt”
in 8’ is mot in general equal to the physical
interval dx?—c%d#? in S. Hence the rather firm
foundations on which the present theory rests
are quite incompatible with the fundamental
postulate on which Einstein’s theory is based.

The relation between the velocity V’'=dx’/dt
of a moving point relative to S’ and its velocity
V=dx/ds relative to S is given by

T\ 1=V /c\} 1-V/c
(=) ) - () )@
g/ \1+7V/c 14+V/c
In particular, the velocity v relative to S of a
point fixed in S’ is given by

B=v/c=2T/(8+T?).

When ¢=0, then, all points in S’ are simultane-
ously at rest in S. The acceleration relative to S
of a particle fixed in 8’ is

F=dv/dt=(1—p)s.

A vparticle-observer in S’, therefore, has the
constant relativity acceleration §¢ relative to S.
In terms of the coordinate measure of .S, this is
an acceleration

(34)

(35)
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be=kp/(8—T7)

for a particle-observer in S’ at £ at time £ At
the instant =0 when all particle observers in .S’
are at rest relative to .S, this reduces to ¢;=¢/£.

It is of interest to note that even when the
two reference systems S and S’ are relatively at
rest time and space measurements do not agree
except at the common point occupied by P and
P’ For

dt'/dt=dx'/dx=1/(14¢x/2c%) =1—¢x'/2c2.

(36)

Hence it is obvious that .S and .S/, while equiva-
lent, are not homogeneous, and that the physical
interval cannot be invariant.

PArT 3. EQUIVALENT THREE-DIMENSIONAL
REFERENCE SYSTEMS WITH CONSTANT
RELATIVE VELOCITIES

Although we have seen that a linear assem-
blage of synchronous particle-observers relatively
at rest can be associated with any particle-
observer in a one-dimensional space, it does not
follow that a dense three-dimensional assemblage
of particle-observers can be associated with an
arbitrary particle-observer P in such a way that
each particle-observer in the group is at rest
relative to and synchronous with every other.
An analysis of the problem shows that at most
we can associate three particle-observers satis-
fying these conditions with an arbitrary observer
P, such that no three of the four observers lie
on the same light ray. We cannot, then, associate
a three-dimensional reference system with an
arbitrary particle-observer. The existence of a
three-dimensional reference system in nature is
a matter which must be investigated empirically.
Furthermore, if such a reference system is found,
its space geometry is also a matter for experi-
mental investigation. For we have adopted a
definite convention for the measurement of
distance, and we can use it, once we have found
a reference system, to determine experimentally
the ratio of the circumference to the diameter of
a circle, etc. The geometry of a reference system
is, therefore, not conventional, but a matter to
be investigated empirically by means of the
procedure adopted for measuring distance.

We take it therefore, as a matter of experi-
mental knowledge, that there exists, at least in
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the limited region occupied by the solar system,
one reference system with effectively Euclidean
geometry and constant light velocity ¢. We need
not be disturbed by the fact that the deflection
of a ray of light passing near the limb of the
sun, or the solar red shift, may indicate a slight
departure from the ideal conditions assumed, for
these effects are so small that the departures
represented by them are negligible insofar as
the electromagnetic theory in which we are
interested is concerned.

Once the existence of a single reference system
S with Euclidean geometry and constant light
velocity is established, it becomes possible to
prove or disprove the existence of other equiva-
lent reference systems with Euclidean geometry
and the same constant light velocity. In this
part we shall outline the methods necessary to
show that any dense three-dimensional assem-
blage of particle-observers all of whom are
moving with the same constant velocity v rela-
tive to .S constitute a reference system S’
equivalent to S, and therefore having the same
Euclidean geometry and the same constant light
velocity as .S. As the transformation between .S’
and S is merely the Lorentz transformation of
the special relativity theory, the discussion,
which is presented solely for the purpose of
developing the methods to be employed in
Part 4, will be compressed as much as possible.

Let P be particle-observer in S chosen as
origin of a set of axes X, ¥, Z, and let P’ be an
equivalent particle-observer moving with con-
stant velocity v relative to .S along a line parallel
to the X axis and distant % from it. Then the
equation of motion of P’ relative to P is

r?=h2+v2(ta —ty)?,
where #; is a constant, and, if we put
=i~ ) e,
(a2+(73—t0)2)%+13—t0_1+6

= (37)
(a2+(7'1—t0)2)§'+71”‘t0 1-8
Hence (3) becomes
(a2+(73—to)2))7+7'3'—t0_ (1-}—,3)5
(a*+ (12— 1)) 4 ra—ts \1-8/" (38)

Il

b

(a4 (ra—t0)*) 12—t (1+ﬂ :
((I»z-l-(‘rl—t())z)%-le"-to 1—)8



NEW RELATIVITY

which can be written in the more convenient form

T2 —1to 79 7y
— -—T;;—to‘—““=T1—t0+‘““. (39)
(1-p»} ¢ ¢
Eq. (39) is identical with (16) for the one-di-
mensional case. As P may be any particle-observer
in S, it follows that each particle-observer in S’
is equivalent to every particle-observer in S.

Now suppose that P’ is moving along the X
axis of S. As proved in the discussion of the
one-dimensional case we can associate with P’ a
dense linear assemblage of particle-observers
distributed along this axis all of which are at rest
relative to P’ and synchronous with him. All of
these particle-observers have the same constant
velocity v relative to S, and, in view of what we
have just proved, are equivalent to every
particle-observer in S. We will take their locus
for the X’ axis of .S". The Lorentz transformation
(22) applies, then, to the linear assemblages of
particle-observers constituting the X and X’
axes of S and 5, respectively.

Next consider an event P’ occurring at the
point x, y, 0 at the time ¢ If the coordinates of
P’ relative to S at time 0 were x;, 0, 0, they are
x1+2¢, 0, 0 at time ¢. To determine the distance
of the event P,/ and the time of its occurrence
in the experience of P’, we must send a light-
signal from P’ so as to reach P’ at time ¢, and
then send it back to P’. Let the light signal
leave P’ at time # when P’ is at a distance 7,
from P/’, and arrive back at P’ at time £ when
P’ is at a distance 73 from P,’. Then

1’12: {x—xl—‘v(t—h/C) }2+y2'
re’={x—x1—v(t+7s/c) |2 +y2

We solve these equations for 7; and »; and then

determine # and #. By means of the Lorentz

transformations for the linear reference systems
constituting the X and X’ axes of S and ',
respectively, we find the local times 7' and 73
at P’ of the departure and return of the signal.
Then from (1) and (2) we have

t—(B/c)x
V=3(r'+7)=——, (40)
(1_62)%
(x—2x1—0t)? '
r'=3c(ry' — 1) =[_—-‘—+3’2] . (41)
1—-p2
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Now suppose that P’/ represents a particle-
observer moving relative to S with the same
velocity v as P’. Then x=ux.+vt, y=1y,, where x,
and y, are constants. In this case (41) becomes

}
+3/22] y

showing that 7’ does not change with the time.
Hence all particle-observers moving relative to S
with the same constant velocity v as P’ are at
rest relative to P’. To be synchronous with P’
their local times must be equal to P"’s extended
time /. We observe from (40) that they are then
synchronous each with each. Finally (42) repre-
sents the Pythagorean theorem for . From it we
see that we can construct a Euclidean mesh in
S’, and therefore that the geometry of S’ is
Euclidean. Consequently S and .S’ are equivalent
homogeneous reference systems with Euclidean
geometries. The Lorentz space-time transforma-
tion for the three-dimensional case under discus-
sion is obtained immediately from (40) and (41).

7 =

(42)

(%2 —x1)*
=

PART 4. EQUIVALENT THREE-DIMENSIONAL
REFERENCE SYSTEMS WITH CONSTANT
RELATIVE ACCELERATIONS

We have shown that a dense assemblage of
particle-observers all moving with the same con-
stant velocity v relative to a given Euclidean
reference system .S may be synchronized each
with each so as to constitute an equivalent ref-
erence system. This category of reference sys-
tems, however, does not comprise all reference
systems equivalent to S which have Euclidean
geometry and equal constant light velocity. We
shall now show that a three-dimensional reference
system .§’, equivalent to .S, may be adjoined to a
particle-observer P’ moving with constant rela-
tivity acceleration ¢ relative to S, and that the
geometry of S’ is Euclidean.

Take as origin of .S the synchronous particle-
observer P with whom P’ coincides when momen-
tarily at rest in S and orient the X axis in the
direction of the acceleration of P’ relative to S.
As proved in Part 2, we can adjoin to P’ a linear
reference system extending along the X axis of
S from —2¢2/¢+ ()} to oo, the particle-
observers constituting this reference system hav-
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ing the constant accelerations relative to S
specified by (36). The transformation (29) applies
to the linear assemblages of particle-observers
constituting the X and X’ axes of S and .5,
respectively.

Let Q' be a particle-observer in the linear
reference system adjoined to P’ at a distance &’
from P’, which serves as the origin of the X’
axis in .$’. We shall denote by x, the coordinate
of Q' in S when ¢t=¢=0. Then the constant ac-
celeration ¢; of Q' relative to .S is given by

o/ Ppr="1-4xo/2c?

in accord with (36).

Next consider an event Q" occurring at «, y, 0
at the time ¢. We dispatch a light signal from Q'
at a time #; so chosen that the signal will reach
Q/" at time ¢, and then send the signal back to ¢’

(43)

qbtl— T{£2+2(p2— T2—&op cos 6)} — (2p cos 0 —&o)[ (> —T2)2—2(p*—T?)kop cos 0+ £20% ]2
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whom it reaches at time #3. Let 7, be the distance
of Q" from the position x; of Q' at time #;, and 7;
the distance of Q,” from the position x3 of Q’
at time /5. Then

1 @2 Nk
1+—~(x1—x0)=[1+—(t——) ] y
(;2 2

4 c
(44)

o1 ¢1® 73\ 21
1+-(x3——x0)=|‘1+—~(t+—) } ’
c? c? c

where 2= (x—x1)2+32, 7= (x—ux3)2+)%. (45)

From these equations we must find 7, and 73,
and then t,=t—7r;/c and t3=1t+r3/c as functions
of x, vy, xo, t. If we put pcos=1+4¢x/2¢2,
psin 0=¢y/2¢%, fo=1+¢xo/2¢%, T=¢t/2¢c, after
expressing ¢; in terms of ¢ by (43), we find as
the result of a laborious algebraic calculation

2¢

)

(2p cos 0—&0)*—4T?

¢ts_ T{&°+2(s"— T2 —fop os )} +(2p cos 0—Eo)[(p— 1) —2(p"— T*)kop cos 0+E%p"]*

2¢

(2p cos 6—£0)2—4T?

To find the local times 7, and 73’ at Q' corresponding to #; and ¢; we have from (29)

o7’ /2= —c/Pt+ (/¢ +1/EM)E

Thus we find

o1’ ET—[(0*—T%)’=2(s* = T*)kap cos 0+&7%" ]!

2¢

b

£(0—T17)

73 _EOT‘I“ [(p2—T2)2—2(p>— T?)&op cos O-+Eo%p? |

2c £o(p*—T7)
Finally, we get for Q”’s time # and distance 7’ of the event Q.”,
ot [2c=(¢/4c)(rs' + 1) =T/(0*—T?), (46)
or & [(0*—T%)2—2(p*—T*)op cos O+£°0° ]!
—=-—(T3 '—'Tl,) = . (47)
28 4c Eo(p*—T%)

Now suppose that Q' is a particle-observer
moving along a radial line in the XY plane of S
drawn from the point O at —2¢?/¢, 0, 0 at an
angle # with the direction of P’’s or Q"’s motion,
as shown in Fig. 6. Let Q" be at rest in .S at the
same instant that P’ and Q' are, and let Q"' have
a constant acceleration ¢, which is the same func-

tion of his distance from O as that of P’ or Q' is.
Then, if we denote by 7 the distance of Q'' from
an origin in S on the line 0Q"’ at the same distance

from O as P,
¢/de=1-+or0/2¢%, (48)

where 7, is the value of r at £=0, and
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14 (¢2/c) (r—ro) = (1+ 2/ (49)

Eliminating ¢, from (49) by (48) and putting p,
for the value of p at t=0, we find

(50)

Combining (50) with (47) we find that we can
eliminate both p and T, getting,

¢r’  Lpo—2E0po cos 0+£0" 1.

2c? B

pt—T?%=ppo.

(51)
£0po

T herefore the distance v’ of Q"' from Q' as measured
by Q' does not change as the motion progresses.
The aggregate of wuniformly accelerated linear
reference systems radiating from the point O forms
o three-dimensional reference system S’ each
particle-observer of which is permanently at rest
relative Lo every other. Moreover, comparison of
(46) with (29) shows that Q’’s extended time at
Q" is identical with Qs local time. Hence each
particle-observer in S’ is synchronous with every
other.

It remains to show that the geometry of S’ is
Euclidean. Since the particle-observers in .
form a rigid aggregate in their own distance
measure, it is sufficient to investigate their
geometry at the instant t=#=0 when S’ is at
rest relative to .S. As the projection of S’ on S'is
symmetric about the X axis of .S, we can simplify
the analysis by first investigating the geometry
of a section of .S’ lying in the X ¥ plane of S.

First we shall find the projections on S of all
straight lines in S’. Put Re=2¢%/¢+7,, Xo
=2¢%/¢-+x0. Then Ry and X, are the distances
of Q' and Q' from the singular point O at ¢=0,
and the Pythagorean theorem (51) becomes

4ct [R02— ZR()X() COs 0+X02j%
_¢2 RoX o
If Q' and Q" are neighboring points, this gives for

7’ (52)
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the element of distance

4ct [dRP+ R2d6*]¢
~¢_{ N R¢? .
A straight line is defined by §/dr' =0 between

fixed limits. Minimizing the integral by the usual
methods we get

Yy =

(83)

d*Ro/d6*+Roy=0, (54)
the complete integral of which is
(Ro cos 6—A)2+(Rosin §—B)?=A2+B?, (55)

where 4 and B are constants of integration.
Hence all circles through O in S are straight lines 1n
S at '=0. In particular all straight lines in S
radiating from the point O are straight lines in S'.
The point O in S is the point at infinity of .5,
and therefore there are an infinite number of
straight lines joining O to any point in .5'.

Next we shall find the projections on S of all
spheres in .S’. The equation in .S of a sphere
about Q' in .S with radius 7’ is the relation be-
tween R, and 0 given by (52) when X and 7" are
held constant. Rearranging this equation,

Xo 2
{Ro cos 00—
1—(¢%'/4c*)2X ¢
¢27//4C4)2X 4
+Ry?sin? 0= ( ° (56)

(1— (¢ /4ct)2X 2}?

which is a sphere about a point on the OX axis
distant
(9% /4ch)2X ?
1— (%' /4c*)2X ¢

(57)

from Q’. The projections on S of the radii of this
sphere in S’ are, of course, circles through O
and Q'.

Now we shall show that angles are preserved in
passing from S’ to S. First we express the Eq.
(56) of a sphere in S’ about Q' as center in terms
of polar coordinates p, x with Q" as origin and OX
as polar axis, getting,

PP= (0% /42X 2(p2+2X op cos x+X2). (58)

To obtain an element of the circumference in the
XY plane of S we must differentiate (58)
holding # and X, constant, and substitute in
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(53), which becomes
(dp*+ 1)’

dr' =— ,
¢* P*+2X op cos x+X ¢

(59)

in our new coordinates. Dividing d#’ by the radius
7’ of the sphere we find the angle dx’ subtended
in S’. Thus:

dy’ i (60)
* T (p/X0) cos x

As p approaches zero, whatever X,and x may be,
dx' approaches dx. Hence angles are invariant for
the transformation from S’ to S.

It is easily shown that the circles through Q'
and O in S, which are the projections on S of
straight lines radiating from Q' in .5, intersect
orthogonally the projections (56) on S of all
spheres in S’ with Q’ as center.

We are ready now to construct a Euclidean
mesh in S’. First we show that all circles in .S
tangent to OX at O are the projections of
straight lines in S’ parallel to the X’ axis. The
equations of such circles are

Ry? cos? 0+ (R, sin § —B)2=B?, (61)

and the perpendiculars to the X’ axis in .S’ are
the circles

(Rocos 6—A)*+Ry*sin? 6=42  (62)

These two families of circles intersect orthogon-
ally, showing that in .S” (61) is perpendicular to a
straight line at right angles to the X’ axis.

All that remains is to calculate the lengths of
the sides of a rectangle in S’ bounded by the
straight lines (61) and (62). If Q¢ is a point in .S’
on the perpendicular to the X’ axis through Q’,
then the coordinates R, 8 of Qi must satisfy the
relation Ry=X, cos 6, where X,, O are the co-
ordinates of Q’. Hence the distance of Q¢ .from
Q’, obtained from (52), is

4ctsin @ 4cttan 0
7 =— =——, (63)
¢? Ry ¢* X,

This is identical with (61), showing that all
straight lines in .S’ represented by (61) are equi-
distant from the X’ axis. Incidentally, for a
given X, ¥’ = when 0=x/2.
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Next consider two perpendiculars in .S’ to the
X'’ axis passing through the points whose co-
ordinates are X, O and X, O, respectively. The
equations of their projections in .S, obtained from
(62), are Ry=X; cos 8 and Ry=X, cos 0. Let Qv
and Q,’ be the intersections of these curves with
(61). Then the coordinates Ry, 6; of Q)' and R, 0,
of Qo' satisfy the relations

Ri=X, cos 6;=2B sin 6,
Ry=X, cos 0,=2B sin 6,.

The distance of Q, from Q' in S’ is, in accord
with the Pythagorean theorem (52),

, 4¢* [R2—2R3R; cos (02— 61) +R2 7}

7 J—

g RoR,
(64)
464 Xg—Xl
¢ XoXy

which is independent of B.

We have now constructed a Euclidean mesh in
any plane of S passing through the X’ axis. Lastly
we have to consider measurements involving a
change in azimuth ¢ about the X axis. Let Q¢
and Q.' be two points with coordinates Ry, 0, ¢
and R, 0, ¢y+dy, respectively. The angle sub-
tended at O by radii vectors to Q) and Q) is
sin 6dy. Hence (53) gives for the distance be-
tween them in 5,

) 4ct sin 6dy
T # R

7 . (65)

Their common perpendicular distance in .S” from
the X’ axis is specified by (63). Dividing (65)
by (63) we obtain for the difference in azimuth
in S

Ay =dr' Jv' =dy. (66)

So, if we measure ' and y from coincident planes
through the X axis, we have ¢/ =y.

We have completed the proof that S’ is a
Euclidean reference system with constant light
velocity ¢, constituted of synchronous particle-
observers relatively at rest. We shall now as-
semble the space-time transformation between .S
and §'. First we note from (63) that the distance
in S’, measured along the perpendicular to the X"
axis, of points on the radial line OQ" of Fig. 6
becomes less and less as R, increases. From (29)
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we can write (63) in the form

=X’ tan 0 (67)

at t=1¢'=0, if X’ is the distance of Q' (Fig. 6)
from an origin O’ at a distance 2¢%/¢ to the right
of the former origin P’. All radial lines diverging
from O in S converge at O’ in S’. Just as O is the
point at infinity of .S/, so O’ is the point at in-
finity of S.

Now, taking O as origin of a set of spherical
coordinates R’, ¢’, ' in .S, where the polar angle
¢’ is measured from the negative direction of the
X axis, we have at once from (67) that ¢'=8.
We have already shown that ¢/ =y, although, if
we wish to make both sets of coordinates right-
handed we must measure ¢’ in the opposite sense
to ¥ and write ¢/ = —y. The relations between
R, R, ¢’ and ¢ are given by (29). So, if we put

p=¢R/2¢%, o =¢R'/2¢, T=o¢t/2¢c, T'=o¢t'/2c,

we have for the complete space-time trans-
formation

T'=T/(p*—T?,
p'=p/(p*—T?,
0=,

Y'=-—y,

T=T'/(p"=1"),
p=p"/(p"=T"),
=0,

y=-v.

(68)

The differential invariant of this transforma-
tion is

[1/(p*—T17?) N{dp*+ (p*— T*)(d6°+sin® §dy?) —dT?}

=[1/(" = T")]ds"

+(p"* = T")(d0* +sin? 0'dy’*) —dT"*}. (69)
The physical interval dR2+ R2(d6?-+sin? 6dy?)
—c%d#* between two nearby events as measured
in S is not equal to the physical interval dR”
+R"”(d0” +sin? 0'dy*) — *dt”* between the same
two events as measured in .S'.

As the physical interval is not an invariant
the present theory is incompatible with Ein-
stein’s. But the present theory is based solely on
the assumptions that in an effectively empty
region (1) there exists at least one Euclidean
reference system with constant light velocity,
and (2) all equivalent Euclidean reference sys-
tems with constant light velocity are physically
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indistinguishable as regards the formulation of
the laws of nature. The first assumption is gen-
erally admitted to represent the result of meas-
urement; it is difficult to see how the second can
be denied without denying the philosophy under-
lying the whole idea of the relativity of motion.
For equivalent particle-observers and equivalent
reference systems have been defined in such a
manner that two such particle-observers or two
such reference-systems stand in precisely the
same relation to the underlying constant light
velocity. In fact the space-time of a reference
system has been constructed, not from yard-
sticks of undefinable rigidity and clocks of un-
definable periodicity, but from the concept of a
universal constant light velocity. Hence the con-
clusion seems inevitable that the fundamental
assumption of an invariable physical interval,
which underlies Einstein’s relativity, is unten-
able. Either the postulate of an absolute four-
dimensional space-time, o7 the postulate of the
relativity of motion in an effectively empty
world, must be abandoned.

Let us suppose that no external electromag-
netic field is present in S at the time =0 at which
the relatively accelerated reference system S’ is at
rest relative to S. Then, clearly, no external elec-
tromagnetic field is present in S’. Consider an
electron at rest in both S’ and S at this instant.
Presumably an electron will remain at rest in a
Euclidean reference system with constant light
velocity in the absence of an external field.
Therefore it appears as if the electron under con-
sideration has a choice as to whether it shall re-
main at rest in S, .S’ or another of the infinitely
many equivalent reference systems with con-
stant acceleration relative to S. Actually, how-
ever, no indeterminacy exists. For the angular
distribution relative to S of the charge of an
electron of finite dimensions is different according
as the electron is permanently at rest in .S or .5".
What determines this angular distribution the
present theory does not indicate. But a given
angular distribution specifies the reference sys-
tem in which the electron remains at rest.

Consider an electron permanently at rest in .S’.
Then, relative to .S, the electron, starting from
rest in a field-free space, moves away with con-
stant acceleration and ever increasing velocity.
Although no work is performed by external
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forces, the kinetic energy of the electron con-
tinually increases. No violation of the conserva-
tion principle relative to S is involved, however.
For, as the velocity of the electron grows, its
linear dimensions relative to .S increase, and its
mass relative to S decreases. We have, then, a
conversion of mass into energy. As the velocity
of the electron approaches that of light, this
process of conversion approaches completion. We
have here a possible method (although probably
not precisely that occurring in nature) of conver-
sion of matter into energy. The converse trans-
formation takes place during a retardation.

It is hoped to deal with these matters quanti-
tatively in a succeeding communication. In addi-
tion it would seem desirable to investigate equiv-
alent reference systems having other types of
motion, particularly relative rotation, in the
hope of finding a rational detailed description of
atomic structure.

Further consideration leads to the suspicion

LUDWIK SILBERSTEIN

that it was not necessary to give a detailed proof
of the fact that the geometry of the reference
system .S’ considered in this Part is Euclidean.
For the particle-observer P’ to whom the refer-
ence system .S is adjoined is in exactly the same
situation with respect to light-signals as is the
particle-observer P to whom the reference system
S is adjoined. Therefore, as our geometry is one
based on light-signals, the geometry of a reference
system adjoined to P’ must be identical with that
of a reference system adjoined to P. If one is
Euclidean, the other must be also. Nevertheless,
most of the analysis presented would be required
to find the space-time transformation between
Sand 5.

The author wishes to acknowledge his in-
debtedness to his colleague Professor N. 1.
Adams, Jr. for a number of suggestions regarding
the presentation of the subject matter of this
paper, and to Mr. T. J. Carroll for verifying the
algebra leading to Eqs. (46) and (47).
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S has been shown by Levi-Civita! and as
the reader may ascertain more directly in a
perfectly straightforward way, the field equations
outside of matter, Ry =0, are satisfied by the

axially symmetrical line-element
ds?=e?dx,2— e~ >[e2M(dx 2+ dx2?) +x1%dxs], (1)

where v and A, functions of x;, x» only, satisfy,
respectively, the Laplace equation

1 9 dv 9%y
V%z———(xl— +—=0
X1 6x1 8x1 6x22

2

and the condition (equivalent to two partial
differential equations)

dv dv
d\= .’XJ][( ) ( )]dxl-f-le——*#dxz, (3)
6x1 0x2 0x1 02

1 I evi-Civita, Rend. Ac. Linc., Note VIII, Rome (1919).

where d\= (0N/3x1)dxi+ (ON/dxs)dxe is a total
differential, namely, in virtue of (2).

Since (2) is linear and homogeneous, the
superposition of any integrals is again an integral
of that equation.

The object of this paper is to derive a solution
of (2), (3) corresponding to two mass centers 4,
B, a field, that is, which has singularities at 4
and B only, and not (as in R. Bach’s and H.
Weyl’s physically trivial solution?) along the
straight segment joining these two points.

I may mention that I have constructed such
a solution (a stationary one) in December, 1933
and have then communicated it to Einstein,
pointing out, rather emphatically, that this is a
case of a perfectly rigorous solution of his field
equations and yet utterly inadmissible physi-

2 R. Bach and H. Weyl, Math. Zeits. XII, 134, Berlin
1922; see especially page 141 ef seq.



