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A short derivation of the Debye-Waller temperature factor in the reflection of x-rays from
isotropic crystals is given. This short derivation clearly brings out the assumptions involved
and paves the way for the extension of the theory to the more complex case of anisotropic
crystals. One of the authors will give this extension in a subsequent paper.

1. INTRODUCTION

N the reflection of x-rays from crystals and in
the scattering of x-rays from gases, we meet
two forms of the atomic structure factor. If we
represent the structure factor relative to a lattice
point in a crystal by F and that relative to the
center of the atom by f, the relation between F
and fis

F=fH, 1

where I is the temperature factor. This is given
47z sin 0

by
Il=f p(2) cos( —————-)dz,
o A

where #(z) is the layer distribution function
relative to a crystal plane of the atoms associated
with that plane (the plane of x and y), the axis of
2 bisects the angle between the forward direction
of the reflected rays and the backward direction
of the primary rays, and 8 is the glancing angle of
incidence of the x-rays on the reflecting plane.
The temperature factor is usually written in the
form

2)

H=eM, 3)

The function M has been derived for isotropic
solids by Debye.! Later, Waller? showed that
Debye’s formula for M should be multiplied by a
factor of two. In this paper a new derivation is
given. The authors believe that this third
derivation is justified on two grounds. Firstly,

* The authors were aided in part by a grant from the
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1 P. Debye, Ann. d. Physik 43, 49 (1914).

2 1. Waller, Zeits. f. Physik 51, 213 (1923). A compre-
hensive list of references is given by Compton and Allison
in X-rays in Theory and in Experiment, 435-436 (1935).
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the two previousderivations have been solengthy,
and the approximations so obscure, that it is
difficult to see just what physical assumptions
have been made. Secondly, one of the authors is
communicating a paper in which the method of
the present paper is extended to the derivation of
M for anisotropic crystals. It is desirable to
separate the case of isotropy from the more
complex case of anisotropy.

2. THE LAYER DISTRIBUTION FUNCTION

We assume the displacements of the atoms
from their equilibrium positions to be so small
that the potential energy of the lattice is a
quadratic function of the coordinates of the
atoms. The actual displacement of a given atom
from its lattice point is then given by the vector
sum of the displacements arising from the
various normal modes of vibration of the crystal.
In particular, the component of the displacement
of an atom along any axis, say along the z axis, is
equal to the algebraic sum of the components of
the displacements due to the vibrational modes.
Since the probability of a displacement between z
and z+dz due to one vibrational mode is the
same whether 2 is positive or negative, and since
the displacements due to any two vibrational
modes are independent, the calculation of the
probability function #(2) is identical with the
calculation of the probability function for a net
error which is due to a large number of inde-
pendent errors,® or for the diffusion of Brownian
particles from a plane.* The result is well known:

p(2)= s 4

’

(2mu)?

3 See J. Rice, Statistical Mechanics, p. 10.
¢ A, Einstein, Ann, d, Physik 17, 556 (1905).
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where
b= Zpts. (5)

Here u, is the mean square of the z component of
the displacement due to the sth vibrational
mode, and the summation is over all the vibra-
tional modes of the crystal. Substitution of (4)
into (2) gives

M = (8% sin? 6) /\2. 6)

3. THE MEAN SQUARE DISPLACEMENT

In order to calculate x, we must assume a
definite model for the solid. We shall take that
model introduced by Debye® in his theory of the
specific heats of solids. The normal coordinates
are taken to be the amplitudes of the vibrational
modes which would be present if the solid were a
continuous medium with the same gross elastic
properties as the actual discontinuous solid.
Since the number of normal coordinates must be
3n, where % is the number.of atoms in the solid
under consideration, Debye found it necessary to
exclude vibrational modes of a frequency greater
than a certain maximum frequency, v,.. It should
be noted, however, that this method of obtaining
the correct number of normal coordinates is not
unique. In this paper we shall follow the pro-
cedure of Debye’s theory of specific heats in
excluding those vibrational modes with a fre-
quency greater than vp,.

The mean square p is to be identified with the
average square of the z component of the
displacement vector D(r, £) of the fictitious con-
tinuous medium. If we expand D into a Fourier
series,

D(r, ) =242 a;, (¢) cos (k-1+44,),

and let v;, x be the cosine of the angle which a;, x
makes with the gz axis, then, in virtue of (5),

p=2_7%, k8%, (7

In the classical mechanics a;, i is a periodic
function of time

a;, () =c;, x cos 2mvi+dj, 1),

5 P. Debye, Ann. d. Physik 39, 789 (1912).
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the phases ¢; 1« being independent. In the
quantum mechanics the a; x's are independent
dynamical variables. In both mechanics the
average energy associated with a;, i is

€, k=47r2u2M0a2j, ks (8)

where v is the classical frequency of a;, x and M,
is the total mass of the solid. From the classical
viewpoint this relation is obtained most readily
by equating ¢; x to the kinetic energy %Ma?;, «
associated with a;, « at the instant when a;, x is
zero. From the quantum viewpoint this relation
is obtained via the virial theorem. By means of
(8) and of the quantum formula

hv
=—+thy
exp (hv/kT)——1+ /2 ®

€, k

(hv/2 being the zero-point energy), we now
transform (7) into

h
p= -2, {
a0 E

1/v
S ———
exp (hv/kT)—1 2y

(10)

Eq. (10) is not restricted to isotropic crystals;
it will in fact be used in a following paper on
anisotropic crystals. Assuming isotropy, v%;, « is
replaced by its spatial average %, while, as in
specific heat theory, the number of vibrational
modes with frequencies between v and v+dv is
Onv,~%vdv. Hence (10) may be replaced by an
integral between the limits »=0 and v=vmu.
Introducing the quantity é=hv/kT and the
characteristic temperature © =hv,,/k, we obtain
an expression for u which when inserted in (6)
gives the Waller formula

, (1)

6h? {q&(@/T) 1}si1120

k0 | e/T 4l N

where m,= M,/nis the mass of a crystal atom and

(=) 1fx i
¢x*x0e5—1 ’

the well-known Debye function.

(12)



