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TABLE III. Ranges and energies of particles.

RANGE
SINGLY

CHARGED
PARTICLE

RANGE
HEAVY

PARTICLE

ENERGIES OF PARTICLES OF THESE RANGES
BH8 BH1

BH1 BH8 BQ18 BQ14 +BQ18 +BQ14

2.42 cm
& 1.8
&3 4
&2.1

1.30
2.26 '

& 1.4
0.25

NEUTRON

0.12 cm 1.04
0.32 &0.87
0.20 &1.28
0 22 &095
0.11 0.68
0.09 1,00
0.18 &0.73
0.35 0.26

SOURCE:
1.4

& 1.1
& 1.6
& 1.2

0.8
1.3

&0.8
0.2

Be+1H8

0.2 0.3
1.3 1.4
0.6 0.6
0.7 0.7
0.2 0.2
0.2 0.2
0.5 0.5
1.6 1.7

1.6 1.3
&2.4 &2.3
&2.2 & 1.9
& 1.9 & 1.7

1.0 0.9
1.5 1.2

& 1.3 & 1.2
1.8 2.0

From these data we cannot determine the
maximum. energy which appears in such forks,
but we can say that at least 2 MEV appears
when neutrons with energies up to 4.42 MEV
are used. According to calculations from Bethe's
masses, reaction (2) is endothermic by 4.7 MEV.
Thus we must turn to reaction (3) to explain
the singly charged particles.

N14+ ~1~ C14+ Oi (3)

The C" would probably be radioactive, going
into N'4 with the emission of an electron. How-
ever, such a radioactive C' has not been ob-

served. The upper limit of the mass of C'4,

assuming that 2.0 MEV of energy appears in
reaction (3) when 4.42 MEV neutrons are used,
is 2.8 MEV more than that of N'4. Thus the
maximum energy of the beta-particles from C"
is less than 2.8 MEV.

We have found one trident which we have
attributed to the disintegration of nitrogen
according to reaction '(4). Fig. 2B shows a
stereoscopic pair of photographs of the single
disintegration of this type which we observed
when we bombarded nitrogen with the high
energy neutrons from Li+O'. The energy ap-
pearing in the three forks is 4.8 MEV and the
calculated energy of the neutron which produced
the disintegration is 12.9 MEV. From a calcu-
lation of the masses involved, this reaction is
endothermic by 7.0 MEV, which is consistent
with the observed data.

We are indebted to Professor C. C. Lauritsen
and Professor J. R. Oppenheimer for valuable
discussions and to the Seeley W. Mudd fund for
financial support.
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The Energy Distribution of Neutrons Slowed by Elastic Impacts
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The problem of finding the distribution in energy of
particles of mass rn, initially of the same energy, which
have made n impacts with particles of mass M all initially
at rest, is solved. It is supposed the impacts are elastic and
the distribution in angle isotropic in a coordinate system
in which the center of mass is at rest. If x is the ratio of

the energy after n impacts to the initial energy then the
chance that x lie in dx at x is (log 1/x)" '/(n —1)! for
m = M'. For unequal masses the expression is more compli-
cated but easy to calculate. The results have some interest
in connection 'with the slowing of neutrons by elastic
impacts with other nuclei, especially with hydrogen nuclei.

N this note we work out the energy distribu-
-- tion of neutrons which, starting with the
same initial energy, have made e impacts with
other nuclei all initially at rest. We suppose the
impacts are elastic and the scattering isotropic
in a coordinate system in which the center of
mass is at rest. The result is of some interest in
connection with current researches on "slow"
neutrons. The work grew out of a desire to
understand a statement due to Fermi' that "It

I Amaldi, D'Agostino, Fermi, Pontecorvo, Rasetti and
Segre, Proc. Roy. Soc. A149, 522 (1935).See p. 524.

is easily shown that an impact of a neutron
against a proton reduces, on the average, the
neutron energy by a factor 1/e. "

Let the nuclei of the medium be all at rest and
of mass JIf while the incident neutron is of mass
m and energy, Eo. Then by a simple application
of the conservation laws it is found that the
neutron energy after an impact is given by
Eg ——Ep(1 —nx)

where 0. =4m&/(m+M)' and cos p= 1 —2pp,

being the angle of scattering of the neutron in
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Let x=E„/Eo. We have to find the probability
that x lie in dx at x being given that each x;
has equal chance of having any value between
zero and unity. Hence x may vary between

(1—n)" and unity. Write

(1—ax;) =e-"' and u=Pu; so x=e ".

Each u; varies between 0 and a=log (1—n) '.
The chance of a given set of u; values is

dxydx2 ' ' ' dx~ =8 dugfu2 ' ' ' du~.

The chance that the sum u, lie in du at u is
therefore the factor e "multiplied by the chance
that u lie in du at u assuming each u; to be
equally likely to have any value between 0 and a.
The evaluation of this turns out to be a very
old problem, apparently first considered by
Laplace, ' and the result is

f.(u)du=
a"(n-1) !

)&[u —(n —1)a]" '

with the understanding that the term involving

(x—ka)" ' is to be assigned the value zero for
x (ku. Thus the distribution function has a
discontinuous (n 1)st deriv—ative with discon-
tinuities at the places x = ku with k = 0, 1, 2 n.
A modern derivation of the result has been

given by Rietz. '

'Laplace, Theori Analytzqle des Probebilites (1820),
pp. 257-263.

& Rietz, Proc. Int. Math. Congress, Toronto 2, 795
(1924}.The problem is also discussed by H. P. Lawther, Jr.,
Annals of Math. Statistics 4, 241 (1933) whose Fig. 1

graphs the distribution function for n =1, 2, 4, 8, 16, 32.

a coordinate system in which the center of mass
of m and M is at rest. For elastic spheres on
classical mechanics or for short range forces of
any type in quantum mechanics the chance that
y lie between q and y+dq is proportional to
d(cos s)) so we see that x may take each value
between 0 and 1 with equal probability.

After n collisions the energy will be E„where

E„=ED(1 —nxi) (1 —ax2) (1—~)x„).

Before we looked it up in the library we had
worked out a solution of the problem which is
enough different from. those we have seen to
make it worth communicating brieHy. The first
step is to consider the recursion relation con-
necting the distribution function for n+1 with

S

that for n. Let u=Pu; and r)=u+u +i. Let
&=a

I),"(u) be the expression for f„(u) in the range
(k —1)a &u&ka. The chance of u being in du at
u and u~+i in du„+i at u~+i is then I),"(u)dudu„+i
Changing the variables to v and u and summing
over the values of u which lead to a fixed value
of v we find the recursion relation

(k—1)a v

I "+'(v)=f I , ,)u)de+)"f I, jM)du"
v—a (k—1)a

with the understanding that I0"(u) —=0.
Now let us consider the geometrical situation.

We have to find the (n —1) dimensional measure
of the intersection of the hypercube O~u;~u
with the two hyperplanes gu; =u and Pu,
=u+du. Plainly it will be proportional to u" 'du

for 0 &u &a by a dimensional argument. As u
becomes a little greater than a the hyperplane
passes n corners and so the expression u" 'du has
to be corrected by subtracting off n(u —a)" 'du

to allow for the part of the hyperplane that is
outside the hypercube. %hen u becomes just

(nl
greater than 2a the hyperplane passes

E2)
t'nl

corners so correction by
~ ~(u —2a)" 'du is

necessary. That the correction has to be added
this time is readily seen by inspection in the
three-dimensional case where the figure is easily
visualized. This argument suggests the general
form for I),"(u) and it is easily verified that it
satisfies the recursion relation and is therefore
correct when properly normalized so that its
integral from 0 to nu will give the correct
volume, a".

For u)na, I "(u) is a sum of terms in u" ',
(u —a)"—' which is easily seen to vanish

identically. In fact this polynomial may be
written as [1 ej"u"—'/(n 1)! whi—ch must
vanish because [1—e ~g" expanded in D con-
tains only D" and higher powers. Here D is the
differentiation operator. The ratio of the coeffi-
cients of (u —ka) " ' is fixed because the n
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FIG. 1. Showing the probabilitY as ordinate that a neu-
tron have a fraction of its initial energy less than or equal
to the abscissa after a number of impacts with protons that
is marked on each curve.

independent ratios must satisfy n+ j. conditions.
It is thus not even necessary to verify the
recurrence relation for I),"(u).

The case of most interest experimentally is
that corresponding to the slowing of neutrons by
protons. Here an=35 and a=i so e= ~ and the
complications due to passing corners of the
hypercube do not arise. All finite values of I
are now less than a so only II"(u) plays a role.
The distribution function for u is therefore
s "u" 'dl/(I 1) ' o—r for x

J „(x)dx=(log 1/x)" Idx/(n —1)!
Thus the probability that x have a value between
0 Rnd $ ls glvell by

The integral involved here is an incomplete
gamma function for which very complete tables
exist. ' We have prepared Fig. 1 in which P„(P)
Is plo'tted RgR111st R Iogarl'tllIIllc scale of $ fol
several values of n. There is not much point in
extending the curves below &=10 ' since, for
ordinary initial energies of neutrons, a value of
$ much less than this brings the neutron energies
down to thermal values where the assumption
that the protons are initially at rest is no longer
valid. The curves give a good idea of the way
in which the energy is rapidly reduced by a
moderate number of collisions.

Although one can calculate the average of any
power of x from the distribution function, it is
slmpleI to do 1t from the expless1on for x as R

4 Karl Pearson, ed. TaMes of the Income/ete Gemma
Function (London, H. M. Stationery Ofhce, 1922).

FIG, 2. Same as Fig. 1 except that it is for collisions with
carbon nuclei instead of with protons.

product of the rl factors (1—ux;). Then we have

1 - n -1 (1 &)a+I- n,

x' =
~ (1 ex~)'d—x;

&0 n(s+1)

In particular for the ease of equal masses, o.= 1,
and the ordinary arithmetic mean, s = 1 we have
g= 2 ". The statement of Fermi referred to
above is verihed for the logarithmic mean,
exp (log x).

The function f„(N) can be represented around
its maximum RpproxlIlMtely by 8 ~ I ~ I Rs
may be found by considering x' —x' according to
the above formulas or by empirical 6tting of nu-
merical computations. The latter 1nd1cate that 5.7
gives a somewhat better approximation than 6.

Calculation with the distribution function for
unequal masses is quite simple. In Fig. 2 we
give, as an illustrative example, the integrated
energy distribution of neutrons which have made
10 and 20 collisions with carbon nuclei (ALII=12).
Comparison of Figs. 1 and 2 affords a striking
indication of how little the carbon nuclei in
paragon contribut to the slowing down of the
neutl ons.

Th.e Rbove discussion 18 Ilot intended to g1ve
the distribution of neutrons slowed down by
passing through a given thickness of parafhn-
some of the emerging neutrons obviously perform
more collisions than others. The distribution
function considered here is nevertheless useful
for approximate estimates when Inost neutrons
can be considered to have performed the same
number of collisions.


