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Nonorthogonality and Ferromagnetism
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The calculations in Heisenberg's theory of ferromagnet-
ism have been questioned by Inglis and others on the
ground that the error resulting from the nonorthogonality
of the wave functions may possibly increase without limit
when the number of atoms becomes arbitrarily large. In
the present paper it is proved that this difficulty does not
really arise. Semiquantitative formulas are given to correct
for the error due to nonorthogonality, which is shown to
be of the order 2sb' relative to unity, where s is the number
of neighbors and 8 is the overlap integral (1). A supple-

mentary note is included on a new method of approxi-
mating the partition function in Heisenberg's theory.
This approximation should be somewhat better than the
assumption of a Gaussian distribution, but agrees even
worse with experiment, provided one assumes orthogo-
nality. Actually, the inAuence of nonorthogonality is
sufficiently large to render uncertain any attempt to
deduce exactly the critical conditions (minimum number
of neighbors, etc.) necessary for ferromagnetism.

INTRODUCT ION

N an interesting paper, Inglis' has stressed the
- - fact that all existing secular calculations by
the Heitler-London method in a system with a
very large number of electrons are subject to
question because they assume that the wave
functions of the different atoms are mutually
orthogonal. The most notable calculations open
to this objection are those in Heisenberg' s'
theory of ferromagnetism. The apparent diffi-

culty arises regardless of how small is the
"overlap" or "nonorthogonality" integral

v=jff P'(1)P (1)dv)

Indeed Inglis shows that if the number n of
atoms is large, the secular determinant is so
prolihc in terms involving 8 as to suggest that

-in the final result the correction factor due to
nonorthogonality may be of the order 1+nb'
rather than 1~5' as in the familiar two-particle
case. (Cf. also our discussion following Eq.. (8).)
If this is really the case, the ordinary calculations
on ferromagnetism, etc. , become devoid of all

meaning, since regardless of how small is 8, the
error can be made arbitrarily large by taking n

suf6ciently great. In a crystal, the number n is,
of course, to be considered as enormous.

To be sure, the success of Heisenberg's theory
of ferromagnetism is indirect evidence that the
nonorthogonality catastrophe is only an apparent
one. However, until a mathematical proof has
been given, the theory can scarcely be said to be

' D. R. Inglis, Phys. Rev. 46, 135 (1934).
2 W. Heisenberg, Zeits. f. Physik 49, 619 (1928).

on a rigorous basis. In the present paper we aim
. to supply such a proof.

Let us consider a system of n electrons in n
distinct states. Each state is to relate to a
different atom. We shall assume that we are
solving only the problem of exchange degeneracy.
Every atom must then be in an s state, as
otherwise there would be the spatial degeneracy
to contend with. The secular equation associated
with the exchange degeneracy is

det. K=O,

where K is the matrix

K= g.(p'(o ~g(~))p(&)

V&" =f f(P&')V)H%dv, dv„

6&'= J' f(P&'+*)+dv) dv„.

(3)

(4)

When preceding a wave function +*, the symbol

P, of course, denotes a permutation operator
rather than a permutation matrix, while H is
the Hamiltonian operator.

The sum in (2) is over the various possible
permutations, and embraces only a finite number
of terms since n is finite. Written out more
explicitly, with the constituent cycles of each
P"' speci6ed, (2) is

' For fuller explanation of the meaning of permutation
matrices in connection with exchange degeneracy see P. A.
M, Dirac, Proc. Roy. Soc.A123, 714 (1929), or Chap. XI of
his I'rincip/es of Quantum Mechanics, first edition.

Here S' is the desired energy constant, P "& is a
Dirac permutation matrix, ' and V&'), 6&'& are
the integrals
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A notation such as (jj)(kljn) means i—)j )j-;
k~l —+m~k, and any given permutation is to be
counted only once in the summation. Thus
P(ll, )(;;) is not to be regarded as distinct from

P( 'j) (l l) etc. The wave functions + to be used in

(3)—(4) are those of the simple product form

+=4((1)kk(2) 4-(n), (6)

since before solution of the secular problem, the
proper linear combinations are not known.
Because of the invariance of H under permu-
tations, it matters not which particular + is
selected for use in (6). Thus the first two factors
in (6) could equally well be P)(2)f,(1). In
writing (5) we have assumed that the additive
constant in H (and hence in W) is determined in
such a way that (3) vanishes for the identical
permutation, and the coefficient of 1 in (5) is

consequently simply —W. This point is discussed
further in the appendix, and must be kept in
mind when the exchange integrals (3) are com-
puted, as they are not invariant of the origin
for H.

To show that it is not obvious that the
nonorthogonality or 6 terms are of subordinate
importance, let us try the approximation some-
times made in the literature of stopping with
second order permutations. Then (2) becomes

K = —Wl+ P j&;[V(,j) —6(;;)W ]P(;,)

+Q[V(;;i,) —6(;.jk) W]P(;;k)

+K[V(ij}(k)) ~(ij)(kl)W]P(cj)(kl)

+Q [V{cjkl) ~(ijkl) W]P(cjkl)

+permutations of fifth and higher order. (5)

would give such an absurdity as 8'= ~ if
l)'= 2/ns. We shall see later that in reality it is a
poor approximation to stop with only second
order permutations and that for large n, rather
than use (8), it is a better approximation to
disregard nonorthogonality completely, and em-

ploy simply

&= »&'[V(')P(')] —W1 (~)

as the secular matrix.

FACTORIZAT ION OF THE EXCHANGE INTEGRALS

AND SECULAR DETERMINANT

Let us consider an exchange integral such as
V(;;)(H) which is associated with a permutation
which can be factored into simple permutations,
with each cycle involving different atoms. In
the computation of this integral, the most
important portions of the Hamiltonian function
are the part which involves the coordinates of
the electrons on atoms i and j, and the part
which involves the coordinates of the electrons
on atoms k and l. This point is analyzed more
fully in the appendix —it seems best not to
consider it more fully at present since it is
perhaps fairly obvious that if, for example, we
are permuting electrons i and j, it is their part
of the Hamiltonian function which gives the
most important contribution to the exchange
integral. This assumption provides a simplifi-
cation needed for our later work by permitting
factorization of the higher order exchange inte-
grals into exchange integrals of lower order and
nonorthogonality integrals. Thus it enables us to
write

~(ij)(kl) ~(ij)~(lcl)+ ~(lcl)~(ij)y

K= Z &*[V('j)—~('j) W]P('j) —W1 (7) similarly

To see how things go, we note that one root of
(7) is easy to find, vis. , that corresponding to the
antisymmetric orbital solution. Here the P(;;) all
have the characteristic value —1. Let us assume
that the nonvanishing 6(;;), V(;;) all have common
values 8, J, respectively, and are —,'ez in number,
as is the case when each atom is coupled to z
neighbors. Then according to (7)

V(ij)(kl}( )Vm(ceil)c-((ki)~(mcc)+ V(kl)c-)(ij)+(mcc)

+ V( )~('j)~(kl) (11)

V{ij)(lmcc) V(i'j) +(lmcc) + V(lmcc)~ (ij) i

The trick is now to note that if we accept (10),
(11), then under certain conditions (2) or (5) is
nearly the same, for large n, as

W= ——',ns J/(1 ', nsl)')—- (8) [1+2~(' )P(' )+r(1('jk)P(' k)

The nonorthogonality thus spoils the answer
completely for large values of n.& In fact, (8)

+Z (ij)(kl)P(ij)(kl)+ ' ' '][+V(ij)P(ij)

+Q V(;jk)P(;jk)+Q V(;;kl)P(;;kl) —Wl], (12)
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for when we multiply out (12) and employ (10)—
(11), we obtain all the terms of (5) and also
certain extra terms. No permutations of the type
(ij)(kl), etc. , occur in the second factor in (12).
Use of (12) will be warranted when these extra
terms are not too abundant. They occur when-
ever one or more subscripts is repeated in both
factors in the multiplication. For instance,

t1('t)p('i& I ('«) ('«) = t«(*i) I ('«) ('t«) (

is a term included in (12) but not in (5).
If (12) were rigorously true, the secular

problem would be greatly simplified. Since the
determinant of the product of two matrices is
equal to the product of the determinants, we
could equate the determinant of the second
factor in (12) to zero. It is particularly to be
noted that the only P's above the second order in
this factor are those involving permutations
which cannot be factored into two or more
distinct permutation cycles. Such permutations
we shall call unfactorable permutations. On the
other hand, all types of permutations are included
in the first factor of (12). If it is allowable to
discard the V's associated with nonfactorable
permutations, i.e. , to set

(14)

then the second factor of (12) reduces to (9),
and the energy levels W' are the same as those
associated with a secular problem (9) obtained
by completely disregarding nonorthogonality and
higher order permutations. The whole demon-
stration thus resolves itself into the consideration
of the amount of error involved in the substi-
tution of (12) for (5) and in the assumption (14).
We shall discuss the latter first. It is to be
emphasized that while (14) discards nonfac-
torable permutations, it is very necessary in
the proof to retain the V's associated with
factorable permutations, for it is their very
existence which makes possible the cancelation
of most of the effect of nonorthogonality.
Although they do not appear in the second sum
in (12), their effect has not been discarded, as
they are yielded on multiplication of the two
factors,

Examination of the approximation (14). We
may distinguish between two cases: first, one in

which every atom is coupled to every other
atom, i.e., where U(ij) is of about the same
order of magnitude regardless of the location of

and j. The second case is that where the
important coupling is between adjacent atoms,
so that we may take V(ij) =0 unless i and j are
neighbors. Fortunately it is the second case
which occurs in nature. Of course it is an
idealization to consider only the coupling be-
tween adjacent atoms, but the coupling energy
decreases exponentially with the interatomic
distance, and this fact makes the convergence
essentially that characteristic of the second case.

In the first case, the number of nonfactorable
permutations is comparable with the factorable
and (14) surely is an unwarranted approxi-
mation. For instance, the number of permu-
tations of type V(ijI, &) is of the same order n4 as
the number of the form V(ij)(I,~). The terms of
type U(ijI, &) are presumably individually of the
order of magnitude V(;;)A(I,~) like U(ij)(~~), and
the abundance of the former is so great that
regardless of the smallness of 6&&, they over-
shadow the retained ordinary second order
terms V;;, which are individually much larger,
but only -,'n' in number.

In the second case, the nonfactorable permu-
tations are relatively much less abundant than
in the first. For instance, in linear chains, or in

simple, face-centered, or body-centered cubic
arrangements, there are no terms of the third
order type V(ij~), as long as we are including only
coupling between adjacent atoms. The number
of terms of form U(ijA, , I) is at most' of the order
ns', where z is the number of neighbors possessed

by a given atom. On the other hand, the number
of factorable fourth order permutations, such as
V(ij)(1,~), which we retain, is of the order n's'. The
number of ordinary second order permutations
involved in (5) is 2ns. If V(;;&(«» is comparable in

magnitude with V(ij)h(k~), the ratio of the effect
of the neglected unfactorable permutations to

4Unfortunately it does not appear feasible to derive
exact expressions for the number of discarded nonfactorable
permutations appropriate to the various types of spatial
arrangements, In the case of the linear chain, such permu-
tations are entirely absent if we consider only coupling
between adjacent atoms. For simple cubic gratings (a=6)
there are 6n relevant permutations of type (ijk3). So we have
probably overestimated the number of nonfactorable
permutations of mth degree connecting adjacent atoms
when we state that their abundance is of the order ns I2.

However, it seems better to be on the safe side of things.
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that of the ordinary V(;;) terms is presumably of
the order zh;;. Similarly, the number of un-
factorable terms of the mth order is roughly
nz ", or less, 4 and the size of each term
U( 7)6( 7)

( —' )". The abundance increases with
order only as a power of z rather than n, and is
offset by the occurrence of a higher power of
6&;;&. Hence we conclude that (14) is warranted
if 6&;;& is small compared to 1/s.

~('7a) =~(';») = (15)

Eq. (15) is the natural analog of (14), and re-
quires that 6(') vanish for any permutation
which is not factorable into simple permutations,
since the 6(') for any differently factorable
permutation have at least one factor of the form
(15). For instance, 6&,;&&&, & & =6&;;&A&i&„&. The
suppositions (14) and (15) can be regarded as
slight specializations of the model as far as the
comparison of (5) and (12) is concerned. Because

CALcULATIQN oF ERRQR INvoLvED IN SUBsTI-
TUTIQN QF (12) FoR (5)

When the multiplication in (12) is performed,
it is easily seen that the superHuous terms as
compared with (5) are relatively small in number
provided each atom is coupled only to its
neighbors. For instance, there are about nz'
terms of the unwanted structure (13), whereas
there are nearly n's'/4 terms of the desired type
5(;;)V(»)P(,;)P(»), individually of the same order
of magnitude U;;dI, ~. Hence it is reasonable that
(12) is an allowable approximation. This argu-
ment cannot, however, be regarded as entirely
rigorous, for the extra terms are still exceedingly
numerous in absolute numbers. A simjlar dif6-
culty did not arise in connection with (14), as
(14) is an approximation internal to the second
factor of (12), whereas the first factor is much
more prolific in higher order terms. Hence it wi11

be safer and more illuminating if we examine
quantitatively the difference between (5) and
(12) by studying some specific examples in
which the energy can be calculated explicitly
both with and without the approximation (12).

In all these examples we shall make the
approximation (14), and also assume that the
6's associated with nonfactorable higher order
permutations vanish, so that

if I'") is expressible as the product of k simple
permutations of neighboring atoms, with different
atoms involved in each constituent cycle. Other-
wise 6") and V"' vanish.

Even with these approximations, the secular
problem is one of hopeless complexity except as
we confine our attention to particularly simple
special solutions. One root of this character is
that which corresponds to the antisymmetric
orbital state or in other words to completely
parallel alignment of spin. Here P") has the
characteristic value +1 or —1 according as it is
an even or odd permutation. The solution of (5)
thus becomes

J[—vi+2vil&' —3v38'+ ]S"=
[1—v&6'+ vu54 — ] (17)

where vI, is the total number of permutations of
degree 2k which can be factored into k simple
permutations. The gist of Inglis's observations,
when applied to (17), is that since vi, vi, are
very large in a crystal, the numerator and
denominator of (17) certainly have vastly
different values than when one stops with the
first term, so that it is not obvious that (17) has
nearly the same value as when 5 =0. The essence
of our answering argument is that the terms
involving 8 enter nearly as a common factor in
numerator and denominator, so that the value of
the ratio (17) is, for small 8 but arbitrarily large
n, not much different from that obtained by
stopping with the first term. To see that this is
really so, we now consider the following particu-
lar models.

only a small percentage of the V's and 6's are of
the form (14) or (15), the error involved in
passing from (5) to (12) would very proba, bly
not be materially altered if different values than
(14) and (15) were assumed. We shall suppose
that all nonvanishing 6(;;)and V(;;) have common
values 5' and J, respectively. The notation 8'
rather than 8 is used because a simple permu-
tation introduces in (4) two one-electron inte-
grals of the type (1), namely, one for each of the
two electrons involved. The first and second
expressions of (11) now become 3'&' and 0,
while more generally

g(I', ) g2k V(s) p Jg2&(&:—2
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(u) Open linear ckIIin. Here each atom has two neighbors, except the end atoms, which have only
one. The I q may be evaluated rigorously, and one finds that the denominator D of (17) is

D = 1 (n—1)—5'+-', {e 2)—(II 3)—0'+ +(—1)"(I—k) (n 2k—+1)2"/k!+ .

This 6nite series is exactly summable5 to

It is not necessary, for any of the models, to give the explicit form, or mode of evaluating the
numerator of (1'/}, as, except for a factor J, the numerator is obtained merely by differentiating the
denominator with respect to 8' and so presents no trouble.

With the aid of (18), one finds that (17) becomes

cosh' s (II+1) cosh (II+1)q cosh s sinh qg= —2J S
sinh q sinh (n+1)q sinh q cosh q

For very large n, (19) is the same as

'ifr= —28 J[N(1 48')—' I+—(1—48'} '* —(1—48'} 'j= —(n —1)J(1+38'+. ). (20)

The dots denote omitted terms of order 9 and higher. Now —(n 1)J i—s the value of the energy
which would be obtained with neglect of nonorthogonality, i.e., by using (12}rather than (5). So the
correction factor due to nonorthogonahty is (1+32+ ) and not (1+Ii''+ ~ . .) as (8) would

suggest.
(k) Closed liiMar chain. A closely allied problem is that of the cyclic hnear chain, which differs

fI'oill (R) oIlly In tliat tlicrc Rrc Ilo cIld Rtollis. Tllc series II1 'tile denominator of (17) is Iiow

1 IIV+—2In(II 3)B'+—. +{ 1)'II(N—k 1).—(—n 2k+1—)B"jk!+ =28" cosh Nq,

with q as in (18). So (1'/) becomes

W= —2J'(cosh' y/sinh s)(n tanh ny I tanh q—),
Which foI large g is

W= ——', II(J/8')[(1 —48') ** —1)= —IIV[1+38'+ ~

The correction 1+32+ due to including nonorthogonality is exactly the same as in (20} as one

wouM expect since it is physically reasonably apparent that it doesn't Inake much difference whether

or Ilot tile cllR111 18 closed. Tile fRct tliRt' (21) involves I RIld (20) coIltRills Ii —1 18, of course, bccRllsc

the closed chain involves one Inore pair thaQ the open chain. .

(c) Three diINeIIsiona/ ro-IIfiggra/ioris. We now taclde the more physical problem where the atom has

s rather than 2 neighbors. (The simple cubic arrangement has 8= 6, the body-centered 8 = 8, the face-

centered s= 12, etc.) We shall neglect the "edge effect" resulting from the fact that atoms at the edge

of the crystal do not have their full quota of neighbors. The similarity of results with (a) and (b)
makes it clear that this is legitimate. Even then, it would be exceedingly dif6cult to obtain, to say
nothing of sum the series with, an accurate general formula for vI, . Hovrever, a suf6ciently good

approxlIQatj, on ls

I i+I ——I p[-', ns —2ks+k+O(k/n) jj(k+1),

where the symbol O(k/II) means that terms involving 1jn. and other negative powers of n have been

neglected.

For evaluation of the series see Bron~mich, Theory Oj Ingmke Series, pp. 377-178. I am indebted to my father,
E. P. Van Vleck, for calling my attention to this reference.



When we use (22) the denominator of (17) becomes

D = 1 —', n-sb'+ + (—1)"+'(-,'ns) (-,'ns —2s+1) ~ ~ (-,'ns —2hs+h) 8"+'/(0+1) !+
This series can be evaluated by the binomial theorem, and is merely $1 —(2s —1)8'$"'t&"-n.
Consequently (17) is

W= ——',net'/L1 —(2s —1)8'j= ,'n—sJ-I 1+(2s 1)—5'+

The correction factor for nonorthogonality again involves only s and not n. As a valuable check. on
the validity of the approximation (22), we note that if s= 2, as in the linear chain, this correction
becomes 1+38'+ ~ ~ ~, agreeing perfectly with (20) or (21). (The agreement, however, is lost when

higher powers of 8' are considered, as further development of (21) gives 1+32+108'+358'+
whereas (23) yields 1+32+98'+276'+ ~ .)

Note particularly that the overlap integral 8 enters in (20), (21), (23) only in its square. Conse-
quently if, say, we have 8=0.1, a value not unreasonable in ferromagnetic applications, and if 2=8
or 12, as in the ferromagnetic lattices, the correction due to nonorthogonality modi6cs the answer by
about 20 or 30 percent —not enough to spoil the general trend of the Heisenberg theory.

It is, of course, reasonable that the correction due to nonorthogonality should depend on thc
number s of neighbors rather than on the total number n of atoms 1n the system. If this correction
kept increasing with n, it would presumabIy be impossible to isolate different portions of the universe
for even approximate calculations, and it is doubtful whether quantum mechanics would make sense,
for regardless of how large were the mean distances between atoms, the results w'ouM keep depending
on the total size assumed for the complete system.

(d) Coupling betsoeen every atom. It is interesting to note that (17) can be evaluated accurately here.
The denominator becomes

D =1—-', n(n —1)5'+ +(—-,')'n(n —1) (n —2h+ 1)P'/h!+ ~ = (2/S).H.(1/S),

where H„(x) is the Hermitian polynomial of order n. We are interested in the asymptotic value of
H„(x) for large values of n, and for our purposes it is sufEicient to use the approximation H„(x) const.
&&e**'cos L(2n)&xj, which may be obtained by applying the W.K.B. expansion to the differential
equation satis6ed by H (x). (If n is odd rather than even, the sine rather than cosine should be used. )
The expression (17) becomes

W= ', J$ nt '-tl—4y-(2n—) tt-stan (2n-/y):j. (24)

The result (24) fluctuates with n in an irregular, meaningless way, and is entirely different from the
formula obtained with disregard of nonorthogonality. It is thus fortunate that the present case (d)
is one of only academic interest. It is barely possible that the trouble would be less acute if calcu-
lations could be made without the assumptions (14)—(15), which are entirely unwarranted in (d).

Discussion of other roots than the antisymmetric
orbital solution, Ke have apparently made our
discussion very special in the preceding examples
by considering only the solution which is
antisymmetric in the orbits. Conceivably one
might ob]cct that thc IlonorthogonRllty coI'-

rections are more important under other condi-
tions. To show that this is not so, we may note
that there 1s one more CRsc which CRIl bc Solved
RccuI Rtcly, —SiS., that obtained by using the
symmetncRI orbital solution. The latter obvi-

I

ously doesn't satisfy the exclusion principle, as
we ean't have all spins mutually antiparallel at
once. However, for formal purposes we ean
imagine ourselves in a universe not goveIned by
Pauli. One obtains the symmetrical from the
antisymmetrical problem merely by changing all
minus to plus signs in (17). Hence all our
previous calculations (a), (b), (c), (d} can be
immediately adapted if we simply change the
sign of 8' and J.Thus the correction factor due to
nonorthogonality becomes I 1 —(2s —1)b'+
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rather than [1+(2s—1)8'+ . .j in case (c) and
remains of the same order of magnitude as
before. These two cases, the symmetric and
antisymmetric, must be regarded as the two
extremes, and in actual problems the error is
probably intermediate between that in two
limits. If one makes an approximation sim-
ilar to that of Inglis' of keeping only diagonal
elements in an n4 system of representation (i.e. ,

one in which each spin is space quantized
separately), the calculations can be carried
through as before even in the general case. The
only difference is that J and 62 are replaced by
qJ and gb2, where q is the fraction of spins that
are parallel. The correction factor due to
nonorthogonality is then [1+g(2s—1)8'+ j.
Because of the rejection of nondiagonal elements,
this formula is surely quantitatively wrong, but
seems to indicate that the error due to neglecting
nonorthogonality is intermediate between that
in the two extremes.

A somewhat better approximation for the
general intermediate case is probably the follow-

ing: assume that in each term (—1)~b'" in the
denominator and ( —1)"6'" ' in the numerator of
(17) the factor (—1)" is to be replaced by the
mean value of the product P (12) (34)...(...2~) of k

simple permutations (each involving different

cycles) for a state of spin S' for the entire system
(crystal). This mean can be calculated with the
vector model, or otherwise. ' One finds that to
a degree of approximation comparable with (22)

where

and that

with

x = ——,
' —2 (S'/n) ',

W= ', nsx J[1+f(x) + -]
f(x) =(3s+zx '+x)82.

(26)

(27)

(28)

Eq. (27) agrees with (23) for the saturation case
S'=-,'n, x= —1. The factor -,'nsxJ is the usual
Heisenberg mean value of W for a state of spin
S'. The remaining factor 1+f(x) cannot be
regarded as an accurate correction for non-

'We omit details of the calculation; for the general
method see pp. 340—342 of my E/ectric and Mag~zetic
SuscePti belli&'es.

P (12)~ ~ ~ (~ ~ ~ 2 &+2) XP(12)~ ~ ~ ( ~ 2 k)

&&[1+2n 'k(2+3x '+x ')g, (25)

orthogonality, as it is certainly not correct to
replace the mean value of the quotient of two
matrices by the quotient of the means. Never-
theless, a crude quantitative correction for
nonorthogonality is probably obtained if we first
calculate an eigenvalue W by means of (9),
and then take the corrected eigenvalue to be
W[1+f(y)j with y= W/ ', nay -It is. better to use

y rather than x as an argument in (28), since then
even in the correction term we allow somewhat
for the spread in energy for states of a given S', in
virtue of which W is not the same for a particular
solution as the mean value.

The error involved in the approximation (14),
which is probably less important than the
correction studied in the preceding paragraph,
can be avoided by using the secular determinant
obtained from the second factor of (12) rather
than from (9). After a solution of the resulting
secular problem is obtained, the factor 1+f(y)
explained in the preceding paragraph is to be
inserted. Even then, there still remains the error
due to the approximation (10—11), which seems
to be comparable with the other errors (cf. end of
appendix) and for which a quantitative allowance
does not appear easy.

NOTE ON THE EVALUATION OF THE PARTITION

FUNCTION IN HEISENBERG S THEORY
OF FERROMAGNETISM

In closing, we shall digress brieRy to consider
another question than nonorthogonality. In
Heisenberg's theory of ferromagnetism, one is
interested in the mean value of

exp (—H/k T) = Q, ( H/k T) &/g! —(29)

for a state of given spin. Here the Hamiltonian
matrix is H =P V~,;&P ~;;& with the usual neglect of
nonorthogonality and higher order permutations.
Even with these approximations, the mean value
of (29) cannot be accurately evaluated. It occurs
to us that instead of using Heisenberg's assumed
Gaussian distribution, ' a possible procedure is
the following: To a degree of approximation
comparable with (25) and (27), it can be shown

by a calculation with the vector model, ' that

H'+'=xJPns+qn+O(k/n))H&, (30)

where n=1+3x '+2x ' and where x is defined
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as in (26). Here O(g/n) denotes error of order q/n.
If we employ (30), the statistical average of the
series (29) may be evaluated by use of the
binomial theorem. Then the mean value of (29)
becomes

with
exp (—H/kT) =exp ( —eQ) (31)

Here II is the applied magnetic field, P is the
Bohr magneton ke/4s. mc, and 2S'/n is the ratio
of the intensity of magnetization 2S'P at temper-
ature T to the true saturation magnetization eP
achieved at 1=0. In order for the body to
exhibit ferromagnetic behavior, i.e., in order for
(33) to have a real positive root in 2S'/n of the

Q= isu ' log [].+xnk I' J(1+f(x))j. (32)

In writing Eq. (32), we have multiplied J by
the factor 1+f(x) defined by (28) in order to
make a crude correction for nonorthogonality
suggested by the preceding section. If we set
f(x) =0 and if we expand the logarithm in (32) in

a Taylor's series in J, carrying the development
only to terms of order J, the result is the same
as when the spread of energies for a given S' is
disregarded. If terms in J' are included, the
formula is the same as with Heisenberg's Gaussian
distribution. The magnetization associated with

(31)—(32) is determined from the transcendental
equation'

2S'/n = tanh [(PH/k T)+ (2S'/I) dQ/dx]. (33)

proper character when II=0, it is necessary for
dQ/dx to be greater than or equal to unity at
x= —i~. If we set f(x) =0, i.e. , assume orthogo-
nality, this condition can be fulfilled only if
x~16, an impossibly high value. This result is
disappointing, for (33) is presumably a better
approximation than Heisenberg's formula based
on a Gaussian distribution, where ferromagnetism
is obtained if s=8. Hence we give (33) only
passing mention. However, it must be noted that
the critical condition for ferromagnetism is
sensitive to the correction for nonorthogonality.
If, for instance, in (28) we take (s ——',)9=0.13
then (33) admits a ferromagnetic solution when
a~10. Ferromagnetism is allowed for x=8 if
8'~0.028: such values for 5' seem rather high,
but are by no means inconceivable. Thus the
nonorthogonality effects may explain away the
dilemma, but this statement is not beyond
question, since use of the factor 1+f(x) is only a
partial and inaccurate correction for non-
orthogonality, as explained in the preceding
section. More likely, the trouble arises from
omission of the O(k/n) term in (30).' The one
safe conclusion is that the inHuence of non-
orthogonality may be sufficiently important to
render very uncertain any attempt to deduce the
minimum number of neighbors necessary for
ferromagnetism.

The writer has had valuable discussions with
Professor J. C. Slater, Professor D. R. Inglis and
Dr. H. M. James, for which he thanks them.

APPENDIX —BASIS FOR EQ. (10)

The Hamiltonian function for the n electrons is

H =Z;L(—V/8~ ~)v; — / j+Z»;Q(k, j)+C, (34)

with Q(k, j)= —e'/rk& —e'/r k+e'/r; k+e'/R&'k,

where rI, &' is the distance from nucleus j to the electron
which is located on atom k. It is convenient for our pur-
poses to label electrons according to the atom with which
they are identified in the wave function + defined in (6)
to which H is applied. The terms e'/r;I, are the inter-
electronic and e'/R&'k the internuclear energy. We have
assumed that each atom-ion exerts a Coulomb field on the
electrons, but it is no trouble to adapt the analysis to the
case of variable screening, wherein the atomic fields are
central but not Coulomb. The bracketed part of (34) can
immediately be dropped from consideration, as each factor
in (6) may be assumed to satisfy an equation of the form

'The passage from (31) to (33) is made most easily by
expanding Q in a Taylor's series about the most probable
spin, as explained on p. 330 of the preceding reference.

t (—jP/87$2yz)g; —e /r$' —P;.gi/l;($} =0,

and so the effect of this part of (34) can immediately be
included by shifting the origin for the energy by an
additive constant Z W';. This shift, and others, is covered by
the additive constant C in (34) which, as stated after Eq.
(6), is to be so chosen that the integral (3) vanishes for the
identical permutation.

As a typical case, consider the value of (3) for a permu-
tation (12)(34). The portion of (34) which we desire to
retain to get (10) is Q(1, 2)+Q(3, 4). We must show that
the effect of the remaining Q terms in (34) is unimportant.
First we note that there are an enormous number of the
form Q(k, j), with k, j&4. The contribution of the totality
of these terms to the integral (3) is d (12)h(84) U where

' The omission of the 'term 0(k/n} in (22) is not nearly as
serious as the corresponding omission in (30},for the series
(17}encountered in connection with nonorthogonality are
concerned with a correction e8'ect, and need not be summed
as accurately as (29).
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U= f . fZI&)4Q(k j)F5 dv .
Now the coefficient of P(»)(34) in the part of (5) involving
W explicitly is —h(»)(34) 8'= —6(»)6(34) TV. Hence it is seen
that the effect of the terms involving k &j&4 is covered
simply by displacing the origin for the energy by an
amount U, which we suppose done. (This is not quite the
appropriate displacement in the case of higher order
permutations. For instance, in the case of P(i2)(34)(56) one
would wish to absorb in 8' only terms corresponding to
k&j&6. However, except in the case of very high order
permutations, which presumably involve very small inte-
grals, the difference in the number of terms included is
negligible in view of the fact that the number n of atoms
is very large. }

It remains to be shown that we can disregard terms of
the form

Q(3, 1), Q(4, 1), Q(3, 2), Q(4, 2) (35)

and Q(k, j) where k &4 and j=1,2, 3, 4. {36)

The effect of each individual term in (35)—(36) is small in

absolute magnitude compared with that of Q(1, 2) or
Q(3, 4) and presumably differs from the latter by a factor
of the order 8, where b is defined as in (1). Namely,
there are 2n —2 factors in (3) which are large in regions
where Q(1, 2) or Q(3, 4) are important, as is seen on
substituting (6) in (3), specialized to P(') =P(»)(34) and
remembering that each P function is large only on its own
atom. On the other hand, only 2n —3 factors are large
where any term of the type (35) or (36) is important.
Furthermore, if each atom is coupled only to its neighbors,
the terms (36) outnumber Q(1, 2), Q(3, 4) only by a factor
2s. Since s, the number of neighbors, is small (6, 8, or 12)
for the various cubic arrangements, we are justified in

neglecting (35), (36) if the interatomic distance is sufh-

ciently large. From the foregoing considerations, it appears
that the error due to dropping (35), (36) is of the order 2zb
when measured relative to unity. This fact at first sight
seems rather disquieting, as the errors we estimate due to
other causes are of the order 2zb' (cf., for instance, Eq.
(23)). Thus the approximations (10) and (11) would
appear to be the dominant causes of error, causing trouble
unless 8 is exceedingly small. However, one fortunately
finds that the order of the error can be reduced to 2zb' if
in computing V(»), for instance, one takes the potential in
the integrand of (3) to be not just X(1, 2)+ZW;+ U+C
but rather that

&(& 2)+r&'+U+~f J~»LI:U, &)+&U, 2)Ilail'
ip i&dv& d& (37)

inclusive of contributions from the time exposure charge
clouds of atoms other than 1, 2. Such a procedure is
essentially the analog of the Hartree method. The error
resulting from (35) may seem to still be of order 5 rather
than 5', but as a matter of fact is entirely inconsequential.
Indeed for a given permutation P(i2)(34) it is altogether
unlikely that 3 or 4 be a neighbor of 1 or 2, meaning that
for the great bulk of permutations, terms of the type (35)
are nonexistent so long as we are including only coupling
between adjacent atoms. Hence the approximations (10)
and (11)are no more serious sources of error than the other
causes which we consider.

It is interesting to note that no internuclear terms e'/R&'~

contribute to (37), as their contribution to C just cancels
their effect on the rest of {37).As already stated, the terms
ZS; and U also have offsets in C.

In the preceding discussion we have considered for
simplicity only fourth order permutations, but the argu-
ment can be readily extended to others.
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It is pointed out that, by removing a single quantum-mechanical postulate commonly
accepted, several conceptual difhculties in quantum-mechanical description can be eliminated.

'HE discussion of a recent paper by Einstein,
Podolski and Rosen' has brought to light

an interesting divergence of opinions as to the
meaning of reality. To the writer it seems,
however, that the issue at stake is more than
the merit or demerit of any particular conception
of reality, and that a very fundamental point of

i A. Einstein, B. Podolski and N. Rosen, Phys. Rev, 4V,
777 (1935);E.C. Kemble, ibid. 4'T, 973 {1935);A. E.Ruark,
ibid. 48, 466 (1935); N. Bohr, ibid. 48, 696 (1935).

quantum-mechanical axiology is involved. For
Einstein, Podolski and Rosen have shown, by
employing correctly the usual quantum-mechan-
ical postulates, that the state of system 1 which,
by hypothesis, isisolated from system 2, depends
on the type of measurement performed on
system 2. This, if true, is a most awkward
physical situation, aside from any monstrous
philosophical consequences it may have. %'e wish
to show that, by the removal of a single postulate


