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The Tension Coefficients of Resistance of the Hexagonal Crystals Zinc and Cadmium
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The tension coefficients of resistance of the hexagonal
crystals, zinc and cadmium, have been measured. These
coefficients have been found to be independent of the
secondary orientation. This is in agreement with a theory
set forth by P. W. Bridgman, as corrected by J.
Cookson; furthermore the experimental points lie within
experimental error of the curves given by the theory
representing them as functions of the primary orientation.

Cookson's correction gives the same formal dependence of
the coeKcients on the orientation as Bridgman's original
theory, but demands additional constants fully to define
the effect of deforming forces on the electrical resistance.
Further experimental work will be necessary completely to
determine this entire set of constants, and theory is
sketched to show that torsion experiments would furnish
the necessary data.

N two previous papers' ' a study has been
- - made of the tension coefficients of electrical
resistance of the trigonal crystals, bismuth and
antimony, as functions of the primary and
secondary orientations of the crystals with re-
spect to the cylindrical axis of the casting. The
findings of these experimental papers have been
in agreement with a theory of the change of
resistance produced by stress developed by P. W.
Bridgman' on the basis of crystal symmetry.
The experiments presented here were under-
taken in order to extend this work to crystals of
a different type of symmetry and so to verify
the theory further; hence the hexagonal crystals,
zinc and cadmium, have been studied. In the
meantime, a correction of Bridgman's theory
has been made by John W. Cookson' and it must
be examined to see how far it invalidates or
changes the interpretation of the already pub-
lished results for bismuth and antimony. Inas-
much as hexagonal crystals may be considered
as a degenerate case of trigonal symmetry, the
modification of the theory involved will first be
shown as it applies to the trigonal case. The'

elastic constants enter into the generalized equa-
tions of Hooke's law in the same way in both the
trigonal and hexagonal cases, but in the hex-
agonal case one of the six elastic constants of
the trigonal case is zero. That means that to
determine the change of resistance with stress
fewer constants will be necessary for hexagonal
than for trigonal crystals and that to pass from
the trigonal to the hexagonal case it is only
necessary to equate to zero one or more of the
coefficients involved.

' Mildred Allen, Phys. Rev. 42, 848 (1932).
"" Mildred Allen, Phys. Rev. 43, 569 (1933).
3 P. %'. Bridgman, Phys. Rev. 42, 858 (1932).
4 John W. Cookson, Phys. Rev. 47, 194 (1935).

CORRECTION OF THE THEORY FOR

TRIGoNAL CRYsTALs

In his theory P. W. Bridgman assumed that
the coefficients p„, relating the change in re-
sistance to the stresses should behave exactly
like the elastic constants relating the strains to
the stresses, that is, that they should be repre-
sentable by a symmetrical matrix in which

p„,=p„. In January, 1935 Cookson published a
note in the I'hysica/ Review showing on the basis
of the known symmetries of the tensors, tension
and electrical resistance, that Bridgman's theory
was incorrect in that the matrix of the piezo-
resistive coefFicients was not necessarily sym-
metrical and that as a result more constants are
necessary to define the change of resistance under
tension than Bridgman indicated. In the case of
trigonal crystals, two more constants are neces-
sary making a total of eight instead of six.

In comparing the Bridgman and Cookson
coefficients it is well to note that they are defined
differently by the two men. The coefficients p»,
p~2, p~3 and p33 are the same in the two cases;
the Bridgman coefficients pp4 and p44 are twice
as great as those defined by Cookson. In accord
with the earlier results reported, those used by
Bridgman will continue to be used in this work.

According to the original Bridgman theory the
tension coefficient P depends on the primary
orientation 8 and the secondary orientation y in

the case of a trigonal crystal in the following

way, the trigonal symmetry showing up in the
term in q.

P = (1/py) {pii sin' 8+pea cos' 8

+ (2p»+ p44) sin' 8 cos' 8

—2pi4 sin' 8 cos 0 cos 3q I. (1)
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The corrected theory gives the modified relation

It is to be noted that P is the same formal
function of the orientation angles as before, and
that therefore the conclusions drawn regarding
the fact that the tension coefficients show the
characteristic symmetries of the crystal still
hold. In my second paper, ' however, an attempt
was made to evaluate the piezo-resistive coeffi-
cients numerically and only part of the numerical
results can be accepted under this new interpreta-
tion. Eqs. (2) on page 571 of that paper are
empirical data drawn directly from the experi-
mental points and the functional relation (1) of
this paper; the functional relation (2) of the
present paper can be equally well satisfied if
there be substituted in these equations for
(2 pig+ p44) the new relation (p»+ pqi+ p44) and
for pi4 the expression (pi4+p4i)/2. Since these
data for bismutk do not appear explicitly in
either of the earlier papers, they are given here:

Uncorrected

p11=(—7.2&0.16)X10 '
pss={—6 2+0.41)X10 '

(p s+ p +p ) = (—7.1 +0.99)X10-'
(p14+p41)/2 =( 13.5&0.27) X10 '

Corrected for strain

p„= (—7.7+0.15)X 10-
pss = {-6.8+0.40) X10 '

(p +p +p44) =(—9.3~0.95) X10 '
(p14+ p41)/2 = ( 13.2&0.26) X10

(3)

It is obvious that as before the experiments with
linear tension can be expected to furnish only
four relations between the coefficients.

In the previous work two additional relations
between the constants were obtained from the
values of the pressure coefficient of resistance for
the two extreme orientations of the crystals, i.e. ,

with the corrected notation,

(1 hRy
(p»+ p»+ p»—)/p~

Ep R ) g=9p

t1 DRq = —(2p +p )/pe
(p R&, ,

P= (1/pe) I pii sill 8+p33 cos 8

+(pi3+p3i+p44) sin' 8 cos' 8

—(pi4+p4i) sitl' 8 cos 8 cos 3yI. (2)

Even with these, there is now an insufhcient
number of relations to determine all the coe%-
cients involved. Thus the values of the individual
p's given in the paper on antimony are invali-
dated (i.e., Eqs. (6) and (27)).

X', = 2X'y'/Qa',

I", = —2N'x'/Qa'

(6)

(7)

where Q is the area of the circular cross section
of the cylindrical casting and u the radius of
this cross section, and x' and y' are the distances
along the .coordinate axes from the shearing
force to the axis of the cylinder. It is to be noted
that these shearing forces increase proportion-
ately to the distance from the axis of the cylinder,
so that the change in resistance will not be
constant throughout the crystal, but those fila-
ments parallel to the axis and near to the axis
will change resistance relatively little compared
with those far from the axis, The total change in
resistance will then be the resultant of the
changes of resistance for these individual fila-
ments of small cross section. Iffi(8, q) represents
the shearing coefficient of resistance (1/X'. )
&&(hR/R) r for one of the individual filaments of
length / and of cross section dx'dy' twisted by a
force X', and f2(8, p) the shearing coefficient for
the same filament acted upon by the force F', ,

'%. Voigt, LehrbIck der Kristallphysik (1928 edition),
p. 636.,

FURTHER THEORY

This insufficiency in the number of relations
then requires the finding of additional data to
give further relations between the constants.
The most obvious procedure is to twist the
crystal about its longitudinal axis. The resulting
change in resistance must show the characteristic
symmetry, if Neumann's general law is to hold.
This has not been done experimentally, but
perhaps it is worth while to sketch the underlying
mathematics and so to indicate the experimental
problem that must be solved before these piezo-
resistive coefficients can be completely known.

A moment of force N' is to be applied to twist
the crystal about its axis of figure, i.e. , about the
Z' axis. Then X' will determine the values of
the shearing forces according to the formulae
given by Voigt, '
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F=N'/aQ

is the force per unit area applied tangentially to
the periphery of the crystal to produce the
twlstlng moment N .

The problem then resolves itself into 6nding
the functions fi(6, y) and fm(8, q) givmg the
relative changes in resistance of the individual
rectangular 61aments when subjected respec-
tively to the shearing forces X', and F', .
The primed axes are the axes of 6gure and the
unprimed axes the crystallographic axes, with Z
the trigonal axis and X the digonal axis, as
before. The known laws of the transformation of
tensors give the components of the shearing
force X', in the unprimed set of axes:

(~R/R)f=fi(0 w)X'*+f2(~ v) I"*' (8)

The problem then is to add up all the changes in
resistance for these various 61aments which are,
of course, in parallel with each other. In the un-
strained state the usual law for the addition of
resistances in parallel gives for the value of R,
the resistance of the entire crystal, the relation

and in the strained state there is the similar
relation

the total relative change in resistance for that where
hlament will be

The latter may be expanded by the binomial
theorem, since AR/R is a small quantity both
for the individual 6laments and for the entire
crystal, to give the relation

1p ARq 1 p DRfy

RE RJ f Rrh Rr)
which becomes, in the light of (9) and of the
fundamental de6nition of specific resistance as
applied to the 6lament of length / and of cross
section dx'dy',

aR R
(f,X';+—f2Y'. )dx'dy' (l2).

R Pisll

The substitution in this of the values of 'the

shearing forces given by Eqs. (6) and (7) gives
for the Iota/ relative change in resistance the
relation

AR 2N'
=fi(~ ~)—,—, p dp dx

R Q'a'

X~=2X,r Sln 0 Sln p COS p,

Py= —2X', sin 8 sin icos y,

Z, =O,

I g= —X g& cos 0 sin p,

Z~=X z cos 0 cos p,

X„=X', sin 0(cos' q
—sin' y).

(16)

~&ll =X.p»+ ~ypi~+Z. pl3+ ~.pl4+Z. O+XyO,

br22 ——X,P la+ FyP»+Z, P )3—F,P l4+ Z,O+XyO,

br33 ——X,p3l+ I yp3l+Z, p33+ Y,O+Z,.O+XyO,

P4l P4l p44
8rg3 ——X,——F„—+Z,O+ F,—+Z„,O+X„O, (17)

2 "2 2

p44
br„=X.O+ P„O+Z,O+ F,O+Z.—+X„p„,

2

These values must be substituted in the six
fundamental equations for the change in re-
sistance due to the application of stresses to a
trigonal crystal

1

2+1 g rs(g2 y s2) %

f2(~, v)-
2g2

brig =X 0+ 7'„0+Z.O+ T.O+Z pi4+X„(pii —pig).

/~ d& d3' (13) The total change in resistance is then to be found
from the relation

and, when the indicated integration has been
carried out, the torsion coef6cient of resistance
becomes

168 2 2
fi(~ v) —fi(ti v), -—

F R, 3~ 3i-

~&= ~r» sin2 8 sin2 y+ br~2 sin2 8 cos2 p

+8r33 cos' 8+28r23 sin 0 cos 8 cos p

+28f3q slIl 0 cos 0 sin y

+2hr, 2sin'csin icos p, (18)



TENSION COEFF I C IENTS OF RESISTANCE

which gives for the final shearing stress coefficient
the value

1
=—{p34+2p33} sin3 8 cos 0 sin 3y.

ps

This is seen to have the necessary trigonal
symmetry in p. If the same procedure is followed
through for an applied shearing force F', , the
shearing stress coefficient comes out to be

1 (ARy 1

}
=—{(2p —2p -p«)

Y', (R)f p3

Xsin3 8 cos 8+(2p33+p44) sin 8 cos' 8 (20)

+ I p~3(sin' 0 —cos' 0) —2p3~ cos' 0 } sin' 0 cos 3 y].
Thus the final shearing coeNcient of resistance
due to the application of a twisting moment N'
becomes (according to Eq. (10))

AR 2
{ (p33+2p43) sin' 8 cos 8 sin 3q

X'/aQ R 33rp3

+(2p33+p43 —2p~3) sin 0 cos 0

—(2p3q+ p33) sin 0 cos' 8+ {2p4$ cos 0

—p~3(sin3 8 —cos' 8) } sin' 8 cos 3e]. (21)

This gives Pve additional relations between the
piezo-resistive constants which are more than
are necessary. Thus for a complete solution of
the problem of the relation of the change of
resistance to stress, experiments involving the
twisting of the crystals may be performed.

The change of resistance due to the change of
dimensions will be more complicated to compute
than in the case of simple longitudinal tension,
chieAy because the coe%cients involved trans-
form in a much more complicated way.

EXPERIMENTAL PROCEDURE

The study of the hexagonal crystals, zinc and
cadmium, was undertaken for two reasons. The
first reason, as has been indicated, is that hex-
agonal crystals may be considered as a de-
generate case of trigonal crystals in which the
theory already developed may be applied if one
puts p~4= p4~=0. On examination of the above
theory, it will be seen from Eq. (2) that the
tension coefficient for hexagonal crystals must be

independent of the secondary orientation q.
The second reason is that all real metals crystal-
lize either in the hexagonal or the cubic system,
and the results for these two metals will con-
sequently be representative of those for a con-
siderable number of other metals. Bismuth and
antimony, on the other hand, are only quasi-
metallic, having a higher resistance than real
metals and with arsenic the only other element
having the same type of symmetry.

The experimental procedure with zinc and
cadmium was the same as that used with
antimony, the change in resistance being meas-
ured by the deflection method. ' These hexagonal
crystals required greater care, partly because the
effect to be measured is so small and partly
because the crystals bend so very easily. The
order of magnitude of the tension coefficient
proved to be the same as for antimony, but since
the specific resistance of zinc and cadmium is
only about one-sixth that of antimony, the
change in the galvanometer reading produced by
the application of the tension was correspond-
ingly smaller, and in fact varied between the
limits 0.2 and 1.2 cm. The uncertainty in the
measurement of the cross section of the crystal
cylinder surely introduced as great an error as
arose from the smallness of these galvanometer
readings, since the diameters were 1/16 inch and
the cross section was never accurately circular.

The zinc used was spectroscopically pure and
was furnished by the New Jersey Zinc Company.
The cadmium crystals were made from the pure
Kahlbaum metal. Both were cast by the writer
in cylinders 1/16" in diameter and 1—'," or 2"
long. The melting points of both these metals
were well below that of Pyrex glass, so that they
could be crystallized in glass molds in an atmos-
phere of CO2 to prevent oxidation as they were
lowered through the furnace. The metals would
have stuck to the molds if these had not been
washed out previously with a solution of lacquer
in chloroform. The elastic limit of both is low:
500 grams tension, approximately 250 g/mm',
for many orientations could be safely applied to
the zinc crystals and 100 grams to the cadmium.
The allowable force was determined by plotting
the change in resistance against the force applied
and finding how far the linear relation between
the two held. It would be of interest to study
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what happens beyond the elastic limit, but this
has not been done as yet.

Zinc and cadmium are both normal as regards
the sign of the pressure coefficient, it being
negative in both cases. In this they differed from
bismuth and antimony for which the pressure
coefficient of resistance is positive. These ab-
normal elements showed abnormality also in the
sign of the tension coefficient of resistance which
was negative for some orientations and positive
for others. Cadmium and zinc, however, are
entirely normal in that the tension coefficient is
found to be positive for all orientations.

ZINc REsULTs

Fifteen zinc crystals were measured; two
others were measured but discarded, the values
of the coefficients found being nearly twice that
to be expected in comparison with the other
values: such high values result easily' from
slightly cracked crystals.

According to the theory sketched above the
tension coefficient P of electrical resistance will

be related to the primary orientation 0 (0 being
the angle between the hexagonal axis of the
crystal and the cylindrical axis of the casting)
by the equation

J3 = (1/pg) {pii siil 9+pic cos 0

+(pig+ p3]+p4i) sin2 8 cos' 0I. (22)

(The specific resistance for the orientation 0 is

indicated by the symbol pe, and p», p», p», p»
and p44 are five of the six constants relating the
change in resistance to the applied stress. )
Thus the data from the tension experiments
furnish three relations between the six constants
involved. Applying the method of least squares,
the values of these three constants, using the
observed experimental data without correcting
for the change in resistance resulting from the
change i:n shape of the crystal, are the following:

pii= (0.86&0.26) X10 ",
pa3= (14.09&0.45) X10 ", (23)

(pii+pii+p44) =(15.27a1.2) X10 ",

where the tension 1 is expressed in units of
kg/cm'. The values of these same constants
corrected for the change in shape of the crystal are

1 2{Be oo Pe o

+
P 3 - Pe=oo pe=o

(25)

the average tension coefficient comes out to be
7.8X10 '. p is here the specific resistance of the
haphazard arrangement computed according to
the formula

1 1 2
+

p 3 —pe=oo pe=o-
(25a)

This is far greater than the observed value and
leads to the conclusion that the orientation of
the crystals is not absolutely at random, but
that there is a tendency for the zinc crystals to
form with their principal axes of symmetry
perpendicular to the axis of the cylindrical
casting. This is in agreement with the known
fact that in making single zinc crystals they tend
to cf'ystallize with the principal axis of sym-

metry perpendicular to the length of the crystal.
Since zinc crystals are easily cleavable, the

determination of their orientations could be
readily made. The tension coefficients were found

' Tomlinson, Phil. Trans. 1/4, 1 (1883).' H. Rolnick, Phys. Rev. 35, 506 (1930).' P. W. Bridgman, Proc. Am. Acad. 50, 305 (1925).

pii=(0 00+0.29) X10 ",
pap=(11 63&0 50) X10 ", (24)

(P18+p31+p44) = (15.19+1.35) X10 ".
The resulting empirical curves for P are shown
in Fig. 1 together with the individual observed
points. The difference between the points and
the curve is in some instances as great as
2&(10 ', but in view of the small deAections
which were measured this is well within experi-
mental error, so that the agreement seems satis-
factory. The average difference between the ob-
served points and the curve is about 1.1 X 10 '.

It is of interest to compare these results with
those found by other observers for polycrystalline
zinc. Tomlinson' in 1883 found the value for the
tension coefficient of zinc to be 2.75)&10 ' and
Rolnick7 quite recently, using a.c. technique,
found the value 3.26X10 '. Both these values
lie within the range of those observed with single
crystals of differing orientations. If the formula'
for the tension coefficient of a haphazard arrange-
ment of crystals of all possible orientations be
applied, i.e. ,
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to be independent of the secondary orientations,
as demanded by the theory. For instance, three
crystals of approximately 85' primary orienta-
tion and of secondary orientations 3', 10' and
14' had respectively the tension coeKcients 2.71,
1.58 and 2.91)&10 ' which agree within the
experimental error to be expected as indicated by
the agreement of the experimental points with
the empirical curve.

CADMIUM RESULTS

Sixteen cadmium crystals of various orienta-
tions were measured. The resulting data were
again compared with the theory, as given in

Eq. (2). Fig. 2 then shows the agreement of the
observed experimental points with the curve
determined according to this theory. In only one
case is the discrepancy between an experimental
point and the curve greater than 2X10 '. This
agreement is satisfactory in view of the fact
that the deflections were again at least as small
as in the case of zinc. The constants in Eq. (2)
had the following values:

(a) when no correction is applied for the change in shape
of the crystal,

p»= ( 6.08+0.33) )&10 "
p33 = (16.3 &0.53) )&10, (26)

(p]3+pay+ p44) = (11.7 ~1.7 }&(10-»

(b) when the correction is applied for the change in shape, '
p»=( 4.81+0.34) )&10»
p33 = (11.6 ~0.55) )(10» {27)

(p&3+ p3&+ p44) = ( 6.22 ~1.8 ) )& 10

The tension coeffi.cient for polycrystalline cad-
mium has not been determined and so the results

' These corrections are computed from the strain coeffi-
cients for cadmium given by P. |Aj'. Bridgman, Proc. Am.
Acad. 60, 305 (1925).
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Fro. 2. Tension coeAicient of cadmium.

of this experiment cannot be compared with it.
Inasmuch as cadmium crystals do not cleave,

the determination of the crystal orientation was
a matter of some difficulty, Various methods were
tried. One was to observe under a microscope
the angles made by the glide planes when the
crystal was stretched. "Another was to project
the reflection pattern on a screen, supporting the
crystal in a spherical flask of benzene which
acted as a lens. " However, neither of these
methods seemed to work easily and in the end
there was adopted P. W. Bridgman's method"
of observing the reflection pattern with the eye
and recording it by marking on a wooden sphere
(through whose center the crystal was rigidly
attached) the points at which a mirror held
parallel to the reflection planes of the crystal
would touch the sphere. Cadmium crystals then
showed hexagonal symmetry, their reflection
pattern consisting of twelve dots in each hemi-
sphere, six near the pole and six near the equator.
Regular reflections from the glass interfered with
the crystal reflections if the crystals were ob-
served before the removal from their glass
jacket. The crystal reflections could be notice-
ably increased by etching them in-dilute HC1,
where one part of water was added to two parts
of acid. The resulting orientations are probably
good to about 3'.

I am much indebted to Harvard University for
permission to carry out these experiments in the
Research Laboratory of Physics and to Pro-
fessor P. W. Bridgman for advice in connection
both with the experiments themselves and their
interpretation.

"Bruce Chalmers, Phil. Mag. 14, 612 (1932),
» E.Jakowlewa, Physik. Zeits. Sowjetunion 3,429 (1933).
'2 P. W. Bridgman, Proc. Am. Acad. 60, 305 (1925).


