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FIG. 1.

The characteristic wave-lengths for K, Cl, and I ions

given above were calculated under the assumption that the
ions were free to move with respect to the water molecules
surrounding them. A comparison of the curves for KC1
with those for KI seems to justify this assumption, at least
for the amplitudes produced by the radiation employed.
The rigid attachment of water molecules to the ions might
be expected to change the ratio of M to v in Eq. (2) so
that the characteristic wave-lengths would not be con-
sistent with the data shown in the figure. A better criterion
for deciding if there are water molecules attached to the
ions is oRered by considering the value of the absolute
absorption as obtained from inserting the above equations
in Maxwell's equations. A calculation shows that the ions

in KC1 and KI solutions are free to move with respect to
the surrounding water molecules. However,

'
in electrolytes

of LiC1 and MgSO4 our data indicate that water molecules

move with the ions. It seems noteworthy that the vis-

cosities of KC1 and KI solutions are practically the same
as that of pure water while LiC1 and MgSO4 solutions are
considerably more viscous. Also electrolytes of Li and Mg
ions have abnormally small electrical conductivities.

We conclude that the dispersion of electrolytes in the
extreme infrared can be pictured classically by considering

the ions to follow in translation the alternations of electro-

magnetic waves. The motion of the ions decreases in

amplitude as the frequency of the radiation increases

because of their inertia and the friction against the
neighboring molecules. In electrolytes of KC1 and KI, the
ions seem to move with respect to the water molecules

except for friction.
I am indebted to Professor P. Debye, for having kindly

derived the appropriate equations, and to Professor J;
Errera, the University of Brussels, the Fonds National

Beige de la Recherche Scientifique, and C. R. B. Educa-
tional Foundation for their generous help.

C. HAWLEY CARTW'RIGHT
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Exchange Forces and the Structure of the Nucleus

The forces between elementary particles in the nucleus
have been supposed to be of three types, which may be
denoted as Wigner, Heisenberg or Majorana. The Wigner
forces are of the ordinary kind, not involving exchange; the
Heisenberg forces involve an exchange of both spin and
space coordinates; and the Majorana forces involve an ex-
change of space coordinates alone.

According to Wigner, ~ one might account for the large
neutron-proton scattering cross section by assuming the
interaction of neutron and proton to depend on the relative
orientation of the spins. Van Vleck' has suggested that,
since the Heisenberg forces depend on spin orientation and
the Majorana forces do not, the interaction could be de-
scribed by a linear combination of Heisenberg and Majorana
forces. Feenberg and Knipp' have shown that such an inter-
action can give an arbitrarily large scattering cross section,
provided that the proper linear combination is chosen. It
does not seem to the present writer, however, that the
treatment is complete, since there is still another type of
exchange conceivable, and this is obtained by making a
Heisenberg exchange and then a Majorana exchange. This
amounts to interchanging the spin coordinates and not the
space coordinates. (Ke could perhaps compare the present
situation to the interaction of an excited atom with a
normal atom. Two types of processes occur here, and have

been denoted by "austausch" and "resonance, " respec-
tively. The eRect due to combination of the two is of the
same order of magnitude as that of each alone. ) The most
general exchange operator would then include this spin

exchange term as well as the others.
In this connection, a rather convenient formalism for

treating the nucleus as a many-body problem suggests it-
self. Following Heisenberg, 4 one can suppose all the par-
ticles in the nucleus to be identical, but just in different

states. The interaction operator will then be, in this scheme,

the same for all pairs of particles. If now, we take the result-

ing wave function for the total system to be a determinant
wave function, an analysis similar to that of Slater5 can be
carried through. If V(12) is the above interaction operator,
and if m and n denote space-spin states, while v, m. denote

proton, neutron, respectively, then we obtain integrals of

the type Ju*(mv/1) u*(nm/2) V(12)u(mv/2) u(n~/1) dv-&de. &.

Here, particle 1 makes a transition from state m, v to state

n, x, while particle 2 does the opposite. That is, this integral

represents a matrix element of the interaction between

neutron and proton. It may be possible, from the observed

masses of the light elements, to determine these matrix

elements. A study of this is now. being made, and will be

reported later.
I wish to thank Dr. Feenberg for allowing me to see his

manuscript before publication.
JAMES H. BARTLETT, JR.

University of Illinois,
December 14, 1935.
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