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The Excitation Function of Lithium Under Proton Bombardment
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The yield of alpha-particles in the bombardment of
lithium with protons is calculated for diferent depths and
widths of the "potential well. " It is found that agreement
mith experiment can be obtained either by using the part
of the incident wave having an angular momentum X, =O
or the part having I =1. For the 6rst condition with a
radius of 0.35&10 '~ cm one needs a "potential well"
about 35 MEV deep. For 5=1 and the same radius a
"mell" about 21.5 MEV is needed. The latter depth 6ts in

nicely with approximate estimates o'f this depth from
nuclear binding energies. The calculations are made more
carefully than is customary in the usual type of potential
barrier penetration consideration. It is found that this is
necessary and that even the order of magnitude of the
collision cross section requires the more accurate type of
calculation. The inhuence of the depth and width of the
"potential mell" is found to be pronounced and it is found

possible to vary the shape of the excitation curve as well

as the absolute value of the cross section by changing the
depth and midth of the "well. " For energies sufficient to
allow the proton to slip over the potential barrier classi-

cal/y, the collision cross section may increase or decrease
with the energy depending on the "mell. "Thus the satura-

tion of the yield with the voltage is not a good measure of
the height of the barlici and of the nuclcaI iadius. Thc
posltioQ of stationary and resonance levels ls found to.bc
important f'or the shape of' the excitation curve. The dkct
of the decay of the incident wave. inside the nucleus is
estimated and is found to be small in the present case.
The asymptotic form of the dependence of the collision
cross section on velocity at low velocities is const. gv '
exp I

—2mZZ'c j"137"v
I mithin the limitations of the prese~t

theory. Estimates of the theoretically expected variation
of the yield with velocity are made for Li'+H' and com-
pared with the experiments of Oliphant, Kinsey and
Rutherford. A correspondencc between difTerent nuclear
reactions is established by means of which one can use
calculations for one reaction to obtain yields for another
1cactloQ with a corresponding potential well. The
"potential mell" necessary for the quantitative representa-
tion of the alpha-particle reaction is compared with the
mass of Be'. lt is found possible to 6t both requirements
by attributing the alpha-particle reaction to I =0 and
the formation of Be' from Li' to the addition of a proton
into a p level.

HE disintegration of lithium into two alpha-
partides under proton bombardment was

observed by Cockcroft and Walton' and the
data were later extended to higher energies by
Henderson. ' Recently careful measurements of
yields in thick as we11 as thin targets were made

by Herb, Parkinson and Kerst. ' According to
these recent observations the yield of protons in

thin tal gets lncreRses steadily up to 400 kv.
MeRsuIeInents made up to 1000 kv by HRfstRd

and Tuve4 show thRt here Rlso the yield increRses

with the voltage. In this respect the data of
Herb, . Parkinson and Kerst as well as that of
Hafstad and Tuve contradicts the observations
of Henderson. In terms of the usual theoretical
interpretation the results indicate that the po-
tential barrier is not reached below 1000 kv.

' J. D. Cockcroft and E. T. S. Walton, Proc. Roy. Soc.
Are'7, 229 (1932).' M. C. Henderson, Phys. Rev. 43, 98 (1933).

3 R. 'G. Herb, D, B. Parkinson and D. %. Kerst, Phys.
Rcv. 48, 118 (1935),

4 L. R. Hafstad and M. A. Tuve, Phys. - Rev. 48, 306
(1935).We are indebted to the authors for informing us of
their results before publication.

It is tempting to connect these results with
Goldhaber's discussion' of the relative improba-
bility of this reaction because according to him
the reaction can be reasonably attributed to
incident protons having an orbital angular rno-

~entum I.= 1 (in units A) and because the
barrier for I.= 1 is appreciably higher than that
for I =0. It is also of interest to know to what
extent collision processes due to incident par-
ticles having I.= 1 are less probable than collision

processes due to incident particles hRving I =0
and colliding "head on" with the bombarded
nucleus. It is supposed by Goldhaber that the
I =0 part of the incident wave is much more

likely to produce a disintegration than the L, = i
part and it would be very nice and simple if
one could always use thjs po~nt of vjew.

The probability of nuclear reactions is usually

discussed' in terms of the followi. ng factors:
(a) The plObalM11tp that the boInbafcllng pa1 tlcle"

' M. Goldhabcr, .Proc. Camb. Phil. Soc. 30, 561 (1934),
6 J. D. Cockcroft, International Conference on Physics,

London (1934).
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should perform a nuclear collision (this proba. -

bility is usually computed by assigning to the
process a collision cross section of the order of
the square of the wave-length of the incident
particles); (b) the probability that, once a
collision within the area of the collision cross
section takes place, the particle penetrates
through the potential barrier; (c) the chance
that once the particle penetrates through the
barrier, a disintegration takes place. In terms of
this description of the process one would expect
the L=0 part of the incident wave to be more
effective than the part represented by L=1 and
one wouM further expect the process to reach
saturation once the incident particles have an
energy higher than the top of the barrier.

The incident particles must be supposed in
many cases to be subjected to an attractive
field of force when they are inside the bombarded
nucleus because, for example, in the bombard-
ment of Li by protons the final product of two
alpha-particles is produced as a result of the
binding of the incident proton into a H com-
bination in the Li~ nucleus. The inHuence of the
attractive forces can be treated schematically by
means of a "well" in the potential. The inHuence
of such a "well" is not taken care of by the usual
description of the collision process. It is desirable
to have a discussion in which this inHuence is
taken into account. In order to do so we discuss
below the same problem from a different point
of view which is more closely related to a
straightforward solution.

It is supposed in the calculations presented
here that the incident particles can be treated
as a wave incident on the bombarded nucleus.
As usual the density of the particles can be
represented by the square of the absolute value
of the wave function P. The total chance of
finding the particle inside the bombarded nudeus
is j ~

&~2dr and can be calculated for any assumed
form of the potential energy. The number of
disintegrations per second is assumed to be
Pj~g~'dr where P is a constant characteristic
of the colliding particles and of the end products
of the reaction. The constant I may be described
as the chance per second that a disintegration
should take place when the incident particle is
in the bombarded nucleus. Its order of magnitude
may be roughly estimated as the relative velocity

of the disintegration products divided by the
nuclear radius and multiplied by the trans-
parency of the potential barrier for the dis-
integration products. This point of view is
closely related to the discussion in Chapter IV,
)2 of Gamow's book. ' One can justify it by a
more general discussion in which the nucleus
and the colliding particle are considered as a
many-body problem. '

The essential limitations on the method from
the point of view of the general wave equation
for the composite parts of the nucleus are:

(a) It is sufficient to consider the wave function as
represented by a sum of the functions representing the
initial and final state.

(b) The wave functions representing the final state do
not change appreciably with the velocity of the incident
particles. This condition is satisfied if the energy liberated
in the reaction is large compared to the incident energy
and may be expected to be satisfied for Li~+ H'~He4+He4.
This condition is not satisfied even approximately if the
disintegration products separate with an energy which
corresponds to a resonance level for their mutual potential
energy. In such a case we may speak of resonance to the
disintegration products and it is possible that the resonance
observed for the p-rays from Li under proton bombardment
is of this type. ' It would then be attributable to the
formation of one normal and one excited a-particle. The
maximum energy of the rays is according to Crane, Del-
sasso, Fowler and Lauritsen" nearly equal to the energy
available in the formation of the 8 cm a-particles. We
may provisionally suppose with these authors that in the
emission of p-rays one of the particles is excited to a level
about 16 MEV high and the kinetic energy of the two
particles is therefore small. The smallness of the kinetic
energy is favorable for sharp resonance. Estimates show
that a kinetic energy of about 500 kv would correspond
approximately to a half-value breadth of 80 kv and this
half-value breadth is sensitive. to the kinetic energy. It is
also possible that an excited Be' nucleus is formed. It is
thus not necessary to consider the resonance to y-rays in
connection with the yield of 8 cm a-particles because the
process involved may be essentially different.

(c) The weighting of the function which represents the
incident particle is not important. The point is that this
function enters the expression for the collision cross section
through the matrix element of the interaction energy. It
is thus weighted through the nucleus by quantities which
involve the interaction energy and the wave function of
the final state. It is laborious to make calculations with

' G. Gamow, Nuclear Structure and Radioactivity.' Appendix I. (Justification of method used from point of
view of many body problem. )'L. R. Hafstad and M. A. Tuve, Phys. Rev, 4'7, 507
(1935).

"Crane, Delsasso, Fowler and Lauritsen, Phys. Rev.
46, 531 (1934); 4'7, 410 (1935).
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the matrix element and attempts to do so show that the
results are sensitive to assumptions about the interaction
energy as well as assumptions about the state and con-
stitution of the bombarded nucleus and the final products.
In the present state of relative ignorance about the state
of the particles inside nuclei it was felt desirable to have
calculations in which the weighting of the incident wave
is neglected. By doing so, one introduces in P an arbitrary
adjustable constant and loses definiteness of theoretical
prediction, but one gains freedom from special assumptions
about nuclear binding forces.

(d) It is assumed that one may neglect the absorption
of incident particles due to the fact that they cause dis-
integrations, i This restriction would make the theory
inapplicable if the nuclear diameter and P were large.
The incident wave would then decay approximately
exponentially inside the nucleus and calculations neglecting
the effect of such a decay would be invalid. It is complicated
to try to fit experimental material by taking this effect
into account in all of the calculations. It is simpler to first
neglect the effect of absorption on the incident wave and
to derive from comparison of theory and experiment a
value of P. The calculations can then be repeated with
this value of J' and the experimental data fitted by suc-
cessive approximations. This is the plan followed below
and the corrections due to absorption are found to be
negligible in the case considered.

unit amplitude, Ke also use GL, which is asymp-
totic to a cosine wave with unit amplitude.
The constant crz, depends on k but not on p and
drops out in the present application. The nuclear
well inside the nuclear radius ro modihes the
function F& into Fr, which also satisfies (3) for
r &ro and satis6es

[d'/d p'+1+2 U/vv' L(L+—1)/p'$Fz ——0 (3')

where U is the depth of the "well" for r &ro.

Fr. [Fz/——(1—FzGr, br, iFz'h—r,)j. ..u,
(4)

fz=(F~/Fz Fz'/Fz) =—0:

where u is the regular solution of (3') normalized
so that u(ro) =1. Replacing Fz by Fz in the
expression (2), one can calculate the probability
of disintegration on the assumptions already
discussed. The effective collision cross section is
then found to be

In standard notation an incident plane wave

e'~z=(ir/2p)'P(2L+1)i~Pi(cos 0)IL+;(p) (1)
0

is modified by the Coulombian held of the
nucleus into

or

t'0

0.= (A'/harv) PP (2I.+1) Fr, 'dr
0 0

4&Pr p' (2L+1)(Fz'/p') Nr. '

v o (1 Fz,Gr.&r)'+—FL, 'fr. '

(5)

P(2L+1)i Pz(Fz/&)e' ~.
0

(2)
7'0

NL 2dr.
fo

(6)

Here k=pv/k where p=reduced mass, v=relative
velocity; p =kr with r =distance between col-
liding particles; P&

——Legendre polynomial of
order L, ; JL+~ =Bessel function of order L,+—,'.
The function F~ is the regular solution of

[d~/d p2+1 —2v/p L(L+1)/p~ jFr, —0,—(3)

where v=1/ka, a=le'/pZZ'e', Ze, Z'e are the
charges on the particles and e is the electronic
charge. The function FJ„ is normalized so as
to be asymptotic for large p to a sine wave with

The possible importance of this factor was emphasized
by Fermi in a colloquium of the Ann Arbor 1935 summer
school where some of the present results were discussed.
We are very grateful to Professor Fermi for this and several
other valuable discussions.

In the last formula F~, GL, are supposed to be
taken at r=ro. Formula (5) is reminiscent of
the procedure used by Cockcroft. In it A=i'i/pv

occurs in the combination A'/ir and one may
treat this factor separately. The quantity FJ.'
under the integral sign depends on the trans-

parency of the barrier to the incident waves.
It will be noted, however, that the integral in

Eq. (5) brings in the nuclear radius ro so that in

addition to the usual factors there is present a
factor Pro/v which has the significance of the
chance of a disintegration due to a sojourn of the
proton during a time ro/v in the nucleus. It is

not present in the usual discussions arid brings

in an additional factor 1/v into the velocity
dependence of 0.. It should be also remembered
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0
8!5- are not usually considered. In this limiting case

of small ro and "no well" one has approximately
due to L=O

'ZÃ0 o' =(4Pro/3v) pro'(2vg)/[ —1+exp 27rqg. (7)

V~0

Ve 40 Pter

V 4,ZSZ eyer

g/0
/00 Z, 00

FIG. 1.X=0, t'p=0. 347)& 10 ~2 cm U=O, 4.292 10.00 15.88
MEV, p jek =0.316.

that the integral in Eq. (5) is a function of the
velocity quite apart from the penetrability of
the barrier. Thus for L =0 and in the absence of
a "nuclear well" one can approximate Fo by
Cori Co=[2~&/( —&+exp 2sq)$'*. The factor Co
for large q [small energies' represents something
like the penetrability of a one-dimensional
barrier on account of the presence of exp (27rs).
In addition Co contains (2m-g)i which varies as
v &. Finally p varies as v. The integral in Eq. (5)
thus varies roughly as v exp (—2vq) and the
cross section as v ' exp ( —2s.q). This rough
estimate thus leads to the type of velocity
dependence used by Cockcroft. The reasons for
the dependence are seen, however, to be different
inasmuch as both the factors (2m')' and p/r=v

This formula shows that there is not very much
point in speaking of A.' rather than r02 deter-
mining the order of magnitude of the cross
section. " The factor 7rro2 present in (7) shows,
as one would expect, that o. vanishes with ro

which is not the case in the method used by
Cockcroft. On the other hand, the velocity
dependence is the same in the two methods to
within the limitations of Eq. (7).

The nuclear radius and the wave-length of the
protons inside a reasonable "potential well" are
of the same order of magnitude and the approxi-
mation of Eq. (7) is very poor. In applications to
experimental material it is found necessary to
use Eq. (6).According to Goldhaber it is probable
that nuclear reactions are due to at most a few
values of L. The contributions due to different L
are, therefore, treated separately and the dis-
cussion in Appendix I shows that the values of I'
which can be expected to correspond to different
L from the point of view of the many-body
problem are different. The contribution to o due
to an individual L is denoted below by ol, .

The denominator of an individual term of the
summation in Eq. (6) determines the proximity
of resonance. " Thus for small energies F'8 is
small and there is a maximum in oL, whenever
1 —F68=0. The function F is in this case
identical with G. For large energies F'8 is of
the same order of magnitude as 1 —FGo and one
has no sharp resonance under these conditions.
Nevertheless the variation of o-l. with velocity
may be strongly affected by having a blunt
resonance at high energies. By arranging the
"potential well" in this manner one can decrease
the ratio of o.I, at low velocities to oI. at high
velocities without introducing a pronounced
resonance peak. Again by properly arranging the
depth and width of the potential well it is

"Cf. G. Breit, Phys. Rev. 34, 817-818 (1929) for a very
similar formula o. =7frp'(27fq)/$ —1+exp (271.q) 1 v"hich ap-
plies for small rp on supposition that the Aux of particles
through the nucleus determines the probability of dis-
integration. The difference of a factor v is due to the fact
that at present the density is used instead of the fiux.

"G. Breit and F. L. Yost, Phys. Rev. 48, 203 (1935).
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Ci
Fi.'g

Flo. 2. I.=O, ro—-0.347 &10 "cm, V= 25, 30, 35 MEV,
p jCk =0.3j.6. S1IlglC 1lI1C tO thC left Of 354 kV 18 f01 V=35
MEV.

possible to produce the opposite effect of in-

creasing the. ratios of the low velocity values of
0.1. to the values at high energies. This can be
accomplished by arranging for a stationary level
to lie slightly below the level of zero energy.
The effect is then very similar to what one would
have if there were resonance at very low' energies,
Both of these effects are obvious in the curves
showing the theoretical dependence of Og on
the energy reproduced above in Figs. 2 and 3.
The theoretical value of ~I, for 6xed I' can be
varied by orders of mugnituds. by changing the
depth and width of the "well" without intro-
ducing pronounced resonance in the experi-
mental legion. It ls thus Rt times rRthel" unsRtls-

factory to speak of reactions as "probable" or
"improbable" in the manner of Goldhaber unless
one spec16es R given width, depth Rnd shape of
the "potential well. "

V»g/ /spy

jf»gs A&i

$4gS P4f'/
& N8ZP
rl'» Q

i-H:88~&
k,os

Flo. 3. L, =1, ro ——0.347&10 "cm, U=O, 15.88, 2j. , 22, 23,
25, 35 MEV. ; p jek =0.316,

Calculations with Eq. (6) are somewhat labo-
r ious Rnd lt ls often desirable to have R mor e
convenient formula. For I =0 one can obtain
such a formula by neglecting the "well" alto-
gether, i.e., by supposing that the inverse square
6eld applies everywhere. The nudear radius has
then only the signi6cance of de6ning a sphere of
action within which the incident particle is
effective ln pl oducing dlslntegrRtlons. In the
notation previously used"

Fo ——Cg pc 0, Co' ——2xs/Le" & —1].

Introducing this into Eq. (5) one has to perform
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an integration involving Cp'. For low energies For use of the tables of C being prepared f'or
4 p can be approximated" by publication" it is convenient to express f in

P

terms of Cp, C y. One has
C p-=Ji(ix)/(ix/2) =4 p, x= (8pg)**= (8r/a)'*, (9)

where the I are the usual Bessel functions of an
imaginary argument. For work with tables given
in Watson's Besse/ Functions it is convenient
to use

f= (2Ii/x) ' —(2/x) '(Ip —2Ii/x) '. (11')

A few values are given in Table I.

1.0
1.20

1.2
1.30

TABLE I.
1.4
1.43

1.6
1.59

1.8
1.80

2.0
2.04

where J~ is the usual Bessel function. This
approximation is fair even if one approaches
energies in the neighborhood of the barrier
energy for given r. Integrating one finds

p. = (47rPrp'/3v) Cp'f, (10)
where

f= i2Ii(x)/xi' —i2Ip(x)/xi',

f=C'p' —(r/2&) (@p—(y/3&) C'i) '.

Substitution of numbers gives Table II.
TABLE II.

f/C 0' —— 0.892 0.869 0.844 0.814 0.778 0.742
logm (r/a) = I.4 T.5 T.6 T.7 1.8 T.9

(The third figure is not quite certain in these
ratios. ) Similar formulas can be worked out for
L=1. In the approximation of Eq. (10) one
obtains the same velocity dependence as by
means of Eq. (7). The absolute value can be
estimated more accurately by means of Eq. (10).
Numerical trial shows that Eq. (10) gives a
velocity dependence of 0- and absolute values
similar to those obtained from Eq. (6) for II=0.
It is good only as a starting point.

For very low energies (q))L) the velocity
.dependence for all L becomes the same in the
general case. The asymptotic form of a& is then

prpPypP22I+P(y/g)2L(FL /FL GL /Gl)pppI2 q
g J 27r g

(2I )!(2L+1)!(Fr,'/Fr, Gi, /Gj)' v—
(12)

The first fraction approaches a constant value because pF'/F, pG'/G, pF'/F as well as Ni, ' approach
constant values.

The effect of absorption of incident protons within the nucleus can be estimated by using a wave
equation with a complex potential energy

AP+ (2p/h') (E—U+i hP/2) r/i =0. (13)

Here F is the energy, U is the real part of the potential energy, and the extra term in P was added so
as to represent absorption. It follows from this equation that

(h/2 pi) div [P*VP if&QP j= —Pf*it. —

Particles may be said to disappear at the rate PP*f per unit volume and per unit time. For I, =0
and a constant V Eq. (13) gives

2v (P/v) [Sh/k, ' s/k,j-
i
k'

i
'(Ch+ c) (G'+ F') + 0'(Ch c) (G"+F")—2k—s[kp'(GG'+ FF') +hi']

—, (15)

where

—2kSh[ki (GG +FF ) —kp ]
k' = k p'+ik i' = (2p/h') '[8—V+i hP/2]&,

Ck=cosh 2kI'rp„5h=sinh 2k''rp, c=cos 2kp'rp, s=sin 2kp'rp.

"F.L. Yost, John A. Wheeler and G. Breit in preparation for publication.
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For very low energies the terms in G' and GG' predominate strongly and one has the asymptotic
form

2 t»/I. /—I-. j(P"'/)(&'/v')(&G/~)

l'(Ck+c)+(Gk c) (v—G'/G) ' 2&0—s(vG'/G) 24—»(uG'/G)
(16)

I o=ko'ro, Ix=ki'ro, &=
I fo+~&~j.

Comparing this with Eq. (12) the asymptotic dependence on the velocity fof very Iow energies is
seen to be the same because FG/p, I ~, f~, pG'/G approach finite limits. The factor in Eq. (16) which
contains the main velocity dependence is P'/vp' which for I.=O behaves as the (v/v) exp (—2mv)

of Eq. (12).The argument applies also for V=O. Eq. (12) behaves as usual while in Eq. (16) the I'

approach fjnite limits I 0 ——I ~
——ro(pP/2h) & so that »/I & 5/—10 does not vanish as long as P WO. Thus

in the limit of v—+0 the dependence v ' exp ('—2vq) may be expected to apply with and without
absorption. The quantity Pro/v is therefore not the primary determining parameter for the applica-
bility of Eq. (6) to the velocity dependence as one is tempted to suppose.

It is instructive to consider the special case of ZZ'=0 which corresponds to neutron capture.
Instead of Eq. (15) we now have

= 2 (»/k ' —./ko'j(P/v) L (
k'

~

'(Ck+c)+k'(Ck —c) —2kk, 's+2kk, '»j- .

For very low velocttles Bnd valllshlIlg V, k0 =kg =IJP/25 and

a (2v 5/ pvkg') (»—s)/(Ch+c).

If on the other hand, 8~0, V is finite, and v—+0

0 =2vko-'(1 —s/2koro)(Pro/v)/cos' kgro.

Hc1c also the velocity dependence ls thc same fol VCIy 10% vclocltles and the CIoss scctlon VRIlcs Rs

1/v with or without absorption. According to Eq. (1'l ) high values of P give small v for small v which

is just the opposite of the behavior without absorption give~ by Eq. (17").This is due to the fact
that a large absorption shifts the phase of the sine curve for I towards zero at the nuclear boundary

and thus decreases the absolute value of Ii at ro. These special cases indicate that the inHuence of

absorption of the incident wave is more likely to show itself in the dependence of 0. on I' than on v.

In connection with the discussion of experimental material numerical calculations made by means of

Eq. (15) will be presented and it will be seen that in the special case considered the effect of absorption

ls not importRnt.

The data coIlsidered here are those of Herb„
Parkinson and Kerst~ from 100 to 400 kv, of
Hafstad and Tuve4 in the region from 400.to
1000 kv and of Heydenburg, Zahn and King"
from 200 kv to 46 kv. The data of Herb, Parkin-
son and Kerst give yields of e-particles in thick
as well as thin targets and can be used to obtain
absolute values of cross sections. The uncertain

'4 N. P. Heydenburg, C. T. Zahn and L. D. P. King,
unpublished.

element entcls ln the rRnge of pl"otons ln a solid
Ll tRrgct Rn«I ln thc dependence of the 1Rngc on

velocity. In deriving the absolute values of 0 the
3/2 power dependence of range on energy was

used. The data of Hafstad and Tuve and of

Heydcnburg, ZRhn Rnd King Rle used below to
give values of o. by comparison with the absolute
values of Herb, Parkinson and Kerst. Thus only

ratios of o s at different voltages Rre supposed to
be given correctly by these «IRtR.

Assuming the 3/2 power dependence of range
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on kinetic energy, the number of disintegrations
per proton is

TV=¹,, =(3/2)T, &J (T)T'dT, (18)

where o(T) =collision cross section for kinetic
energy T; xo——range of protons at kinetic energy
T; N= number of Li~ nuclei per unit volume of
target. Xxo can be obtained by comparison of a
standard material (oxygen) with the stopping
power of Li. Using the stopping powers of
N2, 02, H20, CO&, H2 relative to oxygen, as given
by Rutherford, Chadwick and Ellis, one obtains
0.948 for the stopping power of air relative to
oxygen. From the Cavendish laboratory graphs
the range of protons in air at 2 MEV=7.2 cm.
Using these numbers and 0,519 for the stopping
power of Li relative to oxygen, one finds Nxo
=6.03 && 10"at 400 kv. At this voltage the num-
ber of disintegrations caused by a single proton
on a thick target' is V=46.4X10 '. Hence
o =7.69&10 " cm at 400 kv. From the thin
target data of Herb, Parkinson and Kerst, the
value of u/0 was computed for 400 kv and was
found to be 0.461 with a probable accuracy of
1 percent. Hence at 400 kv, o.=1.668X10 ~ cm .
No correction was made here for the 1:12 ratio
of Li' to Li'. From this o the thin target results
of Herb, Parkinson and Kerst give values of o-

also for voltages down to 100 kv. The data of
Heydenburg, Zahn and King were obtained for
thick targets and were reduced by them to thin
target data by differentiation. The use of these
data thus presupposes the approximate validity
of the 3/2 power range energy relation not only
in obtaining the absolute value of o at one
voltage but also in obtaining the relative values
at different voltages. One should not attach
therefore as much weight to this set of data as to
the thin target experiments.

The experiments of Hafstad and Tuve give
preliminary values for the yield in a very thin:
film of lithium salts which probably had a
negligible stopping power. We have summarized
the data in Table III.

The number of significant figures is, of course,
exaggerated in Table III both with respect to the
absolute value of 400 kv and the relative values
at different energies. Extra decimals were kept in

TABLE III. Xinetic energy (T) of Protons and collision cross
section of {0-).

T in MEV

0.100
.150
.200
,250
.300
.350
,400
.450
.550
.625
.700

1.050
.2125
.1875
.1625{r)
.1375
.1125
.0915
.0748
.0584
.0460

(T in MEV} &

3.162
2.582
2.236
2.000
1.826
1.690
1.581
1.488
1.347
1.264
1.194
.976

2.170
2.309
2.481
2.697
2.981
3.306
3.656
4.138
4.662

0.0503
.2061
.4692
.7693

1.070
1.367
1.668
1.64
2.21
2.70
2.78
3.72
.546
.4395
.2258
.1908
.1008
.04438
.01787
.006682
.001908

OBSERVER

HPK

HT

HZK

the calculations only in order to avoid accumula-
tion of errors. In the comparison of theory and
experiment given in Figs. 1, 2, 3, 4, 5 the data of
HPK are represented by closed circles, those of
HZK by open circles and those of Hafstad and
Tuve by circles, whose lower halves are black.
The calculation of the theoretical values of o- was
made with values of log~oka=1. 6, 1.7, ~ 0.3
and in some cases 0.4, 0.5. Computation for these
values does not require interpolation of tables of
Coulomb wave functions. "Throughout the kin-
etic energy of the bombarding particle was com-
puted with

T= 2 .438mZ'Z" (ka) ' kv. (19)

Here m is the mass of the bombarding particle in
terms of the mass of the hydrogen atom and the
kinetic energy is expressed in kilovolts and Z, Z'
are the atomic numbers of the colliding particles.
The nuclear radius is given by

ro ——2.88 X 10 "(p/ka)/(ZZ'/p) cm, (20)

where p is the reduced mass for the collision, also
expressed in terms of the mass of the hydrogen
atom. When the kinetic energy of relative motion
1s

ZZ'e'/ro 49 66Z'Z" (p/ma——) (ke. /p) kv, (21)

the incident particle has enough energy to slip
over the barrier. The kinetic energy which the
incident particle must have in order to clear the
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gether with Eq. (6) so as to give values of a for
prorotons and deuterons colliding with any other
nucleus provided the value of U is proper y
chosen. Thus keeping p and ka fixed the terms in

the summation in (6) are left unchanged provided
s is also kept fixed. In order that this be the case
we must have the same values of U(/ZZ'e' r/) in
the two reactions according to Eq. (23). By Eq.
(21) this is accomplished by keeping

(24)
barrier is (m/II)ZZ'e'/ro, i.e. ,

2'b„„;„.,——49.66Z'Z" (m/mII)(ka/p) kv. (21')

Calculations for constant U (see Eq. (3')) involve
the use of the phase of the wave function for
r---. = ro at r = ro. This is

s=ro[(2II/h')(U+II2 /m)]l '(22).
'thus, e.g. , for L, =O, Ji =const. sin s for r &ra.
The formula

s=(2p/ka)I[U/(ZZ'e'/r )+',kapjI (23)

combined with l'.q. (22) is convenient for the
calculation of s.

A set of numerical calculations for protons
colliding with I.i or any other nucleus can be in-

terpreted by means of Eqs. (19). . . ( )i23~ to-

where the indices 1,2 refer to the two reactions.
Collision processes in which this correspondence
is maintained may be called corresponding

processes. The only part of the formula for 0.

which is different for corresponding processes is
the factor ProI/v. Values of 0 in corresponding
processes which belong to the same ka may be
called corresponding values. The ratios of corre-

spondi ng collision cross sections at different
voltages are thus the same for corresponding
processes. The values of U which must be used

for deuterons colliding with the same nucleus as
protons in order to give correspon ing processes
are nearly twice those for protons. This is con-
venient because the binding of a deuteron to a
nucleus may be expected to be roughly twice the
binding of a. proton.
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In Fig. 1 the values of log~o o- are plotted as
ordinates and those of (T in MEV) ' as abscissae
for L=O, p/ka=0. 3162, ro 0.3——47&(10 "cm and
U= 0, 4.292, 10.00, 15.88 and 40.00 M EV. In this
as well as the succeeding figures P was adjusted so
as to make the theoretical and experimental
curves intersect at 354 kv. It will be noted that
U=O agrees fairly well with the experimental
data. The agreement is not perfect and U=O is
presumably an unreasonable value because it
allows for no binding of the proton to the Li'
nucleus. When U is increased the first effect is to
spoil agreement with experiment. The values of
U at low voltages become anomalously small as
is seen from the curve for U=4.292 MEV. The
maximum in 0. shows that this effect of increasing
U can be attributed to resonance above the
barrier. As U increases further the resonance
level moves through the experimental region
towards lower voltages and finally becomes a
stationary level. This condition is shown by
U=10.00 MEV. Here the expected yield is too
high for low voltages on account of the fact that
1 —FG8 decreases with the voltage. In order to
obtain agreement with experiment the station-
ary level must be moved down into the "well. "
The effect of doing so is shown by U=15.88 and
U=40 MEV. Relatively large changes in U
are seen to be necessary to produce an appreciable
effect. Fig. 2 gives similar curves for U=25, 30,
35 MEV. Above 400 kv the theoretical values
appear to be definitely too high. However, it
should be remembered that the experimental
values are not very certain in this region. We
may thus consider the agreement as being moder-
ately satisfactory. U=35 MEV appears to be the
best fit.

Fig; 3 shows similarly the condition for
L=1. U=O, gives a too steep increase of IT with
velocity. The immediate effect of increasing U is
to increase the disagreement between theory and
experiment as is shown by U=15.88 MEV. This
is due to the fact that a resonance level is moving
down into the experimental region as U increases.
The level is at T=0 when U =20.5 M EV. By
adjusting U in the neighborhood of this value
one can obtain a large range of variation in the
dependence of o- on T. Thus for U= 21 MEV the
deviation from experiment is in an opposite direc-
tion from that at U=0. The experimental points

TABLE IV. I =0.

0
4.29

10
15.88
18

4Pro/3e U

0.034 20
.0028 23
.0153 25
.0820 27
.111 30

4Pro/3v

0.135
.160
.164
.158
.134

TABLE V. I =1.

0
4.29

10
15.88
21

4Pro/3v U

1.415 22
.887 23
.359 25
.0560 35
.00755

4Pro/3v

.0.0225
.0453
.114
.818

are seen to be bracketed by U=21 and U=22
MEV. Fig. 4 shows a direct plot of 0. against T
for the same conditions as Fig. 3.

Calculations for radii ro ——0.694&&10 "cm and
0.501 g 10 "cm were made for a for several values
of U. The results are very similar to those given
by the curves and can be foreseen by remember-
ing that the important thing is the position of
stationary and resonance levels.

It will be noted from the above graphs that it
is not proper to describe the problem only as one
of penetration through the barrier. The depth
and width of the "well" are seen to have a very
pronounced effect and one may have a decrease
of 0. with T at the barrier as well as an increase.
The description of the disintegration phenom-
enon by means of penetration through a barrier
is particularly poor for high energies and it
begins to be poor before- the energy exceeds the
barrier height. For a fixed P the order of magni-
tude of the expected collision cross section varies
with the "well. " Thus the values of (4Pro/3v)
at 354 kv are as in Table IV for L=0, ro ——0.347
&10 " cm and in Table V similarly for I =1.
Comparing these values with the general slope
of the curves for log~0 0. against T & it is seen that
there is considerable parallelism between them.
Thus for example for I.= 1 the 4Pro/3v is nearly
the same for U=35 and for U=O-and the slopes
of the curves are also nearly the same. Both
effects are due to the distance of the experi-
mental region from the stationary level. It is
also obvious that one cannot, in general, con-
sider a reaction due to L=1 as much less prob-
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able than for I.=O. The variation of P for Axed

I due to changing U can be just as important
as the variation of I' with fixed U due to
changing I .

For the radius ro 0——347. X 10 " cm (p/ka
=0.3162) the potential barrier is reached when
T=1413 kv. It has already been pointed out
that the shape and slope of the yield curves at
the barrier varies with U. In order to show that
this condition is not a characteristic of the radius
used we give in Fig. 5 the theoretical yield
curves for p/ka =0.631, ro 0.694 X —1—0 " cm,
I.=O. The barrier is reached in this case when
T= 709 kv which falls within the range of experi-
ments of Tuve and Hafstad. For U= 0 the yield
goes on increasing at the barrier. For U=15.88
MEV it decreases after the barrier voltage is
exceeded.

The effect of absorption of the incident waves
discussed in connection with Eqs. (13), (14),
(15) was estimated for L, =O, U=15.88 MEV,
ro ——0.347&&10—"cm. According to Table IV the
experimental value of the cross section of 354
kv demands 4Pro/3v=0. 0820. The complex po-
tential energy used in Eq. (15) is connected
more directly with Pro/v, where v, is the velocity
which the proton would have classically inside

the "well. " For the Li'+H' —+He'+He4 reaction
we have thus 4Pro/3v, =0.01134. This reaction,
in the classification of Goldhaber, is an "im-
probable" one. Compared with Li'+H' —+He'

+He4 it is perhaps thirty times less probable.
In order to have a more typical case we multiply
the above value of 4Pro/3v; by 40 which corre-
sponds to using Prp/vf, =0.3435. We use this
value for very small v and calculate the corre-
sponding values for larger v. The formulas which

determine the necessary quantities in Eq. (15)
are:

~'=2y(E V)/5'; s= —rro (25')

i o'= (s'/2) I1+L1+(Pro/ v')'3'*I '

i..'=("/2) I
—&+I I+(P"/sv')']-'I (26)

In Eq. (15) the dilference of I& from s and

the difference of g~ from 0 determine the effect

(0=&0'ro, gi =&&'ro,

1 = Ik Iro (I'o'+I', ')' v;=5~/p ——(25)

35.4 kv
89.0

223.5
354.2
890

2235

2.852
2.857
2.867
2.877
2.919
3.020

$0

2.857
2.862
2.872
2.882
2.924
3.024

0.1713
.1710
.1704
.1698
.1674
.1618

a/rrab

1.01
1.04
1.04
1.04
1.07
1.09

The last column of the above table gives the ratio
of o., the theoretical cross section neglecting the
decay of the incident wave, to 0.,& the theoretical
cross section taking this decay into account.
The first values may be somewhat inaccurate on
account of inaccuracies in the Coulomb functions.
As the kinetic energy increases o.,& increases
slightly in comparison with 0-. However, the
effect is not serious and is usually too small to
be of interest. It is thus likely that calculations
neglecting the decay of the incident wave inside
the nucleus are usually sufficiently good. It is
not intended to say, however, that this will be
always so. Small s and large Pro/v, will doubtless
make the effect of absorption important and an
estimate of its importance seems to be ad-
visable.

It is of interest to compare the deuteron re-
actions on Li with the corresponding proton
reactions. According to Oliphant, Kinsey and
Rutherford" the increase with energy in the
efficiency of the deuterons is more marked than
that for protons. Thus according to their graph
.the deuteron yield is lower than the proton yield
below about 120 kv and is considerably greater
than the proton yield at 170 kv. This crossing
over of the yield curves can be understood as
the effect of the difference in velocity of protons
and deuterons at the same voltage. The deuterons
having the lower velocity, the exponent —v.ZZ'c/
"137"v in the CL, is larger in absolute value for
deuterons than for protons and varies therefore
more rapidly. For the lower range of voltages
used by Oliphant, Kinsey and Rutherford the
exponential factor in CL, is the most important
factor of r and a crossing over of the yieM curves
is thus to be expected.

"Oliphant, Kinsey and Rutherford, Proc. Roy. Soc.
A141, 722 {1933).

of absorption. A numerical calculation gives the
following values:

TwuLE VI.
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According to the consideration of correspond-
ing collision processes discussed in connection
with Eq. (24) we would expect the graphs of
Fig. 1 to apply to the deuteron reactions provided
the abscissa (T„,t,,„) 1 is multiplied for each
point by 2 '*=0.707. The deuteron graphs are
thus steeper than those for protons. The graphs
of Fig, 1 (p/k@=0. 3162) when applied to Lir+H'
correspond to a nuclear radius of 0.195/10 —"cm.
This is appreciably smaller than the 0.347 && 10 "
cm used for Li'+O'. It is fairer to use a larger
radius for the H' collision such as r p =0.39P 10 "
cm which corresponds to p/ka=0. 631.The yield
curves corresponding to this radius for Li'+O'
are shown in Fig. 5. According to Eq. (24)
U~„f,,„——15.88 is equivalent to U~,„t,„,„——28.2
MEV. For such a well the factor by which. the
yield under deuteron bombardment should in-
crease from 150 to 175 kv should be about 1.82
while actually it is about 2.5 for the 10.3 cm
absorber and 1.8 for the 2.7 cm absorber, It is
presumably the latter value that corresponds to
the Li'+H' reaction and there is at least a rough
agreement between experiment and theory.
However, it is felt that a more careful study of
the deuteron reactions would be proper.

The value U —20 MEV for Li'+O', L = 1 fits
in reasonably with estimates from the nuclear
binding energies. Using Wigner forces and sta-
tistical considerations one would estimate 18
MEV to be the value of U and roughly the same
for Majorana-Heisenberg forces. This agreement
may be partly accidental on account of the
crudeness of the present theory as well as the
theory of nuclear binding energies.

The two possibilities L=O, U —35 MEV and
I =1, U —22 MEV can be compared with the
probable mass of Be' which is approximately"
8.0071. With this mass, and Bethe's masses for
Li' and H', the energy liberated in the formation
of Be' when a proton is captured by Li' is 16.7
MEV. If U=22 MEV this capture cannot occur
into the stationary level with L=1 because this
level is too high by 16.7 —1.5=15.2 MEV. For
this U the level with L=O would be approxi-
mately in the right position to give the 16.7
MEV binding energy. However, this level of

'" Oliphant, Kempton and Rutherford, Proc. Roy. Soc.
A.150, 241 {1935).

Li7 is filled by two protons and the exclusion
principle makes the addition of a third proton
impossible. One can increase U so as to bring
the second level for L=1 into about the same
position as the first one is for U=22. This
would give approximately the right dependence
of the O.-particle yield on velocity considering
L = 1 as responsible for the disintegration. How-
ever, the required depth would be about 80 MEV
which is unreasonably large. For U=35 MEV
the n-particle yield dependence on velocity can
be fitted by using L=O for the proton and
simultaneously the mass of Be' can be accounted
for by supposing that Be' is formed through the
capture of a proton into the first level with L = 1.
In Li~ there is only one proton in this level and
the addition of a second proton to form Be' is
possible and probable. The mass of Be' thus
indicates that U=35 MEV and L=O for the
proton should be used for the n-particle yield.
According to Tables IV, V for this U the L =0
process is more probable than the process for
L= 1. if I' is the same. The angular momentum
of the alpha-particles with respect to each other
after disintegration must be l = 2 if L =0 while
it may be 0 or 2 if L= 1. One generally supposes
that l=0 is more probable than l =2. However,
the wave-length of the relative motion of the
alpha-particles is in this case of the same order
as the nuclear radius and their kinetic energy is
large. The two values l=0 and l=2 may be
equally probable and there appears to be no
general objection to regarding L=O, l=2 as the
main process. It should be, nevertheless, re-
membered that in this process the total orbital
angular momentum of the particles is changed
from 1 to 2. This change occurs simultaneously
with a change of total particle spin from 1 to 0.
The interaction between orbital and spin angular
momenta must therefore be supposed sufficiently
strong to make this interchange possible. Such
an interaction is not necessary for L =1, l=0, 2.

BrieHy the above discussion indicates that one
may suppose that there is only a weak interaction
between orbital and spin angular momenta at
the sacrifice of even an approximate agreement
with the mass of Be' or else one may account for
that mass but then one must suppose a strong
spin orbit interaction.



AppEN

The collision of a proton with a .Li' nucleus and the
subsequent formation of two alpha-particles can be treated
schematically by thinking of three particles A, 8, C.
Particles A and 8 are thought of as being bound to each
othe1- 1nitiRlly, pRrticle C eollldes with the coIQbinRtion,
knocks out 8 and attaches itself to A. The combination
2+8 represents the Liv nucleus and C represents the
proton. A. may be thought of as an H' combination within
Li~ and 8 as an alpha-particle inside the same nucleus.
The combination A+C is then a newly formed alpha-
partiele recoiling from 8, We introduce coordinates x~',
x~', xt,", ~ =1, 2, 3 for the three particles. We introduce also

The energy of the system will be supposed to be the sum
of the kinetic energy and of the potential energies Vgg(g),
Vga(P), Vgc(g-&). Corresponding to the initial state of

the system one can separate the wave equation in the
variables g, q and the coordinates of the center of mass
provided one neglects Vgo, Vag. Similarly if one neglects
Vg~, V~c the wave equation can be separated in the
variables g, x and the coordinates of the center of mass.
Approximately the wave functiori can be represented for
the initial state as 40(g)go(y}. Here Co represents the initial
state of relative motion of A and 8 while go(y) describes
the state of relative motion of 8 with respect to the center
of gravity of A and 8. Similarly the 6nal state ean be
represented by 4' (g)f (y). Here the index m refers to
difFerent possible final states. The wave function can be
expanded into a linear combination of C„(g)g~(y) and
4' (q)f (y). It will be supposed that the coe%cient of
40($)go(y) is much larger than the eoeKcients of the other
functions and also that in determining the coeKcients of
the other functions one may neglect all coef6cients except
that of Co($)go(y). On these assumptions one 6nds

! ~y+&o~ —&+JC'0'(0) L V~c(y+gk)+ V~c(y+ (a- j-)5)3+0($)dago(y) =0

PT.+E "—E+J'+~'(q) j:V~(~+(&-P)n)+Vac(-&+Pe)3+ (n)dn jf (&)

+J'+ '(q) fV~c(q)+ Vac(Pq —~)—j J'C'0'(&) L V~c(y+8)+ Vga(y+(a —j)&)jc'0(4)d(f„=-,~+.&j
Cs(x+ (t —p)s) go( —go+su)ds =0,

P =Mg/(My+Wc), q= 3'/(My+35~), s= j.—g+Pg

and where T„, T„are the kinetic energy operators for the
relative motions represented by y, x; 8=total energy;
E()~, B~" are the energies of internal motion represented
by g, q. Eq. (I 2) determines the function go(y). The
potential energy is a properly taken average of Vgo+ V~c
over the initial state of the combination 2+8, Eq. (I 4)
is an inhomogeneous equation which allows one to deter-
mine f . By the method of Chapter VI of Mott and
Massey's book on The Theory of A. tonic Collisions one ean
obtain f~ by analyzing it and the integral involving go in

(I 4) into a series of spherical harmonics and then deter-
rnining the coefficient of each spherical harmonic (a radial
function) in the expansion of f by'an integration. over
the radius (xP+xP+xP)&. The asymptotic form of this
coefBcient for large radii is proportional to the result of

multiplying the J'dg in (I 4) by the regular normalized

solution of the radial homogeneous equation, for f Lob-

tained by omitting J'dg in (I4)j and then integrating
over x. Thus go enters into the expression for the asymp-

totlc fo11Tl of fmt, under J~ Rnd 1S weighted 1Q Rccordanee
with operations )ust descI'1bed. The expected depeQdence
of 0 on go is therefore more complicated than a simple
proportionahty to the integral of I gsl s through the interior
of the nucleus. Qualitatively the difference of the approxi-
mation used from the more exact result given by (I 4)
cannot be signi6cant as long as the shape of

~
gs[' through

the nucleus does not vary much with bombarding voltage.
If go becomes large on account of resonance as determined

by Eq. (I 2) f will also be large. Similarly, if the regular
normalized solution of the homogeneous equation for a
radial part of f shows resonance at the energy E —E ",
the solution of (I 4) for f will be large and we have then
resonance to the dis&stegrakon products which may be the
explanation of the resonance for y-rays from Liv+H'.

Numerical estimates show that one may treat Eq. {I4}
approximately by passing to the limit Mg~oo, p=1„
g=o, s= l. In this ease Vgg does not enter into the J'dg
in (I 4). For a spherically symmetric Co and Vgg=e'/rye
one has

4g vg
—,t J'J'x" (pa)~J. (pa)pads l',

2L,+1vck~'(E —E o)'
Eg(pg) =e&g(8)J'e *(C)Sg(rg, rc)(PJ.~(pc)/pg)dry,

80(rs, rc)= ——Jn(c[c—a(B') ['drs, Jn~o([Cs—(B') i'jrs )drs", SJ.=r//ms+', r2&ri; (rg, ra)=(rs, ro) or (rot, rs).
rm rQ

The indices 8, C here indicate that one uses the coordinates
of particles 8, C and p~=kar~, pc =kgrg where kg, ko are
the values of k for 8 and C; the functions FJ.~, FL,

c' are
Rlogous t 1" of Eq, (3'). The e pie of Eq. (I5)

shows that FJ„ enters into cL, in essentially different mays
for difFerent L, because SL„E~~ vary with I. Ke thus
expect J to VRry with I.

From the above formula (I 5) one 6nds that if c and e

are each of the form e "~~ and if J'c is small in the nucleus

then a is proportional to R' for J =0 and to E.' for L, = 1.„

Besides, the value of the matrix element depends on the

Overlapping Of WRVe funetlonS. Tllus the CrOSS Section 1S

quite sensitive to the nuclear radius and relatively small

changes in assumptions about the state of the nucleus may

account for large changes in the values of P.


