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Quantitative discussion of nuclear reactions due to
bombardment with charged particles requires the knowl-
edge of wave functions in repulsive inverse square fields of
force. It is customary to approximate these functions by
formulas of the type due to Wentzel, Kramers and Brillouin
(referred to as WKB). Errors of unknown amount are
frequently introduced by such approximations. Formulas
necessary for the exact calculation of the needed functions
are derived and discussed in the present paper. Results of
numerical calculations with estimated total errors are
tabulated in a companion article in the Journal of Ter-
restrial Magnetism and Atmospheric Eleciricity. The proton
energy range covered is from 0 to 2 MEV for Li and from
0 to 8 MEV for C. For the partial wave with 0 angular
momentum the range of radii in proton collisions is covered
for Li from 0 to 1072 cm and for C from 0 to 0.5X 10722 cm.
For the partial wave with angular momentum #, the range
of radii extends to 4X10712 cm in proton collisions with
Li and to 2X10™2 cm in proton collisions with C. The
tables are applicable to other reactions as well. Phase shifts
necessary for the theory of anomalous nuclear scattering
are readily calculated by means of them. The calculation
of the regular function and its derivative by means of the
tables is easier than that of the irregular solution. The
tables are therefore supplemented by graphs in the present
paper. By means of these it is possible to calculate the
irregular function quickly even though less accurately
than by means of the tables. The regular and irregular

functions are given, respectively, by Fr=Creltidy,
Gr=Drp O;. Here the angular momentum of the
partial wave is L%, Cr, and Dy, depend only on the energy,
p is 2zr/A where 7 is the radius and A is the de Broglie
wave-length. It is found empirically that for low energies
the quantities @, ® , depend only on the radius and not on
the energy. This fact is useful in applications and it is
explained analytically by means of an apparently new
expansion of the confluent hypergeometric function into
series of Bessel functions. The successive terms of the
series are arranged in ascending powers of the energy and
these expansions furnish an independent way of calculating
the functions. They are useful for low energies. The exact
solutions are compared numerically “with the .WKB
approximations to the functions and to their logarithmic
derivatives. The ordinary WKB method is found to give
only a crude approximation to the exact solutions in the
needed range of energies and radii. The WKB formulas
modified by changing L(L41) into (L 3)? are very much
better for small energies and small radii but they are not
reliable gs the region of positive kinetic energies is ap-
proached. In some cases the (L-+3%)2 method is worse than
that using L(L+1). The superiority of the (L4 1)2 method
for low energies and constant radii is traced to the fact
that in such cases it is identical with the Carlini and
Laplace approximations to Bessel functions. From this
relationship and graphical comparisons given below errors
in the WKB (L })? approximations can be estimated.

1.

HE radial equation for two particles moving
under an inverse square repulsive field of
force is:
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where
p=kr; k=wv/h; n=(ZZ'/*137")(c/v)=1/ka @
a=m/uZZ'e; “137" =hc/e?=1/a

and r=distance between particles, v=relative
velocity, m=reduced mass, L#=angular mo-
mentum of state considered ; Ze and Z’e are the
charges on the particles; F is an arbitrary con-
stant times 7 times the radial factor of the wave
function.

If the inverse square law applies for all # then
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one needs only the regular solutions F = Fof the
above equation. These are well-known hyper-
geometric series used by Gordon and Mott! in
the discussion of Rutherford’s formula. These
exact forms are convenient for some types of
analytical calculation but are cumbersome to use
in many problems requiring numerical estimates.
In the usual discussion of nuclear collisions one
has to suppose that for small values of 7(r <r)
the repulsive inverse square field is changed into
another attractive- field which represents the
“nuclear well.”” For these smaller values of 7 the
radial function multiplied by 7 does not satisfy
Eq. (1). Instead it satisfies

L(L+1)7-
iﬁ] F=0, 3)

2
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where V is the potential energy at distance 7. In

1'W. Gordon, Zeits. f. Physik 48, 180 (1928); N. F. Mott,
Proc. Roy. Soc. A118, 542 (1928).
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applications one needs regular solutions of (3)
joined to general solutions of (1) in such a way
as to have F and its derivative continuous at
r=ry. This requires the introduction of solutions
for F which are linearly independent of F and
which are thus irregular solutions of (1) at p=0.
These solutions will be called G. In order to define
F and G we have to specify the normalization of
the functions and for G we must further define
in some way the arbitrary additive constant with
which F may enter into G. Now Eq. (1) is a
special case of the much studied confluent hyper-
geometric equation.? It is known! that the
regular solutions of (1) are asymptotic at p= o
to const. sin (p—Lw/2—1nln 2p+01) where oy,
=arg I'(L+1+147n) and that the irregular solu-
tions are asymptotic at p= « to forms differing
from the above only by the insertion of an
arbitrary constant phase into the argument of
the sine. It is convenient to standardize both F
and G by the requirement that the asymptotic
values for large p shall be

F~sin (p—Ln/2—751n 2p+01);

4)
G~cos (p—Lx/2—nln 2p+0y).

Thus F and G are defined by making both have
unit amplitude for large p and by making the
phase of G lead the phase of F by 90°. For the
special case of L =0 practically explicit forms for
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G were worked out by Sexl® but they are not in
a convenient form for calculation on account of
the occurrence of imaginaries in real expressions.
The  asymptotic forms of the solutions are
brought out clearly by using Whittaker’s func-
tion? Wy, m(2). Eq. (1) is reduced to the equation
of the confluent hypergeometric function by the

substitutions
2=2ip;

m=L+3. (5)

A regular solution of (1) is the function M,, »(2).
This may be expressed as a linear combination of
Wi, m(2) and of W_,, m(—32).

The formula given by Whittaker and Watson
at the end of their 16.41 gives an expression for
Wk, m(2) in terms of My, »(2) and M,, _n.(z) valid
for —m/2<argz<37/2; similarly Example 1
immediately following gives W_,, »(—2) in terms
of M_q, m(—2), M_, _n(—2) valid for —3x/2
<arg (—2)<w/2.

We let arg 2=7/2 and arg 3= —/2 so as to
correspond to (5) and we have by Kummer's
first formula

M_s, m(—2)=M,, n(2) exp {— (m+ %) i}
and
M_y, —n(—2)=M,, —n(2) exp {(m—%)mi}.

We have thus two relations between W, .(2),
W_r, n(—2) and My, n(2), M, _n(z).

K=17;

These can be solved for the latter two quantities and one has

r(2m—+1)

M, n(z) = "*—or W
DG +m—x)

e, m(—2) —egmitm—e=h)

I'(2m—+41)

————W., n(3).
I'(3+m-+x)

This formula is almost the same as that given in Example 2 of Whittaker and Watson’s 16.41, but
differs from it by the signs of « in the exponents. Now M,, (2) gives a regular solution of (1) if m
is real and positive. Similarly M\, —(2) gives a power series but its first term is —"*+}, When = is a
positive integer + 3 this latter solution is not independent of the first. The asymptotic expansion of
Wi, m determines the asymptotic form of M, »(2) and determines the factor by which My, m(2)
should be multiplied to give F as defined by Eq. (4). One thus finds

’ewixl2r(%+m_ P I
|

F=3(Y+ 7%=} ol e TN D I, (2), (6)
m
1 e'n‘ix/ZP l+m— —
G=—(Y—T¥ =%} i) T, o),

2E. T. Whittaker and G. N. Watson, Modern Analysis,
third edition, Chap. XVI.

¢ Th. Sexl, Zeits. f. Physik 56, 72 (1929). See especially
p- 83. Cf. also Th. Sexl, Zeits. f. Physik 81, 163 (1933).
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where
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Y=[TG+m—«)/TG+m+x) 1 exp {(71/2)(m+5— )} W, n(2),

V*=[TG+m~+x)/T(G+m—x) 1 exp { —(71/2)(m+5+ )} W_y, n(—2).

(7

The function M, » is defined by Eq. (6) and is analogous to M,, ,. If m is not a positive half-integer

it may be expressed as

T ()= i[cos 2rm~+exp (—2wik) ]

sin 27wm

Mk, m(ﬁ) -

2T (2m~+1)T(2m)
CG+m~+ )T (G +m—«)

eri(m-—x)M"' -—m(z)- (8)

If m is a positive half-integer the value of M can be obtained by passing to the limit in the above

Eq. (8).

Substituting into Eq. (6) and expressing the results in terms of p, L for integral values of L we have

L+1—12 L4+1—an)(L+2—1 21p)2
FL=CLe~iPpL+1{1+ +v w%p+( +1—in)(L+2—1in) (2ip) n _-}, 8"
11(2L+2) (2L+2)(2L+3) 21
where
QLHN)ICL=2 L2+ n*P[(L—1)2 49t - - [1 492 ] 2my) (e — 1)~ 9)

Similarly one finds from the second Eq. (6)

L+1in 24 L4in) -« (—L4144n) (2i0)2E
GL=R.P.DLe—ipp—L{1+ on 2up (L+in)- - - (= L414in) (2ip) }
2L 1 (2L)! 2L)!
2L41 L s
i DL[I“ 2o2y— E s R r'(—in>/r<—in>]FL/cL
L 152492

o (QL4+1)T(L+14s—1i9)(2ip)*

—pD R.P.gmivpl+tiy]

where
(L+1)D1Cr=1;
v=ZEuler’s constant=0.57721 (11)
and
p=Q2L+1) (e —1)Cr*/m, (12)

while R.P. means real part.

The above formulas could be used for the com-
putation of Fr and G but it is inconvenient to
do so on account of the occurrence of imagi-
naries. It is obvious from Eq. (8') that

Fr=Crp ¥y, (13)

where ®;, is a power series in p the first term of
which is 1. Substitution of this form into the
differential equation satisfied by Fr leads to a
recurrence formula between the coefficients of
the series and one finds

Pr= 2 Ajp" 1 Apna=1
L+1

(14)

1 1
1 QL4149 5L 41—147) t=1[—t "OL4+14t Lti—in

| a0

Aj=2nd4;a—A;e)(G+L)(Gj—-L-1)"1 (15)

For G; Eq. (10) shows that this function
consists of three parts: (a) a power series in
ascending powers of p, the first term of which is
Dyrp=%; (b) pDL(F1/CL)In 2p; (c) an additive
term in Fr. The differential equation does not
determine G, from a knowledge of parts (a) and
(b) because an arbitrary term in Fp can be
added to any solution and thus the power series
of part (a) is not uniquely defined. But by re-
quiring that the coefficient of pZ+! in this power
series should vanish it is uniquely determined
by substituting it together with p(Fz/CL) In 2p
into the differential equation. The term in Fy
is then also uniquely determined by the coef-
ficient of pZ*! in Eq. (10). Thus if this coefficient
is ¢D1/Cr then the term in Fr is gDppiti®;.
Collecting terms in p“*! in Eq. (10) one finds
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L s 2L+ 1 I(—1n) 2L 41 2*(in+n—1)---(;n—L)
Q=P[Z ———— 3, —+R.P. — ]4—(-)”1*”—* > LP. . (16)
1 82492 1 s I'(—1n) L) -1 (L+n)(L—n+1)
We thus have It proved practical to calculate ®, ®*, ¥, ¥*
Go=Dyp0,, an at large intervals by means of their power series

Or=Vr+p* Lt (pIn 2p+q)®s,  (18)
where ¥, is a power series in p beginning with
the term 1, having no term in p?Z*! and having its
coefficients determined by the differential equa-
tion. It is found that

‘I/L=§afpf+"; a—1=1; ar.=0 (19)
-7
a;i=[2na;-1—a;2—p(2j—1)4;]
XG+L)'(G—L—-1)"1 (20)

The computation of the logarithmic derivative
of the gamma-function can be made either by

R.P.[T'(14149)/T(1+in)]= —1/(149?)
F A=)+ (Ss— 0= (Ss—)pt+- -3

Si=SmF  (21)
1

for small n of the order of 1 or less, or else by
Stirling’s series for I'(z)/T'(z) as given in Whit-
taker and Watson’s 12.33 for larger %. Differ-
entiating expressions (14), (18) with respect to
p we also have formulas for the derivatives

FLI = CLpL‘I)L*, GL, =-DLP_L_1® L*) (22)
Br*= 3 jd;pim i, (23)
L+1
O =V *+p* Lt (p In 2p+ )@ L*
+p2ltipdy,  (24)
W *=3 ja;p'tr. (25)
-L

By means of Egs. (14), (15), (16), (17), (18),
(19), (20), (22), (23), (24), (25), the computation
of the functions can be carried out by ordinary
substitutions.

The functions ®, ®*, ©, ©* ¥, ¥* vary miore
slowly than F, G, F’, G’ both with p and with 7.

expansions and to interpolate for the remaining
values of p, 7.

2. APPROXIMATIONS FOR SMALL ENERGIES

It was found that the tabulated values of &,
&*, ¥, ¥* vary slowly in the region of small p
and 1/7 if the product pn=p/ka=r/a is kept
constant. This way of varying p, n corresponds
to keeping the radius constant and varying the
energy. Now it is well known that if the kinetic
energy of a particle at « is negligible in com-
parison with the Coulombian energy one can.
approximate the wave functions by means of
Bessel functions of order 2L+1 having for
argument in our case 7(8pn)% It turns out that
this approximation is a very good one in a large
region, and it proved practical to expand the
exact solutions in series of Bessel functions as
well as to extend the connection to the irregular
function.

The differential Eq. (1) can be transformed by
the substitutions

F=¢f, ¢=i(8pn)} (26)
into
a 1d 2L+1)?2 2
[—+—— - ]f=0- (27)
g ¢dg ¢? 169*

Here the last term may be regarded as small in
the region of low energies. If it is neglected one
is left with Bessel’s equation. The procedure will
now be to expand the solution of (27) in a power
series in 1/9?%, i.e., in a power of the energy. Thus

F=FO+1/167") fO+(1/169*)2f O -+ (28)
and
L(f®) = = g2, (29)
where
L=a*d*4-d/di+1—2/¢2, v=2L+1. (29

If we set f =J, we can obtain a regular solution
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of Eq. (1) by solving Eq. (29) always discarding
the irregular solutions of these equations. How-
ever, it should be remembered that to any f®
one can add J, multiplied by an arbitrary
constant involving 1/16%? to the Oth and higher
powers. Thus an additional restrictive condition
must be imposed on each f® in order that {f
should differ from F only by a factor independ-
ent of ¢ and %. This condition is obtained from
the exact expression for F given by Eq. (8). We

WHEETER AND BREIT

substitute for p in terms of { and we expand in
1/n. We see then that the lowest power of ¢
which occurs with 527 is ¢*+1+22, Thus each f©®
should be a power series having no terms of
order lower than ¢**. This determines the
regular solution uniquely through the successive
approximations obtainable from Eq. (29) because
the addition of a term in J, to any f® brings in
a term in ¢”. The solution of any Eq. (29) can
be carried out by using

L(017,) =gt 1) 4 L= 2k ) o 2081, :
0
L(§FJV> = 2/"§Mﬁljvl+/‘2§w’2-]‘v- ( )

Each approximation is then obtained as a sum of terms of the type {*J,, {#**.J,. Or else one may use
L(¢rT,) = (w2 42uv) ¢+ 2T, =21 gy,
L(¢#Typn) =2u5* Ty (= 1) (=20 = 1) {472, 41

and obtain it in terms of {*J,, {*J,1. On account of the recurrence relation between J,i2, Jyt1, J,
one can transform the result into a linear combination of terms in {“J,.s, {*J,. This is convenient
for our calculations because J, 2 is related to &4 in the same way as J, is to ®.. We thus obtain

(30"

/2t »v—1 (§/2)*
=L+ —— NV,
J=Jrkn {[ 1204+1) 24 (m)] ¥ 12(V+1)J}
1 /2)8 v+2)(v+3)(5v—7 v+2)(v+3)(Sv—T)(v—1
L[ A 4 0D ..
2492 L5(v+1) 120(»+1) 240
7—35v G_(V—-l)(v—f—3)(5u—7)/ d.1.
+[*—60<V+1)<;/z> oo Jrf+ e

It is also possible to work out the above expansion directly as an expansion of Eq. (8) and ex-
pressing the sth term in terms of s(s—1)---(s—p-1). The series arranges itself then as a sum of
terms in powers {?J,;, and then by use of recurrence relations can be brought to the form (31).
This calculation is lengthy and need not be mentioned in more detail.

The contour integral for Wi, »(27p) used as the definition of this function by Whittaker and
Watson can be related to the Bessel function contour integral used by them in their 17.2 by ob-
serving that

i/ e2\2 ie?
(it panryn—t= o exp {{ (=) on=p |- |

nL2 \47 47
The exponential can be expanded in powers of 1/9 and the result is a sum of powers of ¢ and Bessel
functions of order higher than ». However, care must be taken to have the path of integration stay
inside the circle of convergence for the power expansion of In (14-4¢%/4n7). This point of view is
apparently more troublesome than the use of Egs. (30) or (30'), but it may have its advantages.

If one omits all but the first term in (31) one obtains an approximation to ®; which applies for

very large 7, i.e., for very small energies. The limiting value of ®;, for large 7 and fixed pn will be
written . We have
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Fr=QL+1)1(¢/2)7J,($) = 2L+1) W(x/2)"1,(x), x=(8pm)}, (32)
where I, is as defined in Whittaker and Watson’s 17.7. Similarly
®r=(2L+1) (¢/2)f, (327)

where f is the expansion (31); the connection of f and &, is defined uniquely by the coefficients of
lowest powers of o in both expressions. Expressing all J, in terms of the §z in Eq. (31) one obtains
an expansion of &, in terms {1, and Fr41. We thus have

<I>L—_—%L+__{[ (x/2)¢ v=1 £/2) 4"| & L1 (x/2)* . }

1204+1) 24 lo+D)0+2) 12004+1)
Lt {[ (/28 <v+2><v+3><7—5v><x /2)6_(v+2><v+3)<7—5v><v—1>(x/2)41 Fra
2404 L5 (v4+1) 120(v+1) 240 lo+1)0+2)
7—5v GL(u—-1)(1/—*—3)(7--51}) )
[_60(V+1)(x/2>l 240(v+1) &/2) ]%L}+ - ()

For L=0 the term in 7°® to be added in the above expansion is

oty {[ 320 640 1280 ]% +[320 5056 2560 1280 ]%} )
———p¥n® ——p¥y? ———py ——pip? p*n p*n on [Tt
23,0407 1L 9 7 21 T s T Y

Numerical calculation of successive terms in 772, 7~4 shows that the above series converges rapidly
even in regions where the power series in p requires a large number of terms for its computation.
Thus for example for pn=0.631 and p=1.259 the successive terms of (33) are 1.778, —0.394, +0.028
giving &= 1.412 which agrees with ®,=1.412 as computed by the power series. By means of Eq. (32)
the power series calculations for small p were checked satisfactorily.

The recurrence formulae for Bessel functions give the limiting values 141 in terms of §z, Fr-1.
The relation is

(x/2)* (x/2)*
1+2 J L= B L+1+G -1 34
[ »2—1 v(v+1)2(1/+2)0 #+8 (34
Similarly recurrence formulae give
1 2(x/2)? (x/2)* 1 2(x/2)?
srf=—1+v+ - 1=~ 1—» r+rv§r-1 !
8 2[ + v+1 ] " (V+1)2(V+2)3 * 2[ + —v ]% + 5%

These relations also determine §, 41 in terms of Fr* and Fr,1*. The relations

1 d
Tz ='2“(V+1+xé;)%11, (35)
1 d 1 (x/2)4+» ,
5(v+1+xc—l;) (x/2) %L—E(v-{-l-i—l? m%ml, (35)
(96/2)2 v+3—p

TOAY )
E(”+ +xd~x)<x/ V9 a1 = (r+2) (/2) %L+[— ](x/zw%m, (35")

v+1

determine through (33) the series ®.*. Using the relations (34’) one can also express it in terms of

Fe*, Frar™
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Using Eq. (10) and collecting terms of lowest power in 1/7 we obtain an approximation to

2 x\ 2L+1
@Lz "—(‘Z—L—)—'(E) K2L+1(x),

where K is defined in Whittaker and Watson’s 17.71. In our case K,=(—)%(x/2)H,V(¢). This
formula checks satisfactorily the values of & for small p. An expansion of @ similar to (33) is
possible but is more complicated. Substitution of K, for J, in Eq. (31) gives an irregular solution of
the differential equation, but we have no proof that this is the irregular solution which is wanted.
In special cases numerical trial gave satisfactory results with this expansion.

Both F; and G can be approximated by means of formulae of the type of Wentzel, Kramers and
Brillouin (WKB). One can try to use the differential Eq. (1) and to compute the phase integral
directly. Such results we will call WKB L(L+1) so as to indicate that the last term is used without
any change. In the region of negative kinetic energy the appropriate approximations are

F=3Q" exp { - [ p°@dp}; G=0-texp { | p"de},

where —(Q? stands for the coefficient of F in Eq. (1) and p, is the classical turning point, i.e., the
positive root of Q?. Kramers* showed that in the case of attractive coulomb fields the correct phase
in the region of positive kinetic energies is obtained by using (L4 3%)? instead of L(L+1) in the phase
integral. It was subsequently shown by Uhlenbeck and Young® that a change from L(L+1) to
(L+%)? improves the approximation also so far as absolute values of the function are concerned
for attractive Coulomb fields. The results of Uhlenbeck and Young are essentially due to a com-
bination of the effect noted by Kramers and of the fact that the (L-%)? modification makes the
wave function have the correct power dependence on 7 at small 7. For repulsive fields the power de-
pendence on 7 is also given correctly for F by the (L+3%)? modification but Kramers’ argument about
the phase is not applicable because the regions of positive and negative kinetic energies changed places.
We find, nevertheless, by trial that for low energies the WKB (L+ %) method gives very good results
and on considering the connection with the preceding expansions in Bessel functions a reason for
this became apparent.
The values of Fi, G, obtained by WKB (L+ %)% are given by

Ug U—Uy T
cos™ L exp {—n(——u
2 2

sin u=(p—n)[n*+(L+3)* 1

(36)

(37)

Fr.=(2 cos u)~* sin &+

Cos %
+<L+%>~-}, FiGL,=1/2Q (38)

COS %g

where sin #o=n[ 2+ (L+3)*]} (38%)

and # is supposed to be in the first or fourth
quadrant while 0 <#y <r/2. This formula is con-
venient for the computation of Fy. Passing to the
limit of small p, keeping pn at a fixed value, one
obtains the value of C{1. Since on the other
hand &, is related to J, by Eq. (32) this also
means that we obtain an approximation for J,.
We obtain in this way

(ix)” exp (¥2+x?)}
T @2m) (o 4a?) v+ (2 4a2)h ]
4+ H. A. Kramers, Zeits. f. Physik 39, 828 (1926).

J(ix) ‘(38”)

which will be recognized as Carlini’s formula.®
This is supposed to be valid only for large »
being obtained as a first term of an expansion in
descending powers of ». But even for v=1 this
formula is found, by trial, to be remarkably
accurate, deviating from the correct value by
not more than 8.5 percent. For »=3 which cor-
responds to L=1 the agreement is much better,
the maximum discrepancy being only 2.8 percent.
This agreement applies for all values of x and
moung and G. E. Uhlenbeck, Phys. Rev. 36, 1154

(1930).
8 G. N. Watson, Bessel Functions, pp. 7, 226,
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implies a corresponding agreement of the
WKB (L+1%)? method for any radius if the
energy is made low enough.

Corresponding to (38'’) the approximation to
© by means of K leads to an approximation for
K, given by

-2 42K, I, =1, (38"")

where 7, is as determined by (38’’). This approx-
imation is also good. It is apparently a new one
mathematically although physical considerations
make this approximate connection of K, with
I, very obvious. The exact values of K, and I,
satisfy this formula to within a few percent from
x=0 to x=10.

~ Keeping 1 constant and making p very small
one obtains the region of small radii at constant
energy. Here the F; function can be approxi-
mated by CrpZ*! and as has been already men-
tioned the correct power of p is obtained by the
WKB (L+3%)? method. We find also that the
coefficient of pZ+! obtained by this approximation
agrees well with Cr. Thus for =1 this coefficient
is 0.120 while Cz=0.108; for n=3.162 the coef-
ficlent is 2.35X10~* while the exact value is
2.17X10~% This agreement causes as well an
agreement of G, with its WKB (L+%)? approx-
imation because in this region the approximations
satisfy F1Gr=p/(2L+1) and the same formula
is obeyed by the exact solutions for small p. It is
thus seen that both the F and G functions are
reproduced quite well by the WKB (L+3)?
approximation for energies and radii which cor-
respond to the particles being well inside their
mutual potential barrier.

It should be remembered, on the other hand,
that the (L+3)? modification raises the barrier
in comparison with its actual value. It is thus
not a good approximation in the proximity of the
classical turning point, not only because the
WKB formulae are always poor close to the
turning point but also because the position of
the turning point is given incorrectly by the
(L4 1)? modification.

The Carlini formula is obtainable from
Meissel’s first expansion® through the use of
Stirling’s series and the rapid convergence of this
series even for small » is in part responsible for
the practical nature of Carlini’s formula for
small ». It is of interest to note that the pro-
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cedure used in deriving successive terms of
Meissel’s formula is very closely related to that
used in discussing the WKB method. The
essential difference lies in the fact that the
exponent is expanded in descending powers of »
by Meissel and no such convenient parameter is
used in deriving the WKB approximations. The
first two terms in the exponent of Meissel’s
formula given by the first line of V, on p. 227 of
Watson’s Bessel functions give, as is found by
trial, a very good approximation which for our
purposes is superior to Carlini’s. It is not obvious
why an expansion in 1/v should give results so
superior to those obtained by treating Eq. (1)
by the procedure of WKB.

3. DiscussioN OoF NUMERICAL REsULTS’

In tables B, C, D, E the coefficients for ®; and
¥, are given for L=0, 1 and for values of 7 so
chosen that logarithms of 7! extend from 2.0 to
0.5 in steps of 0.1. The values of n~! that were
used did not correspond quite exactly to the
tabulated values of the logarithms. In some
cases it is necessary to know precisely the value
of 7 used in the computation of coefficients and
for this reason a separate column giving these
values is given in the tables. For a;, L=0, this
was not necessary because the same 75’s were used
for them as for 4;, L=0. Coefficients for &.*
and ¥ * namely j4;and je;can be also obtained
from these tables.

Table A gives &5, &% ¥, ¥ * for L=0, 1
obtained using these coefficients. They are cal-
culated for values of p chosen in steps of 0.1 on.
a logarithmic scale to the base 10 from In p=2.0
up to In p=1.9 and in some cases up to In p=0.9.
In this work the values of p* that were used in
the computation of the series were each good
only to four significant figures.

The probable percentages of error in the values
of the series given in Table A are indicated for
certain columns of the table as explained in the
note at its heading. This was estimated for a
large number of them considering: (1) the accu-

"The bulk of these tables will be published in the
December issue of the Journal of Terrestrial Magnetism
and Atmospheric Electricity together with a brief explana-
tion and a collection of formulas. These tables are referred
toas A, B, C, D, E, F, G, H, 1. In distinction to these
the tables of the present!paper are numbered: I, II, III,
1V, V, VI, VII, VIII.
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racy in the coefficients and (2) the slowness of
convergence of the series. For & and ¥ it was
assumed that the first digit discarded in each 4;
or a; was 9. The sum of the squares of the con-
tributions of the errors in individual terms was
considered to be the square of the ‘‘total error”
if the last few terms were small in comparison to
previous terms. In case this was not so, additional
coefficients were roughly determined to the stage
where this condition did exist. The additional
contribution of 'these approximate coefficients
was squared and added to the quantity obtained
from considering errors in each term. The square
root of this sum was used as the ‘“‘total error.”
“Total errors’” were determined for ®* and ¥*
in the same manner. The error in the powers of p
was not properly taken into account in these
estimates but the fact will probably be of no
great importance. The percentages of ‘‘total
error’’ increase to the value given for the column
at the right more rapidly as the column is
approached.

A large number of checks were made on ¥,
&* ¥, ¥* and p both for L=0 and L=1. Use
was made of the relation

FG-G'F=1
or its equivalent
*Q —O*d=2L41.

One hundred thirty-five such random checks
were made for L=0, pn=1.259, p=0.7944; 145,
for L=1, pp=3.162, p=1.585. The majority of
these checks were made with values of py, slightly
erroneous in a manner to be discussed more
fully later. This fact probably does not vitiate
the values of F'G—G'F so obtained to any great
extent since the checks in Tables VII, VIII
(which are a fair sample of those obtained in
general) were gotten by using accurate p;’s and
do not vary appreciably from original checks
with less accurate p1’s. The maximum inaccuracy
in F'G—G'F due to this cause was 0.5 percent
which was found for n=1, L=0. In other cases
the correction due to using quite accurate pr’s
had less effect. Thus for L=0, pp=0.6310 the
effect was less than 0.04 percent and less than
0.3 percent for L=1, In n7*=0.0.

The values of F'G—G'F for L=0 ranged from
0.9836 to 1.0291. Ninety satisfied the check to
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0.1 percent and 135 to 1 percent. The remainder
were for pn=1.000 to pn=1.259 where deviations
are to be expected. For L=1 values lay between
2.82 and 3.24. One hundred eighteen of these
satisfied the check to 0.1 percent and 140 to 1
percent. The remainder were for values of pn
from 1.259 to 3.162.

pr and ¢y, are given in Table F together with
the values of 5 to which they correspond. The
po’s are accurate as given. The p;’s are accurate
to 1 in the last figure. The bothersome part of
determining the g¢:'s is the calculation of
R.P. IV(1+49) /T (1+149). If one uses the differ-
ence equation for the gamma-function this may
be written

I(14in) oot
P —_— —_—

B p I (s+41in) -
© T (14in) i=1 j2+n?

" D(s+in)

The R.P. TV(1+4149)/T(1+44n) was determined
from the above equation by using Stirling’s series
for I (s+14n)/T(s+4n) with s=2 and s=6. This
was done for n=1. Agreement between the two
methods was exceedingly good. For <1 the
calculation was made as above for S=6 and this
checked satisfactorily with results by Eq. (21).
For n=1 the values for s=6 were used inclusive
of the first figure in which they disagreed from
s=2. The difference between s=2 and s=6 was
taken as the probable error. The error due to
using a finite number of digits in the other terms
in ¢z was also taken into account. The square
root of the sum of the squares of all these errors
was calculated and used as a measure of the
error in g. The values of ¢ are so tabulated that
the last figure given is not in doubt by more than
5 and generally by less, using the above way of
estimating accuracy.

Values of Cyr, Dy, for L=0 and L=1 together
with the n’s to which they correspond are given
in Table H.

Tables discussed thus far are auxiliary to the
determination of the regular and irregular wave
functions, F1, G and their derivatives F;', G./'.
The latter four quantities are given by Eqgs. (13),
(17), (18), (22), (24).

Figs. 1, 2 give the values of ®, and O,
respectively. The two families of curves in each
graph correspond to constant energies (7 =const.)
and constant radii (pp=const.). Some of the
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points of intersection of the two families of
curves were obtained by graphical interpolation
while other points were obtained by direct cal-
culation.

It is important to note that it is necessary to
use accurate values of p, ¢ in order to obtain
correct results for ® because this quantity is
often obtained as a difference of two nearly equal
numbers. A portion of these values were cal-
culated by using values of p, ¢, In 2p which for
one reason or another differed slightly from the
final accurate values given in the tables.

It is believed that the values of ® used in
plotting the curves of Figs. 1, 2 are good to
better than 2.5 percent for L =0 and better than
0.5 percent for L=1 and in most cases the accu-
racy is probably higher than just stated. These
estimates of accuracy were arrived at by using

accurate p's and ¢'s in some representative
cases.

Tables I, II of the present paper show the
agreement between values of & for p—0 and
(2QL41)I,(x)/(x/2)*. Table III gives the ratios
of values of the Carlini formula for certain values

TaBLE 1. Values of §o/Po.

on P &y %o %o/fbo
0.01000 0.01000 1.01002 1.01003 1.00001
0.01585 0.01585 1.01589 1.01593 1.00004
0.02512 0.01000 1.02531 1.02532 1.00001
0.03981 0.01585 1.04029 1.04033 1.00004
0.06310 0.01000 1.06442 1.06444 1.00002
0.1000 0.01000 1.1034 1.10339 0.99999
0.1995 0.01000 1.1671 1.16709 - 0.99999
0.2512 0.01000 1.2730 1.27313 1.00011
0.3981 0.01000 1.4545 1.45458 1.00005
0.6310 0.01000 1.7783 1.77860 1.00017
1.000 0.01000 2.3947 2.3948 1.00004
1.259 0.01259 2.9132 2.91336 1.00006
1.585 0.01585 3.6823 3.68246 1.00004
1.995 0.01995 4.8641 4.86371 0.99992
2.512 0.02512 6.7583 6.75734 0.99986
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of the argument to the actual value of the Bessel
function for the same argument. These are for
v=1, y=3. Table IV gives the ratios of Meissel’s
first extension of Carlini’s formula to the Carlini
values and also the ratios of the Meissel form to
the actual Bessel functions. The three columns of
v=1, v=3 give the results of using 1, 2 and 3
terms in Meissel’s exponent V.

No tables are given here for the verification of
Egs. (33), (34) and (34'). In testing (33) 51
ratios of ®o=f(o, F1) to the actual &, were

taken from p=0.01 to p=0.6310, from Iny~!
=20 to Inn'=0.4 and uniformly spaced
between diagonals p7n=0.05012 and py=10.
Bessel function values were used for {, and &;.
These ratios were found to lie between 0.9990
and 1.0006. Convergence was such that it was
not necessary to consider the term in 5~ The
term in 7% was computed for a point beyond the
barrier given by p1n=0.6310, p=1.259. The first
three terms were 1.778, —0.397, 0.028. The term

TaBLE III. Values of ¢1./Fr-@r= Carlini's approximation

TaBLE 11. Values of §1/®,. to Fr.
on P & T T/ x=(8mt  Fo 0o 60/To T (/3 6/F
0.01000 0.01000 1.00500 1.00515 1.00015 0.0 100000 10844 10844 100000  1.0281  1.0281
0.01585 0.01259 1.00793 1.00817 1.00024 0.4 1.01004  1.0373  1.0269
0.02512 0.01259 1.01261 1.01278 1.00017 0.8  1.08216  1.1126  1.0281  1.04065  1.0654  1.0238
0.03981 0.01259 1.02004 1.01983 0.99979 1.2 109331  1.1144  1.0193
0.06310 0.01259 1.03192 1.03198 1.00006 1.6 1.35601  1.3348  0.9844  1.17061  1.1871  1.0141
0.1000 0.01259 1.0509 1.0510 1.00010 2.0 ) 1.27644  1.2877  1.0088
0.1995 0.01000 1.1039 1.1038 0.99991 2.4 191510  1.8506  0.9663  1.41621  1.4219  1.0040
0.2512 0.01259 1.1321 1.1321 1.00000 3.2 295801 2.8610 0.9669  1.82942  1.8230  0.9965
0.3981 0.01000 1.2155 1.2156 1.00008 3.6 212562 2.1124  0.9938

0.6310 0.01000 1.3582 1.3582 1.00000 4.0  4.87973  4.7363  0.9706
1.000 0.01000 1.6118 1.6120 1.00012 4.4 2.98394  2.9554  0.9904
1.259 0.01259 1.8122 1.8123 1.00006 4.8 3.59824  3.5595  0.9892
1.585 0.01585 2.0933 2.0934 1.00005 5.2 4.38500  4.3347  0.9885
1.995 0.01995 2.4976 2.4976 1.00000 5.6 5.39605  5.3318  0.9881
2,512 0.02512 3.0986 3.0991 1.00016 6.0 6.70012 6.6186 0.9878
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TABLE V. Values of ®1/0y, for L=0,1.

x=8pom)? v=1 v=1 y=1 v=3 v=3 v=3 In -1 P & O  &o/Oo & (SN [GACH
0.0 092214 0.9;(2) 314 8‘922 é4 8'9;3“ o.g;gz 1 8'3;% i 3.0 0.01995 0.2386 0.240  0.994
0.8 1.00069 0.97039 0.98068 0.97796 0.97642 0. 5
1.6 103886 103357 104465 008922 098557 008560 =0 001000 0.1309 0.136 1020 04496 0.4486 1‘0025
2.4 1.03925 1.04138 1.04564 0.99957 0.99621 0.99659 2.2 0.01000 0.2287 0.229  0.9987 0.5866 0.5856 - 1.001
3.2 1.03068 1.03358 1.03632 1'8?(5)32 1.00300 1.003131 2.3 0.01000 0.6486 0.6479 1.0011
4.0 1.03006 1.03258 1.034 K 16 1.00880 1.00 2.4 - 0.01000 0.3331 0.333 1.0003
4.8 1.02634 1.02837 1.03094 1.01205 1.01146 1.01188 5.5 001000 03850 0388 10000 0.7518 07512 1.0008
Ratios of Meissel expansion to actual Bessel functions for same x and » 2.6 0.01000 0.4438 0.445 0.9973
0.0 0.99997 0.99997 0.99997 1.0000  1.0000  1.0000 2'7 0‘01300 05520 0.551  1.0019 g‘ggﬁ 0'83(7)(2) i‘ggg
0.8 1.0288  0.99766 1.0082  1.0012  0.99966 0.99927 2.9 0.01000 - 0.88 :
1.6 1.0227  1.0174  1.0284  1.0031  0.99942 0'98324 1.0 0.01000 0.6489 0.6473 1.0025 0.9093 0.9084 1.0010
2.4 1.0042 10063  1.0104  1.0036  1.0002  1.0f 1 ) ) ) ) ) . 1
3.2 09966 09994 10021 10018  0.99946 0.99999 7 ; g giggg 0 ?g;; g 328§ i gg;g 09266 0.9260  1.0006
4.0 09998  1.0022  1.0044 0.97906 0.97780 0.97833 1. - 0. 73 .
4.8 1.0012  1.0006  1.00098 1.3  0.01000 0.9592 0.9522 1.0074
1.4 0.01000 0.8064 0.799  1.0093
15 001000 08281 08273 10010 09704 09694 1.0010
1.7 0.01000 0.9809 0.9805 1.0004
_ st s 1.8 0.01000 0.9141 0.894  1.0225
6
due to * was 0.003. This indicates tha.t for 39 001000 09995 09876 10120
some values of pn the first three terms give a 0.0 001000 09477 09256 1.0239 1.0148 0.9901 1.0249

good approximation to ®, even beyond the
barrier.

In testing (33) for L=1 fifty-six values of the
ratio of ®;=f(F1, F2) to &; were taken between
p=0.01 and p=3.981, In41=2.0 and Iny—!
=0.4, evenly spaced between the diagonals
pn=0.05012 and pn=23.981. The Bessel function
values of {; and . were used. Out to p=0.7944
the values of the ratio lay between 0.9993 and
1.0078. This expansion is good within three
percent up to p=2.512, for In y~1=0.0, 0.4 but
breaks down for higher p. Egs. (34), (34') were
also verified by numerical trial in a large number
of cases. The terms beyond 5~* were not con-
sidered in these calculations.

The verification of Eq. (36) is shown in Table
V. The error in © due to the errors in the p’s and
¢’s should be small for these values. In fact for
p=0.01 the values for quite accurate p’s and ¢’s
should not vary from those used by more than
0.17 percent for L=0 or by more than 0.24
percent for L=1. Similarly the extension of
Carlini’s result to K, given by Eq. (38") is
verified in Table VI.

A relation giving ®, as a function of @, &,
was obtained by analogy with Eq. (33). Thus
substituting

(x/2)=¢Lr+1) - - (+25— 1) PPr(r+25)S L4

for ¥+, one obtains an expansion for ©, which
gives an irregular solution of the differential
equation for G. We have no proof that this
expansion is equal to ® because it may differ
from it by terms involving the regular solution.

It is remarkable that this expansion gives good
numerical results. Thus for pn=0.1000 the ratio
of the values of ®, computed by this expansion
to the accurate values increases from 1 to 1.0046
as In (1/7) varies from 1.0 to 0.0. There is a
similar good agreement for pn=0.3162. For
pn=0.10 and In (1/9)=0.5 the ratio is 1.3
without using the term in =% and 2.4 if the term
in 7% is used. For such high energies the expan-
sion is not satisfactory but it is apparently safe
and accurate in the low energy range.

In applications of the functions one needs the
values of F, G as well as the values of the
logarithmic derivatives F'/F and G'/G. In view
of the fact that the WKB method of approx-
imation is popular and expedient we compare
here in some special cases the WKB approxima-
tions with the exact values. Figs. 3 and 4 give
ratios of approximations to the accurate values
of Fand G for L=0 and for two fixed values of

TABLE VI. Values of —2(»?+x2),K, for v=1, v=23.

x=(8pn)? y=1 x v=3

0.02 0.99935 0.1 1.00192
0.1 0.99155 0.2 0.99975
0.3 0.97659 0.4 0.99895
0.6 0.95325 0.6 0.99792
0.9 0.95846 0.8 0.99677
1.0 0.96215 1.0 0.99564
2.0 0.99495 1.5 0.99364
3.0 1.00405 2.0 0.99315
4.0 1.00465 2.5 0.99377
5.0 1.00377 3.0 0.99493
6.0 1.00292 3.5 0.99620
7.0 1.00226 4.0 0.99734
8.0 1.00179 4.5 0.99917
9.0 1.00144 5.0 0.99900

10.0 1.00118

13.0 1.00072

16.0 1.00048




186

the parameter 7. It will be noted that the
(L+%)? modification of the approximation
method is in these cases vastly superior to the
direct use of L(L+41) in the formulas. The poten-
tial barrier in Fig. 3 is at p=2 and thus cor-
responds to a point lying 13 of the marked
divisions outside the right end of the figure. For
Fig. 4 the potential barrier is reached at log
p=1.801. It will be noted that the (L43)?
approximation is satisfactory at the barrier and
even at values of p exceeding 21. On the other
hand the ordinary WKB method breaks down
in the well-known manner at the barrier. In Fig.
5 the radius is kept constant and the energy is
varied for pn=0.631, L=0. It will be noted that
here also the (L 3)? approximation is superior
to that using L(L+1) but at the same time it is
clear that even this WKB approximation is con-
sistently incorrect at small energies. This is to be
expected from the limiting values obtained by
means of the Carlini formula. The barrier is
reached in this figure at log p=0.05. As the
barrier is approached there is not much choice
between the (L+3%)? and the L(L-+1) approx-
imations for G. In Tables VII and VIII similar
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comparisons are made for L=1. The end column
refers to the value of 3(F'G—G’'F) which cor-
responds to the values of F', F, G', G used in
these calculations. If these values were exact all
numbers in the last column would be exactly 3.
The amount by which they differ from 3 may be
used as a criterion of accuracy. Table VII cor-
responds to a fixed radius and Table VIII to a
fixed energy. The approximations are usually
better for L=1 than for L=0.

Comparison of approximate and exact values
for logarithmic derivatives is made graphically
in Figs. 6, 7, 8, 9. In these figures the exact
values of pF'/F=&*/® and pG'/G=0*/0 as
well as WKB approximations to these quantities
are plotted against p. Fig. 6 shows the condition
for fixed energy (n=1) and L=0. In the range
covered the use of (L+3)? is better than that of
L(L+1). It will be noted that there is an appre-
ciable region of small p where the L(ZL-+1)
method gives wrong signs for G'/G. This figure
should be compared with Fig. 3 for the direct
values of the quantities. In Fig. 7 the radius is
kept constant by keeping pn=0.631 for L=0. In
this case G'/G is approximated somewhat better

® (Fo)iw+n/(Fdexact
e (Gouw+ 1)/ Golexact

0 (Fowsiyaz (FexacT
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F16. 4. Ratios of WKB approximations to exact values of
Fand G for L=0, log n=T1.5.
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doubt the better. This figure corresponds to
Fig. 5 in the values of the parameters used. In
Fig. 8 an analogous condition is illustrated for
L=1, pn=1.259. The values of the parameters
used for this figure correspond to Table VII. In
Fig. 9 the energy is kept constant for L=1, n=1.
Here also the L(L+1) approximation is better
than the (L-+3)? type for G'/G and large »p.
Otherwise the (L+3%)? method is the better. The
analogous comparison of F, G with their approx-
imations was made in Table VIII. It will be
noted that the comparisons of approximate and
exact values of F and G cannot be used reliably
for a discussion of the logarithmic derivatives.
Comparisons for many other values of parameters
were made in a manner similar to the cases pre-
sented here. The same general features are borne
out by these calculations. Thus the approxima-
tions are usually better for L=1 than for L=0
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by using L(L+1) in the WKB formulas than by
using (L-+%)? at large values of p. However, at
small values of p the (L+%)? method is beyond
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TABLE VII. Ratios of WK B approximations to exact values
of F, G for m=1.259, L=1.
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TaBLE VIII. Ratios of WK B approximations to exact values
of F, G forn=1,L=1.

FwkB FwkB GwWKB GWwWKB FwkB FwksB GwWKB GWKB
Fep Feg Gez Geg Feg Feg Gex Gez
e n L(L+1) (L+$)? L(L+1)(L+5?  Check [ L(L+1)  (L+H2 LEL+Y (L+9)2 Check
0.01585 79.44 1.14 0.96 0.91 1.04 2.9986  0.01000 1.72 1.05 0.62 0.96 2.9999
0.01995 63.10 1.15 0.96 0.90 1.05 3.0017 0.01585 1.66 1.05 0.64 0.96 3.0000
0.02512 50.12 1.16 0.99 0.89 1.01 3.0010 0.03162 1.56 1.04 0.68 0.97 3.0000
0.03162 39.81 1.17 1.00 0.88 1.00 3.0030  0.05012 1.50 1.04 0.71 0.96 3.0010
0.06310 19.95 1.17 1.01 0.88 1.00 3.0007  0.06310 1.50 1.04 0.70 0.96 3.0000
0.1000 12.59 1.16 1.00 0.88 1.01 3.0001  0.07944 1.44 1.04 0.74 0.96 2.9998
0.1259 10.00 1.16 1.00 0.89 1.01 2.9996  0.1000 1.41 1.04 0.75 0.96 3.0000
0.1995 6.310 1.16 1.00 0.89 1.00 2.9985  0.1259 1.36 1.04 0.78 0.96 3.0000
0.3162 3.981 1.16 1.00 0.89 1.00 3.0018  0.1995 1.33 1.04 0.79 0.96 3.0000
0.5012 2.512 1.16 1.01 0.89 0.99 2.9948  0.3162 1.28 1.04 0.82 0.97 3.0001
0.7944 1.585 1.16 1.02 0.88 0.97 2.9945  0.5012 1.23 1.04 0.85 0.96 3.0001
1.259 1.000 1.16 1.05 0.86 0.92 3.0019  0.6310 1.21 1.04 0.86 0.96 2.9991
1.585 0.7943 1.20 1.09 0.90 0.93 3.014 0.7944 1.19 1.04 0.86 0.95 2.9998
1.000 1.17 1.04 0.87 0.94 3.0063
1.259 1.16 1.05 0.86 0.92 3.0019
1.585 1.17 1.07 0.88 0.93 3.050
1.995 1.19 1.11 0.97 0.99 3.64

for the same p, 7. Also the (L+3%)? type of
approximation is usually better than the un-
modified type of WKB formula. However, there
are cases where the opposite is true as has been
brought out above. The only absolutely unques-
tionable region in which the WKB formulas have
an easily predictable accuracy is that of small p
where the (L+3)? method holds to within the
range of validity of the Carlini formula.

In the calculation of excitation functions of
nuclear reactions one is at times concerned only
with relative values of F for the same radius and
different energies. The above comparison shows
that even the L(L-+1) method is not bad for
such a purpose through considerable ranges of
energy. Effects of resonance levels, however, are
not represented very well by the approximations

because these depend on values of F'/F.

In Table VI we give values of —2(»24-x2)}
XI,(x)K,(x) for L=0, 1 which give an idea of
the accuracy of the approximate Eq. (38"'). By
means of the relation

ﬁé/(ﬁé)WKB(L+g)ﬂ= =202 +x2)L.K,

and this table one obtains the accuracy of the
WKB approximation for FG in the limit of
srpall p and finite pn. Table III gives directly
(F)WKB(LH)z/IS and by multiplying correspond-
ing Anumbers in the two tables one obtains
G/(G)wxsz+p® In this limit the approximation
is seen to be good to within a few percent and
generally better for L=1 than for L=0.
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HE present theory of radiative processes!

(e.g., radiation of electrons and pair pro-
duction by photons when passing atomic nuclei),
though in quantitative agreement with observa-
tions up to several MV, gives far too large
effects for higher energies and is therefore not
applicable to the discussion of cosmic-ray phe-
nomena. The reasons for this failure can be
found in (a) the inapplicability already of

1 H. Bethe and W. Heitler, Proc. Roy. Soc. A146, 183
(1934).

classical electrodynamics for too high or too
rapidly varying fields; (b) difficulties in the
simultaneous application of the principles of
quantum mechanics and relativity for field
strengths above the critical limit

E.=m23/eh, (1)
that is a potential difference mc?/e through a
distance 7%/mc; (c) breakdown of the super-

position principle in Dirac’s hole theory at the
same limit.



