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U= f . fZI&)4Q(k j)F5 dv .
Now the coefficient of P(»)(34) in the part of (5) involving
W explicitly is —h(»)(34) 8'= —6(»)6(34) TV. Hence it is seen
that the effect of the terms involving k &j&4 is covered
simply by displacing the origin for the energy by an
amount U, which we suppose done. (This is not quite the
appropriate displacement in the case of higher order
permutations. For instance, in the case of P(i2)(34)(56) one
would wish to absorb in 8' only terms corresponding to
k&j&6. However, except in the case of very high order
permutations, which presumably involve very small inte-
grals, the difference in the number of terms included is
negligible in view of the fact that the number n of atoms
is very large. }

It remains to be shown that we can disregard terms of
the form

Q(3, 1), Q(4, 1), Q(3, 2), Q(4, 2) (35)

and Q(k, j) where k &4 and j=1,2, 3, 4. {36)

The effect of each individual term in (35)—(36) is small in

absolute magnitude compared with that of Q(1, 2) or
Q(3, 4) and presumably differs from the latter by a factor
of the order 8, where b is defined as in (1). Namely,
there are 2n —2 factors in (3) which are large in regions
where Q(1, 2) or Q(3, 4) are important, as is seen on
substituting (6) in (3), specialized to P(') =P(»)(34) and
remembering that each P function is large only on its own
atom. On the other hand, only 2n —3 factors are large
where any term of the type (35) or (36) is important.
Furthermore, if each atom is coupled only to its neighbors,
the terms (36) outnumber Q(1, 2), Q(3, 4) only by a factor
2s. Since s, the number of neighbors, is small (6, 8, or 12)
for the various cubic arrangements, we are justified in

neglecting (35), (36) if the interatomic distance is sufh-

ciently large. From the foregoing considerations, it appears
that the error due to dropping (35), (36) is of the order 2zb
when measured relative to unity. This fact at first sight
seems rather disquieting, as the errors we estimate due to
other causes are of the order 2zb' (cf., for instance, Eq.
(23)). Thus the approximations (10) and (11) would
appear to be the dominant causes of error, causing trouble
unless 8 is exceedingly small. However, one fortunately
finds that the order of the error can be reduced to 2zb' if
in computing V(»), for instance, one takes the potential in
the integrand of (3) to be not just X(1, 2)+ZW;+ U+C
but rather that

&(& 2)+r&'+U+~f J~»LI:U, &)+&U, 2)Ilail'
ip i&dv& d& (37)

inclusive of contributions from the time exposure charge
clouds of atoms other than 1, 2. Such a procedure is
essentially the analog of the Hartree method. The error
resulting from (35) may seem to still be of order 5 rather
than 5', but as a matter of fact is entirely inconsequential.
Indeed for a given permutation P(i2)(34) it is altogether
unlikely that 3 or 4 be a neighbor of 1 or 2, meaning that
for the great bulk of permutations, terms of the type (35)
are nonexistent so long as we are including only coupling
between adjacent atoms. Hence the approximations (10)
and (11)are no more serious sources of error than the other
causes which we consider.

It is interesting to note that no internuclear terms e'/R&'~

contribute to (37), as their contribution to C just cancels
their effect on the rest of {37).As already stated, the terms
ZS; and U also have offsets in C.

In the preceding discussion we have considered for
simplicity only fourth order permutations, but the argu-
ment can be readily extended to others.
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It is pointed out that, by removing a single quantum-mechanical postulate commonly
accepted, several conceptual difhculties in quantum-mechanical description can be eliminated.

'HE discussion of a recent paper by Einstein,
Podolski and Rosen' has brought to light

an interesting divergence of opinions as to the
meaning of reality. To the writer it seems,
however, that the issue at stake is more than
the merit or demerit of any particular conception
of reality, and that a very fundamental point of

i A. Einstein, B. Podolski and N. Rosen, Phys. Rev, 4V,
777 (1935);E.C. Kemble, ibid. 4'T, 973 {1935);A. E.Ruark,
ibid. 48, 466 (1935); N. Bohr, ibid. 48, 696 (1935).

quantum-mechanical axiology is involved. For
Einstein, Podolski and Rosen have shown, by
employing correctly the usual quantum-mechan-
ical postulates, that the state of system 1 which,
by hypothesis, isisolated from system 2, depends
on the type of measurement performed on
system 2. This, if true, is a most awkward
physical situation, aside from any monstrous
philosophical consequences it may have. %'e wish
to show that, by the removal of a single postulate
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commonly accepted, the real difficulty inherent in
Einstein-Podolski-Rosen's conclusion disappears.

The postulate in question may be stated thus:
When a (single) measurement is performed on a
physical system, then immediately after the
measurement the state of the system is known
with certainty. That is to say, if the system is in
a state p, the measurement causes the state
function to transform itself into P, where P is an
eigenstate of the operator belonging to the
measured observable. This assumption is clearly
involved in Einstein-Podolski-Rosen's interpre-
tation of the reduction of the wave packet, and
if it be denied that in general a measurement
produces an eigenstate, their conclusion fails,
and the dilemma disappears. %'e shall refer to
the postulate stated as I.

I is not self-evident, or a priori true; for there
is hardly more justification for supposing that a
single measurement determines completely the
state after, than to suppose it to determine
completely the state of the system before the act
of measurement. The latter is usually denied;
to admit the former supposition would introduce
a peculiar asymmetry into quantum-mechanical
description. But there are stronger arguments
against I.

I is definitely contradictory to another, in a
sense more fundamental, postulate, namely,
Schrodinger's time equation. To supply sub-
stance to. the following simple but formal con-
sideration the reader may think of the system as
a particle, of the state function as referring to a
pure case with respect to momentum, of 3II as a
coordinate measurement, and therefore of iP as
a 8-function. I implies that, under the act of
measurement, y—&P, or, to use customary ter-
minology, the operator M converts y into f:

We observe that in this equation 3II cannot be a
unigue operator such as those with which we
are usually confronted in quantum mechanics,
for P depends on the outcome of the measurement

and cannot be predicted. That is to say, while we
know, in our example, that P is a b-function,
the position of its peak is not fixed. ((1) must not,
of course, be mistaken for a characteristic value
equation, since y and P are different functions. )

Eq. (1) is. sometimes interpreted differently.
It is supposed that M selects from an assemblage
of systems y a subassemblage P and that it is
not the total assemblage y which undergoes a
transition from a state to an eigenstate. ' But
there are difficulties in such a view, of which two
may be mentioned.

1. If q truly referred to a larger collection of physical
systems than P, the two functions would have to be
constructed in different conhguration spaces, and it
would be difficult to give mathematical meaning to (1).

2. It is certainly proper to make a measurement on a single
system. In that case the above interpretation, which
involves the splitting oG of a subassemblage, is meaning-
less.

We thus conclude that (1), if it has significance
at all, must imply the actual transformation of
the state function for a single system into an
eigenstate function for the same single system.

On the other hand, the me'asurement is cer-
tainly a physical operation, describable in the
ordinary manner as an interaction between
physical systems. As such it is subject to
Schrodinger's equation. Let the "natural" Hamil-
tonian operator (the form valid for the isolated
state) of the system be H0, and let HM represent
the interaction with. the measuring device (in our
example coupling terms with the radiation field),
so that II=HO+II~. Then

Hy = (h/2m. i) (8y/Bt).

Thus if the measurement takes place in a small
time ht, w'e have

hy= (2ni/h) titHy

Since q+ Aq is the function into which the
measurement converts y, and which we pre-
viously called f,

I 1+(2xi/h) tit(HO+ HM) I y = p. (2)

This relation is of the same form as (1). But it
is unlikely to make |t a 8-function even if the
correct form for H~ were known. The essential
contradiction, however, arises from the fact that,

' I owe this criticism to Professor Kemble.
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if we put

xV= 1+(2~i/h) d t(IIO+H~)

into certain knowledge, has not changed the dis-
tribution of the probability aggregate from which
I started.

as (1) and (2) require, the left-hand side of this
equation is an unspecifiable, nonunique operator,
while the right-hand side is unique. ' Since both
(1) and (2) cannot be correct, we abandon (1).

The assumption that a single measurement
fixes a state either before or after the act of
observation is untenable from the point of view
of any reasonable probability theory. In contrast
with classical physics, quantum mechanics de-
fines its states in terms of functions, y, in con-
figuration space in such a way that there exists
a unique (aside from arbitrary phases) corre-
spondence between q and a sequence of prob-
ability amplitudes. More explicitly, p, and hence
the state which it represents, is entirely equiva-
lent to a set of numbers f2; associated with a
certain operator P. This set of numbers defines
a prabo, bility distribution, whose elements are the
observations on the observable p which belongs
to the operator P, and whose properties are the
eigenvalues of P.4 A quantum-mechanical state
is therefore synonymous with a probability dis-
tribution. A probability distribution, however,
cannot be fixed by a single measurement, but
requires a very large number of observations.
This is true even if the distribution consists of
zero's for all properties but one (quantum-
mechanical pure state).

To illustrate: In throwing a die, the probability
distribution, which corresponds to the quantum-
mechanical definition of a state, is the sequence
of numbers 6 —,

' for the properties 1 6.
If a 5 turns up in a single throw, I can conclude
that I have thrown a 5, but cannot infer the
distribution —,

' ~ ~ 6. This can be done only after a
large number of throws. The fact that I have
thrown a 5, while it has converted my ignorance
with respect to the outcome of this observation

~ This situation is of course known. Von Neumann (Math-
ematische Grundlagen der Quantennsechanik) deals with it
most thoroughly. W'e find it difFicult to accept his ex-
planation for reasons to be discussed elsewhere.

4 For terminology see V. Mises, IVahrscheinlichkeits-
rechnung (Deuticke, 1931).The present point of view has
previously been presented in greater detail by the author in
The Monist 42, 161 (1932).

The removal of I renders impossible the
Preparatioe of states in the manner advocated by
Dirac and others. But the situation is perhaps not
altogether unsatisfactory on that account, for it
is still possible to ascertain a state, namely, by
performing a large number of observations.
A typical instance of a comP/etc set of simul-
taneous observations which does define a state
is the photographic record of a spectrum, where
the intensities represent at once the distribution
of probabilities among the various pure energy
states. It must be admitted, however, that the
relation between abstract states and experience
is a source of difficulties which weaken the pro-
posal here made and which must be subjected to
closer scrutiny.

VI

While the previous arguments seem to show
that I is in several respects undesirable and con-
Aicting with other axioms, one may also convince
himself that it is unnecessary. For no significant
quantum-mechanical calculation requires I.Space
does not permit an elaboration of this assertion
here. '

VII

Returning to the argument of Einstein-
Podolski-Rosen, the solution of their problem in
the light of the present considerations is clear.
If a great number of measurements of A had been
performed on the state of system (1) after the
interaction, all the coefficients P„ in Eq. (7) of
Einstein-Podolski-Rosen's paper would have
been determined. Conversely, if many measure-
ments had been made on B, all the q, in their Eq.
(8) would be known. A difficulty can arise only if
the expansion of the right of (7), with the experi-
mentally determined f„'s, yielded a different
function that does the expansion in (8) with
experimentally determined p, 's. There is no
indication that this will be the case.

' The author hopes to return to the entire problem in a
paper to be published in J. Phil. Sci.


