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addition, a number of explorations have been
made with negative results. Naturally the
greatest amount of effort was spent in trying to
find the transition in the sodium series. NaC1
gave nothing at room temperature with two
different set-ups, the first to 32,000 and the
second to 50,000. NaI is the member of the series
that would be expected to show the transition
most readily; this gave negative results at room
temperature with four different set-ups, to
46,000, 49,000, 48,000, and 57,000, respectively.
However, it has already been mentioned in the
previous paper that the shearing curve of NaI
begins to bend over at 50,000, and I believe the
transition is not far away.

Another interesting salt of the alkali halides
series is CsF; this crystallizes with the NaC1
structure, although all the other caesium salts
are body-centered cubic. One might expect to be
able to force the transition to the body-centered
structure by high pressure. Two separate set-ups
with CsF, for which I am again indebted to Dr.

R. W. G. Wyckoff, gave negative results, the
first to 42,000 at room temperature, and the
second to 56,000 at 137'. It would thus appear
that the fluorides are qualitatively different from
the other halides. In view of the failure to obtain
the transition with CsF, it seemed hardly worth
while to explore the fluorides of any of the other
alkali metals.

In addition to these, sugar gave negative
results to 40,000 at room temperature, and BaS
to 39,000 at room temperature. PbTe, on the
other hand, probably has a small transition at a
mean temperature of 18,000, but this is not
certain; there is no further transition up to
39,000. The explorations mentioned in this
paragraph were made with a preliminary form of
apparatus, only one-third as sensitive as the final
form.

I am indebted to the Rumford Fund of the
American Academy of Arts and Sciences for
financial assistance in purchasing some of the
supplies.
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Quantitative information as to the nature of intranuclear
forces has been obtained by considering the hydrogen and
helium isotopes, using a Hamiltonian of the exchange type
based on the neutron-proton model with interactions be-
tween all the particles. The interactions between like
particles are taken to be the same for protons and for
neutrons except for the small Coulomb force between
protons which accounts for at least half of the difference
in the binding energies of He' and H'. It is not inconsistent
with existing experimental evidence to assume the range
of such forces to be about the same as the range of neutron-
proton forces. By making these assumptions and by using
simple attractive potentials, it is found that the forces
between like particles are given by a potential with depth
not greater than 30 mc' and with an effective radius of
action which must be less than 2.8&C10 " cm to be con-
sistent with experimental data for the binding energies.
A more accurate determination of the constants based on
assuming a close correlation of the three- and four-body
problems with "equivalent" two-body problems gives the
depth of the proton-neutron potential as 74 mc' and of the

"' Now at University of Wisconsin.

like-particle potentials as 26 mc' and a range of 2.2 &10 "
cm for the forces. Reasons for believing in the reliability
of the "equivalent" two-body method for determining
approximate binding energies for three- and four-body
problems are discussed. It is shown furthermore that if the
exchange operators multiplying the neutron-proton inter-
action potentials are assumed to be linear combinations of
the Majorana and Heisenberg types, it is possible to explain
the large scattering of neutrons on protons at low velocities.
The proportion of the Heisenberg to the Majorana operator
in the linear combination necessary to obtain the correct
scattering is about one-fifth. It is then shown that in the
three- and four-body problems such an operator can to a
good approximation be represented by an equivalent
Majorana operator and that because of this fact the results
obtained for nuclear energies and for the magnitude and

range of the forces (in which Majorana operators were

used) remain the same except that the depth of the poten-
tial for like particles is increased from 26 to 41 mc'. The
latter value yields a scattering intensity for protons in

hydrogen which agrees qualitatively with the experimental

results.
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SECTION I. II%TRODUCTION

E propose to use the binding energies of the
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~

~

~

~

hydrogen and helium isotopes to fix the
parameters in a simple exchange type nuclear
Hamiltonian based on the neutron-proton model
with interactions between all pairs of particles.
Several authors have found evidence for large
interactions between like particles in the odd-
even properties of nuclei. In a previous investiga-
tion' the same problem was studied, but subject
to the assumption, which we do not retain, that
the interaction between like particles could be
treated as a small perturbation in comparison
with the neutron-proton interaction.

The Hamiltonian has the form

II= ', Zts, —Z—J(r.—;;)P.;; Z'K(r—.;.,)P'.;.;
—Z'L(r;;)P', ;+(2~)'~'/8Z'1/r;; (1)

with the units m, c' (510,000 ev) for energy and
h/2~c(nt, nt, )'~' (8.97)&10 "cm) for length. There
exist several possibilities for the exchange opera-
tors P and P' depending on the general character
of the forces between the nuclear particles. If
these forces are first attractive as two particles
approach and then strongly repulsive upon closer
approach, the exchange operators may be re-
placed by unity. The inner repulsive regions pre-
vent the collapse of heavy nuclei which would
otherwise occur when the forces are of the
ordinary (Wigner) type. Because of the mathe-
matical difficulties connected with the correct
treatment of the repulsive regions, this model has
not yet been adequately investigated.

If the inner repulsive regions are lacking, the
burden of keeping the nuclear volume and bind-
ing energy proportional to the total number of
particles is put on the exchange operators. These
may have the form'

P* =(1 g)P' "+gP'a, — (2)

a linear combination of the Majorana and Heis-

K. Guggenheim, J. de physique 5, 253 (1934); L. A.
Young, Phys. Rev. 4'7, 972 (1935); H. Bethe, unpublished
lectures.

E. Feenberg, Phys. Rev. 47, 850 (1935), denoted by FI
in text; Phys. Rev. 47, 857 (1935), denoted by FII in text.
For discussion of related problems see L. H. Thomas,
Phys. Rev. 47, 903 (1935) and W'. V. Houston, Phys. Rev.
47, 942 (1935).

'P&,~ interchanges the space coordinates i and j in a
function to which it is applied; P;,, ~ interchanges both space
and spin coordinates.

enberg exchange operators, and'

P; =-';(1+2P„; ) = ——',o.;..o.;.

Because the wave functions for the hydrogen and
helium isotopes are symmetrical in the space co-
ordinates of tike Particles, we may reP/ace P' by
unity for our purposes without loss of generatity
It is known from the calculations in FI that the
effective width and depth of the neutron-proton
potential well required to account for the binding
energies of the deuteron and the alpha-particle
depend only slightly on whether the forces are of
the Wigner or of the Majorana type. Thus, if g
is small in comparison with unity, it is possible
to compare directly the exchange type nuclear
model for the hydrogen and helium isotopes with
a model based on a Hamiltonian containing only
ordinary forces. For this reason a calculation
with the exchange model has a certain generality
in that it gives at once quantitative information
about the alternative model with attractive forces
of the Wigner type and also yields a good qualita-
tive picture of the magnitude of the attractive
potential wells when these are associated with
inner repulsive regions.

SECTION Il. POTENTIALS

To obtain a manageable problem we set K(r)
equal to I.(r) and suppose that K(r) and J(r)
are proportional. The first assumption finds some
support in the fact that at least half of the small
difference between the binding energies of H' and
He' can be accounted for as resulting from the
Coulomb interaction between the protons in He3.
The second assumption is arbitrary, but does not
conflict with the experimental evidence as yet
available. The definition of the Hamiltonian is
completed by the assumption

J(r) =A„e ~" K(r) =L(r) =A„e "' (4)

The experimental energies have the values'
E(H2) = —4.0, E(H')—:—15.8, E(He')—:—54.0.
From the deuteron equation, HP=EP with

4 In Eq. (3) 0.; represents the Pauli spin operator for the
ith particle. The equivalence of the two expressions for
P;. can be deduced from a relation derived by Dirac in his
Quantum Mechanics, first edition, p. 215, Eq. (35).See also
Van Vleck, Phys. Rev. 48, 367 (1935) for a discussion of
the operator P;

~ Chadwick and Goldhaber, Nature 134, 237 (1934);
Oliphant, Kempton and Rutherford, Proc. Roy. Soc. A149,
406 (1935).
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I ABl.p. I. A„(a) for E(II ) = —4.0.

2„„/n 3.45 3.66 3.88 4.11 4.35 4.60 4.85
0.12 0.15 0.18 0.21 0.24 0.27 0.30

2„ /a 5.10 5.36 5.71
1/n'~' 0.33 0.36 0.40

6.16 6.65 7.17 7.70
0.45 0.50 0.55 0.60

F.= —4.0, A„ is obtained as a function of 0. by
means of a series of numerical integrations:
Table I makes possible the ready determination
of the lowest eigenvalue of any two-partic'le
Schrodinger equation with an arbitrary error
function type of potential' and will be used for
that purpose in Section IV. The function A„,(n)
does not depend on the value assigned to g.
This is true because the wave function P for the
deuteron is symmetrical in both the space and
spin coordinates of the two particles and hence
in this case

I (1 g)I'"+g—I'"I 4 = 0 (5)

When, however, the spins of unlike particles are
not completely parallel, the properties of the
model do depend on g. In Sections III and IV
the discussion is based on the simplifying assump-
tion that the forces between unlike particles are
of the pure Majorana type (g=0). The general
case in which g differs from zero is considered in
Section V.

the average value of the Hamiltonian operator
(omitting the Coulomb terms and setting g=0)
can be written

BP(Hs) = (2+P)no —2A, (P(4 —P)/(1+21/s) I"'
X(./( +1))"'-A.(~ /(~. +1))"' (8)

for the three-body problem and

Z'(He') = (3/2) (2+p) no. —4A „(2p—P') "'
X(./(o+1))s/' —2A, (p /(p +1))'/' (9)

for the alpha-particle. These differ from the cor-

'FI, Eq. (4).

SEcTIQN III. THE SIMPLE VARIATIQNAL METHQD

With the Gaussian type of wave function

&p(1 ~ 2 3) —Qo—(v/P)(rsss+«s') —(sv/P)rss (HP) (6)

pop(1, 2; 3, 4)
—+o—(v/2) (rls +r14 +rss +rss )—(sv/2) (rss +rss ) /He 4) (7)

responding expressions in FI (Eqs. (18) and (19))
in the presence of the term proportional to A„and
in a more suitable choice of the variation param-
eters. 7 The contribution from the Coulomb inter-
action to the energy has the form

AE = —,'(2(sPo) "' (10)

for both He' and He4. The values of p and a

which minimize (8) and (9) must be found by
trial. However the dependence on P is slight,
the best value generally being between 0.9 and
1.0.

Let A„(u, H') and A„(n, He') represent the
functions defined by the conditions that the ac-
curate lowest eigenvalues of the three- and four-
body problems have the experimental values
E(HP) = —15.8 and E(He4) = —54.0, respectively.
Eqs. (8) and (9) can be used to obtain upper
bounds on A„(n, H') and A„(a, Hes). Consider
first Eq. (9). There exists a function A„P(o/, He')
such that if A„ is replaced by A„P(a, He') in (9)
the minimum value of EP(He')+DE with re-
spect to p and a coincides with the experimental
energy. By the minimum property of the varia-
tion method, we have

A, (a, He') =A„P(n, He').

We find that A„P(n, He') is practically constant
with the value 30 mc' on the range 10~a~50.
In the same way we find that A„P(o/, H') varies
from the value 30 mc' at n=10 to 100 mc' at
n=50. Furthermore the difference A„P(os, HP)

A„(o/, H—') is much grea, ter than the correspond-
ing diA'erence A„'(n, He') A„(o(,—He'). This can
be seen from the fact that the binding energy in
the three-body problem is a small difference be-
tween large potential and kinetic energy terms.
Hence the energy is sensitive to errors in the
wave function. The same statement is true for
the alpha-particle, but in a much less extreme
degree. Thus the correct value of A„ is less than
30 mc' and the correct value of n is greater than
10 (1/(s'/P &2.8X10 (s gm).

SEcTIQN IV. THE EQUIvALENT Two-8QDY
METHoD

To improve upon these inequalities we have
recourse to the method of the "equivalent" two-

' In Eq. (8) 4ao. =5v+p, 20(op =v+2', , in Eq. (9) 2ao.
=3v+p, , no-P=v+p, .
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body problem described and used in FI. The
method is not rigorous, but its general correctness
is supported by the considerations advanced in
FI and by the results of attempts to improve on
Eqs. (8) and (9) with more complicated varia-
tional calculations (see appendix). The procedure
involves first replacing p by unity in both (8)
and (9) in order to reduce the two different poten-
tial energy terms to the same form. In FI because
there was only one kind of potential energy term,
this simplification was unnecessary. The result-
ing simplified expressions have exactly the form
taken by the corresponding expression for the
variational problem associated with the equation

TABLE II. The "equivalent" two-body method for the deter-
mination of A„'(a, He4).

A„' —E'(He4) C.E.(He4) * —E'(H')

10
20
30
40

49.7
84.4

117.1
148.8

29 55.4 1.4
24 55 6 1 6
19 55 8 18
12 560 20

15.2
13.7
12.8

A„ A„' —E'(H') C.E.(He') ~

10
20
30
40

49.7
84.4

117.1
148.8

22
27
31
33

15.8
15.8
15.8
15.8

1.2
1.4
1.5
1.7

TABI.F. III. The "equivalent" two-body method for the deter-
mination of A'(n, H').

Id2/dr'+8'+Be ~"
I p=0 (12) ~ C. E. in Tables II and III—Coulomb energy.

when the approximate wave function p=e "" I'

is used to evaluate the energy integral. The formal
analogy is made exact by the identifications

P=2n
H',

8=2A„+A„
P —3o.

He 4. (13)
B= 2(2A„+A„)

These identifications establish a correspondence
between the three and four-body problems and
"equivalent" two-body problems which can be
solved accurately. To proceed further we insert
into (12) the experimental value for 8' and, using
Table I, compute 8 and hence A„as a function
of n for both H' and the alpha-particle. Ke
designate these functions by the symbols
A, '(n, H') and A'(n, He'). Small corrections to
make up for the inaccuracy resulting from setting
P=1 are easily determined by means of Eqs.
(8) and (9). Results are exhibited in Tables II
and III. Table II includes a column giving the
binding energy of H' as a function of 0. when

A„(n) =A„'(a, He'). At the point of intersection
(A„'(n, H3) =A„'(n, He )) a has the value 17 (1/n'~2

=2.17X10 '~ cm), A„=74.3 ngc2 and A„=26
mc'. The figures given by Young' can be com-
pared with the o. =10 column in Table II by
noting that —', (2A „+A„) corresponds to the
depth of the rectangular potential function used
in Young's calculation. There is satisfactory
qualitative agreement.

All the results of this and the preceding sections
can be extended without difficulty to other forms
of the attractive potentials, in particular, to the
rectangular potential well and the straight ex-

ponential function. The interesting generaliza-
tion of taking different radii of action for the
forces between like and between unlike particles
can also be treated by the same methods, but
would involve a large amount of numerical
computation.

SECTION V. THE MIXED EXCHANGE OPERATOR

The experimental cross section for the elastic
scattering of slow neutrons in hydrogen has
about the value' 30)&10 "cm', which exceeds by
a factor of eight the theoretical cross section'
computed from the neutron-proton potential de-
termined in the preceding section. One of the
writers has attempted to explain this descrept:ncy
by supposing that the potential depends on the
state of the system and on the velocity of the
colliding particles in such a way that the inter-
action potential for scattering is smaller than
for binding and decreases with increasing relative
velocity. ' This hypothesis, if correct, should ap-

ply equally well to the interaction of two protons.
Thus we should expect the anomalous proton-
proton interaction potential required to explain
the anomalous scattering of protons in hydrogen"
to be smaller than E(r). In fact X(r) is very much
too small to explain White's results. " Thus the

' Dunning, Pegram, Fink and Mitchell, Phys. Rev. 47,
970 (1935); Bjerge and Westcott, Proc. Roy, Soc. A150,
790 (1935).

FII, Eq. (5).
'0 FII
» M. G. White, Phys. Rev. 47, 573 (1935)."R. D. Present, to be submitted. to the Physical Review.
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hypothesis advanced in FII must be abandoned.
Wigner" has suggested that the very large ex-

perimental neutron-proton scattering cross sec-
tion indicates a dependence of the interaction
potential on spin orientation. Eq. (2) represents
the mathematical formulation of Wigner's sug-
gestion. "In the scattering problem based on the
exchange operator of Eq. (2), there occur four
distinct wave functions:

simply when g is small by means of a first order
perturbation calculation. When g vanishes, the
alpha-particle wave function can be written in
the form

P(1, 2; 3, 4) = q (xg, x2, x3, x4)

XS(m~, m2)S(m3, m4) (18)

with

Pg(12) = p(r, 2) 8(m, ,
—', )6(mg, -', ),

Pg(12) = p, (r») 8(m~, —',) 8(m~, —-';)

(14) S(m~, m, ) =1/2"'{8(m~, 2)6(m~, ——',)
—8(mg, -', )5(mg, ——',) }. (19)

+p~(r»)8(m~, ——,')il(mm, -', ), (15) The average value of the mixed neutron-proton
potential is simply

and two additional functions obtained by revers-
ing the directions of the spin coordinates in P,
and 1tg. It is readily found that p and p, + q q are spin g

4 Z . P 1, 2; 3, 4

solutions of the equation
X {(1 g)P»~+—gPgP} P(1, 2; 3, 4)dr, (20)

{V'»'+W+ J(r») P)2 }P(r)~) = 0, (16)
which reduces to

while p —pb satisfies the equation

An appropriate set of boundary conditions is
provided by the following statement: the func-
tions p and y, have the form of an incident plane
wave plus a scattered wave: the incident wave
does not occur in yb which contains only a scat-
tered wave. The scattering intensity obtained
from $2 is simply the sum of the intensities as-
sociated with y, and pb because there is no inter-
ference between scattered waves associated with
orthogonal spin wave functions. From this fact
can be deduced that the statistical weights of the
scattering intensities obtained from the potential
fields J(r) and (1—2g)(Jr) are in the ratio three
to one. The scattering cross section for slow neu-
trons can be made as large as desired by choosing

g to bring the lowest eigenvalue of Eq. (17)
su%ciently near the top of the potential hole, or,
equally well, by taking g so large that Eq. (17)
just fails to have a discrete state. For the effective
radius determined in the preceding section these
conditions are met with g 0.2.

The effect of the mixed operator on the three-
and four-body problems may be studied most

when the summation over the spin coordinates is
carried out. Thus in this problem for small
values of g the mixed operator can be replaced by
an "equivalent" pure Majorana operator:

(1—g)P~+gPH-+(] —g/2)P~ (22)

The same result is obtained from the analogous
treatment of the three-body problem.

It is clear from Eq. (13) that the calculations
in Section IV determine essentially the quantity
2A „+A „and not A „directly. Consequently

(23)2A„„+A„-(2—g)A„.+A„,

A„A„+gA„„ (24)and

if A„ is written for the amplitude of the interac-
tion between like particles when g differs from
zero. With 1/n'" 2 2X 10 ". cm, A „26,
A„74 and g 0.2, we get

(25)A„41mc'.

tv +ii+~i-ii)~( )i "i~( )=o (»~ " "'~f f'~" '
XJ(r~3)P&3 p(x~, x2, x~, x4)d7 (21)

"Unpublished; mentioned by Professor Bethe at the
Washington Conference on Nuclear Physics.

Van Vleck, Phys. Rev. 48, 367 (1935), note 20.

Present" has computed the anomalous scatter-
ing of protons in hydrogen to be expected from
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the potential defined by Eq. (25) and finds mugh
qualitative agreement with White's measure-
ments. "To summarize: signer's suggestion that
the neutron-proton interaction potential depend
on spin orientation does not appreciably change
the binding energy problem, but does enable us to

understand the remarkable experimental results
on the scattering of slow neutrons and fast pro-
tons in hydrogen. It should be mentioned that
the theoretical cross section for elastic scattering
of fast neutrons in hydrogen is somewhat larger
than the rather uncertain experimental value.

APPENDIX

COMPARISON OF IMPROVED VARIATIONAL CALCULATIONS FOR TWO- AND THREE-BODY PROBLEMS

p(r) =e ~""'t'&
I ao+ai~r'I. (26)

A similar wave function for the three-body problem is given

by the expression

y($ 2 3) =e—&"&2)&&12 +~» ) ~+~2i~28
I CO+ Cip{ri22+ri32}

+C,vr23& I. (27}

The calculations were made by using the Majorana
operator for the three-body problem (H') including the
neutron-neutron attraction term. The parameter p was

set equal to unity in order to simplify the calculation of
the matrix elements. With a given P, 8 was determined to
give Z' = —16 for the exact eigenvalue of the "equivalent"
problem, The corresponding values of A„, A„, a for the
three-body problem are taken from Eq. (13). In the three-

body problem, the inclusion of the quadratic terms gives. an
improvement in the energy of only a small fraction of an
mc' unit over the value obtained with the simple Gaussian
function. The fact that the more flexible three-parameter
function is no better than the two-parameter Gaussian
fun"tion simply means that the quadratic terms serve only
to correct u and p. When these parameters are both varied,
the quadratic terms lose their importance. Correspondingly,
for the "equivalent" two-body problem, the quadratic
term gi's no appreciable improvement. This result is of
value because it brings out the closeness of the correlation
between the three-particle problem and the associated
"equivalent" problem.

In general, computations with Majorana interaction

Further justification for the use of the method of the
"equivalent" two-body problem for calculating energies
for three-body problems is obtained when the results of
attempts to improve the variational calculations in the

- two problems are compared. The "equivalent" two-body
problem is determined in both the Wigner and MaIorana
cases by identifying certain constants in the expressions
for the energy obtained when simple Gaussian-type wave
functions are used. This identification is possible because
the energy expressions in this "zeroth" approximation
have the same form.

We have used three different methods for improving the
variational calculations beyond the zeroth stage. In the
first method the original Gaussian functions are multiplied

by polynomials in the various distances. For the two-body
problem we then have'for the wave function (taking only
quadratic terms)

—Ae «» —Ae ~"» . (28}

In problem (b) take only neutron-proton potential terms
of the Majorana type:

—Ae—ar„'P,2~ —Ae ~"»'Pi3 (29)

Let problem (c) be the same as (b) except for the addition
of a neutron-neutron potential term to the Hamiltonian:

(A C)e ~~» P„~ (A C)e a.» P,P» 2ce—e~,s

The close relation between problems (a}and (b}was shown

in FI; (a) gives slightly lower energies than (b). On the
other hand, problems (b) and (c) are both associated with
the same "equivalent " two-body problem provided the
parameter p is set equal to unity since then for both 8 = 2A.
Problem (c) gives slightly lower energies than problem (b)
since in passing from the "equivalent" problem for (c)
to that for (b) the parameter p is fixed at unity. We thus
see that problem (a) and problem (c) are very closely
related. For the rest of the discussion we shall use the
simple Wigner-type Hamiltonian of problem (a} since the
resuks so obtained are quite general and because to do so
greatly simplihes the computations.

We sought to improve the variational calculations by
using wave functions which are the sum of functions of the
Gaussian type but with different v's and p, 's. If we take

f =Po+'Ago', (3&}

then appropriate wave functions for the two-body problem
are obtained by substituting for po.

@o=¹~'"'I'~ v =Po- (32)

and for Po' a similar expression having v' =Po '. The
matrix elements then are

terms in the Hamiltonian are more involved than those with
the ordinary Wigner type of potential. Moreover, as we
show in the next paragraph, there is a Wigner problem
closely related to every Majorana problem. For-the pur-
pose of showing the close correlation of three-body prob-
lems to their "equivalent" two-body problems it is just as
instructive and very much simpler to use Wigner interac-
tion potentials.

Let us consider the following closely related three-body
problems. Call problem (a) a problem in which we have
only neutron-proton potential terms of the Wigner type in

the Hamiltonian:
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(o-/1/o') 2 ——
I 4g o-'/(a +a ')'

I
"4=—y y = (1+&a)p„ (36)

P = (28/15)a, B= 2A. (35)

Although A is the amplitude of .the neutron-proton
interaction, it is not directly connected with the A„
considered in Section IV since here we have a Wigner
Hamiltonian and no interaction between like particles,
In this problem A plays the same role as A„~+-,'A„ in the
actual problem. Taking the same value of o and n through-
out (a., best value for the zeroth approximation, n =-', ) and
varying o' we obtain about 19 and 17 percent improvement
in the two- and three-body problems, respectively. I f
o, a-' and n are all varied the improvement is 51 percent
in the three-body problem and 86 percent in the two-body
problem. A part of this difference must result from the
assumption n'=. n which restricts considerably the Aexi-

bility of the three-body function. Moreover the three-body
wave function contains only even powers of the distances
r~2, r~3, r23 and hence lacks an essential part of the true
solution. For these two reasons it is thought that the
difference in the improvements found in the two problems
is without significance.

The Hasse method" was the third method used to
improve the wave functions and the one which gave the
greatest improvement in the case of the three-body prob-
lem. The Hasse method has the great advantage that it
automatically introduces into the wave function essential
terms which may be lacking in the zeroth approximation.
Suppose that in either problem II is the Hamiltonian and

&0 is the Gaussian wave function; we take as our new
wave function

'5 H. R. Hasse, Proc. Camb. Pl. il. Soc. 26, 542 (1930).

(33)
(o /H /o') 2 =p I 3jaaa'/(a+ a') —B((o +o') /(o +a'+ 2))3~'

I

In our wave function for the three-body problem we use for
fa the function given by Eq. (6), with v =«(1+n)/(1+2n)
n =p/v, and for Pa' a similar expression. The matrix
elements are simplified if we specialize the function by
taking n' =p'/v' =n, thus reducing the number of param-
eters by one. This simplification makes it possible to
put the matrix elements in the same form as those of the
two-body problem. In fact we have

( /1/ ') = I4 '/( + ')'I"'=~'
(34)

(a/H/a), =~~ 3~ —2A
1+2n o+a' g+a.'+2

The value of n which minimizes the zeroth approximation
(o/H/o. )3 to the three-body energy is very nearly 3,
independent of A, n and o.. As in the case of the polynomial
method, B and p are determined so that E' for the two-
body problem has the value —16. A and a are such as to
establish an "equivalence" between the two problems in
the zeroth order and are given by the relations

where ) is a parameter to be varied. . In the two-body
problem P is a two-parameter function while in the three-
body problem it is a three-parameter function.

The matrix elements of H, H', H' and unity are neces-
sary to the calculation. For the "equivalent" problem
they are (with B=2A, P = (28/15)a)

(0/1/0) = 1,
(0/H/0) =2.8« —2A (o./(o +1))3~2

(0/H /0) = 13.07(«) —0.4aA (o /(o'+ 1)) (28a+56)
+4A'(o. /(o-+ 2)) '~',

(0/H'/0) = 85.37(«) ' —5.23a'A (a/(a+1))'~'
X (15a'+52o+52)

+11.2aA (o /(o. +2) ) ' (3o +12+4/o)
—8A '(a/(a+3)) "'.

(37)

The matrix elements of unity and H are given correctly by
Eq. (37) for both problems. Those of H' and H' in the
three-particle problem are (with n =-', )
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(Q/H'-/0) = 10.67(«)2 —0.4~A (g /(g+ 1))&~2(28a+43)
+2A L(a/(a+2)) I +(o /(o +2o+15/16)) ]

(0/H'/0) =51 77(«) ' —~'A(a/(a+1))'"
X (64o'+ 184.8o +143.3) (38)

+0.2nA'f(a'/(a'+ 2a+ 15/16))'i'(84a+ 258+ 165/o.)
+ (o./(o. +2))'I'(84a 1258+60/a) j—2A 'L(a/(a+3) ) '~'+3 (o-'/(o'+3o +15/8) )"'j.

We find about 65 percent improvement in the energy for
the two-body problem with this method and about 60
percent improvement for the three-body problem. It is
interesting to note that the matrix elements have some-
what the same form in the two problems except for different
numerical factors and certain correction terms. The
numerical values of the matrix elements (0/H'/0) and
(0/H'/0) are quite different in the two problems because of
these differences. The fact that the corrections obtained are
a few percent smaller for the three-body problem than for
the two-body problem is thought to be of no significance
because one of the parameters which appear in the three-
body problem was fixed at a probable value and not varied
further.

These investigations establish the inequality

E(H') &E'(H')+0.6 I E'(H') —E'(H') I (39)

and lend strong support to the view that E(H') does not
differ very much from E'(H3).


