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absorption coefficient of the shower producing
radiation. However, for much greater thicknesses
of lead it seems necessary to adopt the view
that the showers occasioned by the air second-
aries do not reach the ionization chamber and
that the burst-producing radiation originates in
the lead, probably as a result of a close nuclear
approach of a high energy primary. On this
view any barometer eA'ect would have to be due
to the air absorption of the primary particles and
should therefore be much smaller than for bursts
involving air secondaries.

Burst frequency as a function of shield thickness

The shield of 17 cm of lead shot ordinarily
used on the meters described above is apparently
thick enough to absorb a considerable portion of
the burst-producing radiation and resultant
burst particles. Evidence for this is a very
considerable, at least twofold, increase in burst
frequency which ensues when a few hundred
pounds of the shot is drained out."The optimum
shield thickness to give maximum burst fre-

3' R. L. Doan, Phys. Rev. 48, 470 (1935).

quency has not yet been determined but prob-
ably lies in the neighborhood of five cm of lead.
This corresponds to a similar situation in the
case of showers, where the frequency increases
with additional top shielding up to about 2 cm
of lead and then falls off for greater thicknesses.
The size of the bursts seems not to be greatly
affected by reducing the shield thickness.

In conclusion the writer wishes to acknowledge
his great indebtedness to Professor A. H.
Compton for providing the opportunity of mak-
ing this investigation and also for numerous
suggestive discussions during its progress. Thanks
are also due to the Carnegie Institution of
Washington through whom the necessary funds
were provided, and to Dr. J. A. Fleming,
Director of the Institution, who emphasized the
desirability of such a comparative study. Practi-
cally all of the statistical calculations presented
here and many more that have not been discussed
were carried out by Mrs. Ardis T. Monk w'ith

the help of J. O. Pyle, Jr. , and James Geary.
Needless to say, this assistance has been in-
valuable from the standpoint of expediting the
investigation.
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Theory of the Effect of Temperature on the Reflection of X-Rays by Crystals

II. Anisotropic Crystals
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In anisotropic crystals the temperature factor for the
reflection of x-rays is a function of the orientation of the
reflection plane. The general case of anisotropic metals is
here treated by an extension of a simple method recently
discussed in this journal. The complete solution is found
for metals with hexagonal symmetry. The temperature

factor is generally written as e™.The constant M is
explicitly calculated for Zn and Cd (hexagonal symmetry).
It is found that for these two metals M is 1.80, 1.73,
respectively, as large for the reflection plane normal to the
principal axis as for reflection planes parallel to the
principal axis.

$1. INTRonUcrioN

N view of the approximations made in the
Debye theory of specific heats, its success for

isotropic as well as for anisotropic crystals is
surprising. An explanation may lie in the relative

*The author was aided in part by a grant from the
Rockefeller Foundation to Washington University for
research in science.

insensitiveness of the specific heat to the as-
sumptions made about the lattice vibrations.
In particular, the specific heat is a scalar quan-
tity, and so does not directly reflect the aniso-
tropic vibrations of the atoms in anisotropic
metals. This anisotropy in vibrations may,
however, be detected experimentally by a study
of the temperature dependence of the atomic
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structure factor in the reHection of x-rays. Thus
the mean square displacement p, of an atom
along a definite direction, parallel say to the
unit vector n, is related by the formula'

M = Sn'p sin' e/h'

to the temperature factor e ~ f'or the reHection
of x-rays from planes normal to n.

The purpose of this paper is to show how the
mean square displacement p, depends upon
direction in single crystals of metals not having

. Cubic symmetl y.
- Assuming only that the amplitudes of vibra-

tion are sufficiently small so that the potential
energy of the metal may be regarded as a
quadratic function of the. displacement, one
obtains2

I/v I
~(n) = Z v'(j &) +— (2)

4m'M 2, 1
e""~'~—1 2V

The vector k specifies a wave having a direction
of propagation along the direction of k, and
whose wave-length is 2m. /k. The letter j speci6es
one of the three waves associated with each k,
the three waves corresponding to one longi-
tudinal and two transverse waves in isotropic
solids. v(j, k) is the classical frequency of the
wave (j, k). p (j, k) is the square of the direction
cosine between n and the direction of vibration
of the wave (j, k). M is the mass of the crystal.
The summation is over all waves in the crystal.

In isotropic metals p, is the same for all
directions n. In anisotropic metals y is a quad-
ratic function of the components of n, l, m, n.
This is readily seen when we expand

Pg, Q =/le +8$mjg +ssgg,

where l;k', m;1, ', n;1,
' are the direction cosines of

the direction of vibration of the wave (j, k).
When the coordinate axes are chosen to lie
along the principal axes of the crystal, p, will
have the form

p(n) =p.l'+ p„m'+ p.n' (3)
'Wailer and James, Proc. Roy. Soc. A117', 214 I'1927);

Zener and Jauncey, Phys. Rev. 49, 17 I'1936) have given
a simple and general proof of this formula.' Zener and Jauncey, reference 1. The derivation of this
formula given in this reference explicitly assumed the
Debye model of a solid. However, one need only assume
that the motion of an atom may be represented as the
superposition. of linearly polarized plane elastic wolves,

This equation shows directly that p, has rotational
symmetry in metals with a three-, four-, or six-
fold axis of symmetry. Further, it shows that
p(n) ls completely determined by its three
values for n pointing along the three principal
axes. Hence the mean square displacement p is
completely determined by the experimental
determination of the temperature factor for the
three (sometimes only two) reflection planes
normal to the principal axes.

When evaluating the summation in (2), we
shall assume that the velocity of the waves is
independent of their wave-length. It is well
known that this is incorrect for the shortest
wave-lengths. However, it is just these short
waves with high frequency which contribute
least to the sum (2).

If n is the number of atoms per unit volume,
and V is the volume of the solid, the total
number of terms included in, the summation (2)
must be 3nV. In the customary form of the
Debye theory of speci6c heat this number is
obtained, for an analogous summation, by ex-
cluding all waves with a frequency greater than
a critical frequency I „.In this paper the correct
number will be obtained by excluding all waves
with wave-length shorter than a critical value
X(e), where e is a unit vector in the direction of
propagation, i.e. , it is k/k. As indicated, this
value will in general be a function of the direction
of propagation. Only in this manner can we
associate, for short as well as for long waves,
three directions of vibration for each k.

The summation over k in (2) may now be
converted into an integral. If C(j, e) is the
velocity of a "j" wave with the direction of
propagation e, the number of "j"waves with
frequency between I and I+dI, and having e
within the solid angle dQ, is VC '(j, cr)v'dvdQ. '
Introducing the notation $ =hu/0T, x(j, e)
=he„(j, e)/kT=B(j, e)/T, with v„(j, e) =C(j,
e)/) 0(e), we obtain

GATV p y'(j, e)
p= P i

— IC(x)+x/41dn, (4)
4m'M i &' C'(j, e)XO(e)

C(x) =— d$.
x 0 e& —j.

' Jeans, The Dynamia( Theory of Cases I,'The University
Press, Cambridge, 1925), p, 354,
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TABLE I. Quantization factor.

e (x) +x/4 c (x) +x/4

elastic constants have been determined, namely,
Zn and Cd,

0.0
. 0.2
0.4
0.6
0.8
l.0

1.000
1.001
1.004
1.010
1.018
1.028

1.2
1.4
1.6
1.8
2.0
2.5

1.040
1.054
1,069
1.087
1.107
1.164

The factor I4(x)+x/4} represents the effect of
quantization. From an inspection of' Table I,
we see that the quantization effect is only of
importance when t is considerably less than the
111aXllllulll e(j, tr) .

In order that the correct number of' waves be
included, X3(33) must sa,tisfy

where m, =M/(23V), 3 t)(j, tr) = C(j, (3)/X2, with
Z3= (4~/3n) '.

In order to evaluate It(n), as given in (4), we
must know both the velocity and the direction
of vibration associated with each "j"wave for
all directions of propagation e. In this paper we
erst study in detail the waves in a two-dimen-
sional medium ()2). This analysis is given for
two reasons. Firstly, the principles involved are
identical with the principles for the three-
dimensional case, while the analysis is much
shorter. Secondly, the problem for crystals with
hexagonal symmetry is reducible to the two-
dimensional problem. The formal problem of
determining the wave velocities and the direc-
tions of vibration in a three-dimensional medium4
is then briefly reviewed (}}3)and the solution
given for metals with hexagonal symmetry.
Finally, the numerical results are given ($4) for
all the metals with hexagonal symmetry whose

' The theory has been presented in an elegant manner
by Kelvin, Baltimore Lectures {The University Press,
Cambridge, 1904), Lecture XI.

If the quantization factor differs inappreciably
from unity, as in most metals at room tempera, -

ture, and if Xt)(tr) is regarded as independent of tr,

we obtMn

3&7" y2(j, tr) dQ
It(n) =

42r2m. 3 322(j, tr) 42r

)2. WAvEs IN Two-DIMENsloNAL MEDIA

Let U, V be. the x, y components of the
displacement vector of the medium, X, Y„, F
=X„be the stress components, and e „e„y, e,y

be the strain components. The equations of
motion are then'

()X,/8x+ t) F,/t)y = p U,

l) F,/l)x+ t) F„/i)y = p V.

The stress components are linear functions of
the strain components, i.e.,

+Z =C)3~2*+CI2ctt tt+ C)3&3 tt~

~y =A2~xx+ c22~yy+ c23~gyy

~a =C&3exz+C2d~yy+C3/~y.

The strain components, in turn, may be ex-
pressed in terms of the displacement components
by Ineans of the equations

bU bV bU bV
stttt ~ c&tt + ' (9)

bx' 'by by bx

By means of (8) and (9) we may transform (7)
into two homogeneous partial differential equa-
tions in U and V. If we try as a solution a
linearly polarized plane wave, see Fig. 1,

( I/ V') —(a $)ctrl(t (tt+mtt)/t) — I2+m2

these two differential equations reduce to

{Pc) 1+21mc)3+ m 'c33 }a

+ }lm(C32+C33)+Pc)3+m2C23}b= pc'a,
(~0)

Ilm(c12+c33) +I c13+m c23 }a

+ jm c22+2lmc23+I c33}5 pc ft.

Let c~ and c~ denote the two values of c for
which Eqs. (IO) have a nontrivial solution, and
let c~ be the larger of the two. Further let the
corresponding solutions be (at, bt) and (at, bt)
The velocities and the corresponding solutions
may readily be found in two extreme cases.
When the medium is isotropic (cll=c22, ct.;=C23
=0, 2c33——c11—c»), ct and ct are independent of

' Love, The Mathematical Theory of Elasticity {The
University Press, Cambridge, 1920), p. 83. The notation
adopted in this paper is that used by Love.
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FIa. 2. Isotropic medium. a~, bI, are the g, y components

of the vibration associated with cf. a~, bt are the x, y com-
ponents of the vibration associated with c~, c~ is defined
as the larger, c~ as the smaller, of the two velocities.

Fza. 1. Vibration directions in anisotropic media. The
vector (l, nz) is parallel to the direction of propagation.
The vectors (a~, bf) and (a~, bt) are along the directions
of vibration.

the direction of propagation, the vector (a~, b~)

is parallel to the direction of propagation, while
the vector (a„b,) is perpendicular to this direc-
tion. On the other hand, in the highly anisotropic
case c12= c13= c23 = c33=0, cp and cp form the
upper and lower branches, respectively, of two
intersecting straight lines when plotted as func-
tions of P. One of the vectors (ag, b~), (a&, b„) is
parallel to the x axis, one to the y axis. They
suddenly interchange directions when cI, ——c~,
as in Fig. 3. The properties of an actual
anisotropic medium will be intermediate be-
tween those, of these two extreme cases. The
interesting case c22&&c11 is illustrated in Fig. 4.
c~2 and cP no longer coincide at a critical point,
c~' retains a marked variation with P, while c&'

varies only slightly, being the same for i=0 as
for /=1. The vectors (a~, b~), (a„b~) change
gradually, as for the case of isotropy, but the
component of (a~, b~) along the axis of least
compressibility, here the x axis, is larger on the
average than its component along the axis of
greatest compressibility.

This apparent preference of (a~, b~) for the
direction of least compressibility, so marked in
the second limiting case of Fig. 3, may be best
understood when Eqs. (10) are put into a
variational form. Let us write these equations
in the form

0 SiNe" l & S~N'e

FIg, 3. Highly anisotropic medium. Fig. 2 is reproduced
for a medium whose compressibility is much greater along
the y axis than along the g axis.

0 Sl~'8 ] 0 Sicko

F16. 4. Moderately anisotropic medium. Fig. 2 is repro-
duced for a medium which is only slightly anisotropic.

Ke now regard the left-hand side of this equation
as a function of a and b. Eqs. (11) are then
equivalent to the statement that c', as given by
(12), is an extremum. Now the compressional
waves have the greatest velocity w'hen the
direction of propagation lies along the axis of
least compressibility. It is thus evident that
when the direction of propagation (l, m) is not
along the axis of least compressibility, then c2, as
given by (12), will have its maximum for a
direction of (a, b) between (l, m) a,nd this axis.

In the following section we shall need analytic
expressions for c ~, c~ and the corresponding solu-
tions of (11).These velocities are given by

Xgga+Xg2b =pc'a, Xina+X22b =pc'b (11).
Multiplying the 6rst equation by a, the second
by b, and adding, we obtain

pc'=(t „u'+ex„ab+x2,b')/(a'+b'). (12)

~11+&22
pc(' —— + ( ) +)~2', (13a)

2 E 2

~111~22 (~11 ~22 t
(13b)

2 E 2 )
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{}3.WAVES IN THREE-DIMENSIONAL MEDIA

The method of calculating the velocity and
vibration directions of linearly polarized plane
waves in a three-dimensional solid is a trivial
extension of the method for a two-dimensional
solid. This was discussed in the preceding para-
graph. We need only give the results for the
three-dimensional solid.

Let us consider a plane wave whose direction
of propagation has the direction cosines (f, m, n)
with respect to the x, y, s axes. The direction
cosines u, P, y of the vibration direction of this
wave, as well as the velocity c of this wave,
must satisfy the set of equations

(&»—Pc') ~+&12P+~ 13V =o,

+1242+(~22 Pc )P+~237

A1342+Aaap+(Aaa —pc')y = 0.

(15)

The coefficients are given in terms of the elastic
constants4 by

A ~~ = I'c~~+ns'c«+ n'c55+2lnzc&6+ 2mnc56+2nlc5&,

A 12 =l cla+m caa+n c45+lm(cla+caa)

+mn(c»+ c«) +nl (c14+caa),

Ala = I cl„+m c46+n acaa+lm(c14+c56)

+ m( nc+aa4 )C+5l(nc +lac ),55

A 2~
——l'c«+ m'c2~+ n'c44+ 2&ncaa g+ 2mnc24+ 2nlc46,

223=) C56+m C24+n C34+™(C25+C46)

jmn(caa+ c44)+n1(caa+ c45),

A 33 l c55+ fks c44+ n c33+2ls2c45+ 2nznc34+ 2nlc35 ~

The exact determination of those values of c' for
which Eqs. (15) have nontrivial solutions usually

Since the two solutions (455, bl), (a„b,) are
orthogonal, a~a~+b~b~ ——0, the normalized solu-
tions may be written in the form

(aa, bl) = (cos 42, sin 62), (al, ba) = ( —sin 42, cos 42).

The angle p, Fig. 1, is given by

rp= 2 tan '(2l112/(All Ala)) ~

involves the solution of a cubic equation, namely,
the equation obtained by equating to zero the
determinant of the coefficients. There is one case
of physical interest, other than the case of
isotropy, where an analytical solution may be
obtained for the allowed values of c' and for the
corresponding sets of direction cosines (n, P, y).
This is the case of hexagonal symmetry about a
principal axis. Here' the elastic constants satisfy
the same conditions as in the case of rotational
symmetry about a principal axis, namely, the
following coefficients must vanish:

C]6& Cg6& C36& C46& C56& C45& C]4& C24& C]5& C25& C34& C35

and the following relations must hold,

cll C22, Cla C232 C44 = C55, C66 (1/2) (Cl 1 C12) ~

An important simplification may now be
introduced. Since in this case the elastic con-
stants are invariant with respect to an arbitrary
rotation about the principal axis, here the s axis,
the x and y axes may be chosen in such a manner
as to simplify Eqs. (15). The most apt choice
of the x and y axes is to. let one, say the x axis,
be perpendicular to the direction of propagation,
i.e. , to set I=O. With this choice of axes, and
using the simplification imposed by the hexagonal
symmetry, we reduce the set of Eqs; (15) to the
following:

{m (cll —cia)/2+n c44 —pc }42:0,

(m'c»+ n'c44 pc') P+ mn (cl.+c4—4)y =„0, (16)

mn(cia+ c44)p+ (m'c44+ n'ca3 pc') y =0.

One solution is obvious, namely,

(~1 Pl Vl) =(1 o o)

the correct value of c', say CP, being given by

pc 1
——m (cll —cia)/2+ n'c44.

This solution represents a pure transverse wave
with its vibration in the plane of symmetry.

Since the second and third solutions must be
orthogonal to the first, they are of the form

(0, P, y). These solutions must thus satisfy the
two equations

(llll Pc )7+lllap 0tg l1127+ (l122 Pc )p

'Love, reference 5, p. j.52.
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where

X11—772 C44+71 Cgg, )112 =772m(C12+C44),
(19)

~22 m 611+S2C44.

These equations were studied in the preceding
section (cf. Eqs. (11)). Let us denote the two
values of c2 for which nontrivial solutions exist

by cgg and egg. These are then given by (13a) and

(13b), respectively. The corresponding solutions
are

solution of cubic equations. These calculations
have been checked by the formulae (18), (13a)
and (13b), and found to be correct. The corre-
sponding sets of direction cosines are given by
(17) and (20) in terms of an angle 97. This angle
was calculated by Eqs. (14), (19) with the
elastic constants found by Griineisen and Goens.
It is given in Table II.

TABLE II.
(erg, Pg, Tg) = (0, Sin 9, COS 97),

(ng, Pg, ps) = (0, cos 9, —sin 9),

where 97 is given by (14).

(20) 0 (in degrees) 10 20 30 40 30 60 70 80 90

y (in degrees)
Zn 35.5 45.6 52.0 58. 1 64.8 71.0 77.3 83.8 90
Cd 18.4 33.6 45.5 55.4 64.0 70.3 77.0 83.8 90

)4. NUMERICAL RESULTS FOR Zn AND Cd

Since Il(n) has rotational symmetry for metals
with hexagonal symmetry, we need explicitly
calculate Is(n) with respect to only two directions
for Zn and Cd (see Eq. (3)). This involves

merely the evaluation of the integral in (4).
Each term with j= 1, 2, or 3 refers to one type
of wave, i.e. , to one solution of Eqs. (15). Since
the lattice of Zn and Cd is only slightly distorted
from an ideal close packed arrangement, ) 0 was
taken to be independent of n. Further, the
quantization factor ef (x)+x/4 was found to have
a negligible effect at or above room temperatures.
Hence the simplified formula (6) was used.

The velocities c(1, n), c(2, n), c(3, 71) have been
calculated by Gruneisen and Goens' by numerical

7 Gruneisen and Goens, Zeits. f. Physik 20, 247 (1924),
had occasion to calculate the wave velocities of the hexag-

The integration in (6) was performed numeri-

cally. Expressed in terms of 3', Eq. (1), the
final results are:

Zn: 3II=1.1X10 '{1.80cos'8+sin'8}

X T(sin t)/)1)g

Cd: %=1.6X10 '{1.73 cos' 8+sin'8}

X T(sin 0/X)'

where 0 is the angle between n and the principal
axis, and where ) is the wave-length of the
incident x-rays expressed in Angstrom units.

onal crystals Zn and Cd. Not observing that Eqs. (15)
can be reduced in these special cases, they resorted to a
numerical solution, for each direction, of the cubic equation
obtained from (15). Their cubic Eq. (4) contains in fact
g
—c44' (in their notation) as a factor.


