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The explanation first proposed by Teller of the anomalous
fine structure of the infrared bands of symmetrical mole-

cules is discussed. The fine structure is closely related to an
internal angular momentum of magnitude fh/2~ which is
due to the vibration of the molecule and arises from the
degenerate character of the motion. A simple derivation is

given for the spacing constant t (1—g)/C —1/A]h/4m' of
axially symmetric molecules and for the spacing constant
(1—|)h/4~'A of tetrahedral molecules. A detailed calcula-
tion is made of the internal angular momenta to be asso-
ciated with the J frequencies v& and v4 of the axial molecule

YX3. The resulting t's are found as functions of the mo-

ments of inertia and of the potential constants. The sum

|2+&4 is shown to have the value C/2A —1. These results
are applied to the molecules NH3 and ND3 and the line

spacings of v2 and v4 are computed. The axial molecule

ZYX3 is treated and it is proved that the sum of the f's
characterizing the three J bands v~, v4, and v6 is equal to
C/2A. The moment of inertia C of the methyl halides is

computed and found to be, 5.61, 5.35, 5.44, and 5.44&10 "
for methyl fluoride to methyl iodide, respectively. The error
is estimated to be around 5 percent. A calculation is made
of the g's to be associated with the overtones of axial
molecules possessing threefold symmetry. It is found that

the |appropriate for the overtone 2v; of a J frequency is
—2g; while the |for 3v; is f; itself. The combination of
two J frequencies v~+v4 is next treated and the g is proved
to be —((2+&4) =1—C/2A. An application of these
formulae to the observed spacings of the overtone bands of
NH3 and CH3Cl results in a very satisfactory agreement.
Expressions are obtained for the two g's which determine
the line spacings of the active fundamentals v3 and v4 of
the tetrahedral molecule YX4. It is shown that $3+$4
The positions of the fundamental bands of methane to-
gether with the line spacings of ~3 and v4 yield the moment
of inertia A =5.47&&10 ' together with the five potential
constants describing the molecule. A good agreement is
found between these constants and those obtained by
Ginsburg and Barker from the spectrum of methyl deu-
teride. The t's suitable for the overtones of YX4 are next
treated. It is found that the f to be used with 2~;, i =3, 4
is —f; while the g belonging with the combination band
+3+v4 is ——,

'
(&3+&4) = ——,'. The observations on the over-

tones of methane are in very good accord with these
expressions. Less satisfactory agreement is obtained in the
case of the silane spectrum where it appears that the higher
order perturbation terms play a larger role.

and the J bands of the methyl halides.
A solution to this problem has recently been

given by Teller' who has pointed out that those
vibrations which show anomalous fine structure
are degenerate and may possess an angular
momentum arising from the vibratory motion
itself. The interaction between this angular mo-
mentum and that due to the rotation of the
molecule will just account for the observed
effects. The purpose of the present paper is to
extend Teller's theory and to make detailed cal-
culations for several molecular models.

The algebra involved in the computations is

often rather complicated and may hide the sim-

plicity of the underlying ideas. The vibratory
motion of the nuclei may be regarded as a motion
taking place on a slowly rotating turntable cor-
responding to the rotation of the molecule. This
rotation of the system introduces a Coriolis force
into the vibrational motion which in turn makes
a contribution to the energy. In general, the con-

' E. Teller, IIand- und Jahrbuch d. chem. Physi& (1934),
Vol. 9, p. .125.

8

$ 1. INTRODUCTION

URING the past several years, great prog-
ress has been made in interpreting the

spectra of polyatomic molecules. The molecule
has been represented by a system of mass points
whose equilibrium positions constitute the con-
figuration of the molecule. It is assumed that, in
zeroth approximation, the mass points are bound

by elastic forces and that throughout
'

their
vibratory motion they remain essentially in the
neighborhood of their equilibrium configuration.
From this model it has been possible to under-
stand the spectra of many molecules and to com-
pute such physical constants as the potential
energy function and the dimensions of the sys-
tem. However, one grave difhculty has appeared
in that the simple theory predicts that for a given
molecule all the infrared bands which correspond
to a particular type of vibration should show the
same fine structure. This prediction is fulfilled
for many types of vibration, for example, the

~~

bands of ammonia. However, it is flagrantly
violated for others, notably the bands of methane
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tribution is very small (of second order) since the
motion of each particle relative to the turntable
is, to a high approximation, simple harmonic
motion along a straight line. Thus the average
Coriolis force is zero. However, for a degenerate
vibration, which corresponds to the existence of
two or more harmonic motions of equal frequency
at right angles to each other, this is by no means
the case. A suitable choice of amplitudes and
phases renders the motion for each particle circu-
lar or at least elliptical. Here the average Coriolis
force does not vanish but has the value ~k~
where k is a proportionality factor and ~ is the
angular velocity of the turntable. The plus and
minus signs relate to whether or not the circular
motion of vibration is in the same direction as the
rotation of the turntable. We shall now compute
in detail the first order change in energy caused

by the rotation.
It is convenient to introduce a moving coordi-

nate system x, y, s whose axes are defined by the
equilibrium positions of the nuclei and which
coincide with the principal axes of inertia A, 8, C.
If the molecule possesses degenerate frequencies,
there will be in general an angular momentum
produced by the vibrational motion itself. The
components of this internal angular momentum

p, along the axes x, y, s will be designated by
p, p„, p.. The eigenvalues of the internal angular
momentum are not necessarily integral multiples
of f2/22r since p relates to only part of the system,
namely, the vibration, and does not take account
of the rotation of the molecule. Following Teller
we shall introduce f as the proportionality factor.
In molecules having an axis of symmetry, such
as the methyl halides, ammonia, etc. , p lies along
this axis and has the magnitude fk/22r. For mole-
cules having tetrahedral symmetry (methane)
the vibrations in which we are interested possess
spherical symmetry and consequently,

p' = /(1+1) l l' /2422r 22

The quantity g is essentially dependent upon
the vibrational properties of the molecule, that
is, upon the relative dimensions, the masses, and
the force constants. It has different values for the
various normal modes of vibration. For this rea-
son the individual bands of the same molecule
may show different fine structure spacings. A
knowledge of the g's as determined from the fine

structure enables us to obtain information regard-
ing the force constants of the molecule.

It is now necessary to consider the total angular
momentum of the molecule P which includes the
contributions due to the rotation arid to the vi-
bration. It has the components P, P„, P, along
the moving axes and must be quantized. The for-
mula for the rotational energy of a rotator in-

volving an internal flywheel has appeared many
times in the literature and has the form,

II„2——(P,—p, ) '/2A +(P„p„)2/2B—

+(P. 'p. )'/2—C.

This expression has recently been carefully re-
examined by Eckart, ' Van Vleck, ' and others,
and appears to be entirely correct.

The rotational energy levels of the symmetric
rotator, A =8, C may be readily obtained. The
internal angular momentum for such a molecule
must lie along the symmetry axis C and hence

p, =p„=0 and p, = &p, the double sign indicat-
ing whether p is parallel or antiparallel to the C
axis. We may write the rotational energy

I5„2= (P,2+P22+P 2)/2A

+P '(1/2C —1/2A) w pP, /C+ p'/2C.

The Hamiltonian may be diagonalized by
using the representation for P such that P, has
only diagonal elements. P, =K'/22r where K
is a positive or negative integer. The total angular
momentum is of course diagonal.

P 2+P 2+P 2 I(J+])l 2/4~2

Hence

W„,=J(I+1)f22/82r2A

+ (1/C —1/A) K't2'/82r'W f Ka'/42r'C.

The last term p'/2C may be omitted since it does
not depend upon the rotation and hence may be
absorbed into the vibrational energy.

In order to find the actual frequencies of the
fine structure lines we must make use of the selec-
tion rules. These may be obtained by the rather
laborious process of examining the matrix ele-
ments of the electric moment. However, they

2 C. Eckart, Phys. Rev. 47, 552 (1935).
8 J. H. Van Vleck, Phys. Rev. 47, 487 (1935).
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may be easily understood from the following ar-
gument. The electric moment depends upon the
positions of the nuclei. In the coordinate system
x, y, s which moves with the molecule, the electric
moment executes circular motion about the axis
of symmetry. Suppose that the direction of rota-
tion of the electric moment is in the same sense
as the direction of the angular momentum of vi-
bration p. Now if p and P, are in the same sense

(in which case we use the upper or minus sign in

the expression for W„,) the motion of the electric
moment may be described as a rotation about the
symmetry axis with a frequency so+ v& and a pre-
cession about the P axis with a frequency vz.

Thus, if the vibrational quantum number goes
from 0—&1 we have E~E+1 and J—+J—1,
J~J+1, or J~J as the possible transitions. In
the case where p and P, are in opposite senses,
the frequency of rotation is clearly uo —vz and the
selection rules are, vibrational number 0~3,
E—+E—1 and J~J—1, J—+J+1, or J—+J. We
must here use the plus sign in W„t,.

In the J bands of axial molecules it usually
happens that only the so-called zero-branch lines

for which J—+J are observed. The frequency of
the fine structure lines under either of the above
sets of rules (p parallel or antiparallel to P,) is

then

v = vo —(1/C —1/A) k/8vr2

E=O, +1, +2, ~ ~ ~ .

In deriving this formula it was assumed that
the direction of rotation of the electric moment
was parallel to the angular momentum p. How-

ever, it may occur that the rotation of the elec-
tric moment and the internal angular momentum
are antiparallel. In this case the selection rules are
just reversed and the spacing of the zero-branch
lines may be shown to be [(1+i)/C —1/Aj
X (k/4s'). It is convenient to retain only the first
formula and to consider that |is positive or nega-
tive according to whether the rotation of the
electric moment and the vibrational angular
momentum have the same or opposite senses.

Finally it must be remarked that we have here
considered a transition from the normal state,
where there is no vibrational angular momentum,

and consequently |=0, to an excited state g=g.
These bands are the ones most frequently ob-
served experimentally. However, transitions may
occur between two excited levels, each of which
has a t different from zero. In this case the above
formula for the fine structure lines would be
altered.

The second class of molecules to be treated in

this paper is the group of molecules which have
tetrahedral symmetry. For these all three mo-
ments of inertia are the same. The Hamiltonian
may be written in the simple form

II„t, P'/2A ———(P p)/A+ p'/2A.

The first term becomes J(I+1)k 2/8v'A in vir-
tue of the diagonal nature of the total angular
momentum P', while the third term may be ab-
sorbed into the vibrational energy. The second
term, which contains the scalar product of the
total angular momentum P and the internal an-
gular momentum p, represents the interaction
which we wish to evaluate.

The fundamental frequencies of the methane
molecule which are active in the infrared are to
be associated with a transition from the normal
state where there is no internal angular momen-
tum to the first excited state of a three-dimen-
sional isotropic oscillator. This latter state
possesses an internal angular momentum p which

may have the three eigenvalues &t'h/2~ and 0.
Thus the interaction term I may be written
I= —(II m)f82/4v. 'A where 1I is a vector having
eigenvalues J, J—1, —Jand m has the values
1, 0, —1. The expression for the eigenvalues of
(II m) is well known in spectroscopy and is

2(II m) =J(5+1)+2—R(R+1).

R is a vector which, when compounded with m,

will give the total momentum II. Evidently it
may take on the values J—1, J, and J+1 thus
yielding the following three eigenvalues for
(II m.); I+1, 1, and —J. Now the vector R cor-
responds to a rotation of the molecular frame-
work and the three values for (II ~) are to be
correlated with the three possibilities, p parallel
to P, P perpendicular to P, and p antiparallel to
P, respectively. These considerations furnish a
key to the selection rules and show that in mak-

ing a transition from the normal to the excited
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state we must use the first, second, or third
eigenvalue of (II s) according as J—1~J,
J~J, or J~J—1. We thus obtain the following
formulae for the fine structure lines

Positive branch v= vp —hl /4s'A+ Jh(1 —l )/4s'A
J—1~J

Zero branch y = yp hf/—47r A
J~J

Negative branch v = vp —kl /4s'A —Jh(1 —I ) /4pr'A .
J J—1.

It thus appears that the form of the vibration-
rotation bands has not been changed by the
introduction of an internal angular momentum.
However the actual spacing of the fine structure
lines is altered by the factor (1—l). These re-
sults, which have also been obtained by Teller,
we believe to be correct only up to the first-order
approximation here treated. In higher approxi-
mation where the particular symmetry of the
molecule must be taken into account it seems
probable that the fine structure lines will be di-
vided into multiplets. 4 It is hoped shortly to
make calculations on this effect of which there
are already some experimental indications.

The formulae which have been developed
show that the line spacing depends essentially
upon a quantity f without a knowledge of which
the experimental data cannot be interpreted.
l h/2s- represents the angular momentum due to
the vibratory motion of the nuclei relative to a
coordinate system defined by the equilibrium
positions of the nuclei. This internal angular
momentum may always be computed as a func-
tion of the force constants, the masses, and the
relative dimensions of the molecule, but in many
cases the actual calculation becomes very labori-
ous and involved. There exists, however, an im-
portant theorem discovered by Teller' which
states that the sum of the g's of all the first ex-
cited states belonging to a given symmetry class
is independent of the force constants and is a
function only of the masses and the relative di-
mensions of the molecule. The quantity Zg is thus
relatively simple to compute since in making the
calculation we may use any type of force field,
in particular, such forces that the motion of the
system may be readily visualized. Immediate use
may be made of Zf since the sum of the fine

4 See the concluding portion of the present paper.

structure spacings of all the fundamental bands
of a given category depends only upon Zt and
not upon the individual |'s. This point will be
illustrated later in the present paper.

(2. AXIALLY SYMMETRIC MOLECULES

We begin our discussion of molecules having an
axis of symmetry by considering the system YX3,
of which ammonia is a representative. It is well

known that the regular pyramid YX3 possesses
four normal frequencies which are separated into
two symmetry classes, the two

~~
frequencies and

the two J frequencies. Since these belong to
different symmetry classes the Hamiltonian falls
into two parts and there exist no interaction
terms. It is only the J frequencies which are de-
generate and which may exhibit an internal an-
gular momentum. Consequently we shall treat
them exclusively in what follows. In separating
the

~~
and J vibrations it is only necessary to in-

troduce symmetry coordinates; coordinates which
are capable of specifying all possible configura-
tions of the system which belong to the desired
symmetry class.

We shall begin by obtaining the kinetic energy
and we will make use of the theorem that the
kinetic energy of any system may be regarded as
the sum of two terms, the energy relative to the
center of gravity of the system and the transla-
tional energy of the center of gravity. We shall

divide the YX3 molecule into two parts, the Y
atom and the X3 group. The energy may thus be
written as the energy of the Y atom, the trans-
lational energy of the center of gravity of the X3
group and the energy of the X3 group relative to
its center of gravity. The method of calculation is
made clearer by Fig. 1.The dotted horizontal line

is the equilibrium position of the figure axis. The
center of gravity of the X atoms is shown by the
letter G and the quantity y& is the sum of the dis-

placements of the Y atom and Q. The inclination
of the plane of the X atoms to the symmetry line

is indicated by the angle 0.
The kinetic energy of the whole system is then

T=
g pg] + 2 IO +To)

where p is the reduced mass of the Y atom and G,
that is, p=3IM/(3m+M); m and M being the
masses of the X and Y atoms, respectively. The
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second term represents the energy of tipping of
the X3 triangle and I is the moment of inertia of
the triangle about an axis through G lying in the
plane of the triangle. It will be more convenient
to use the substitution I=C/2 where C is the
moment of inertia of the X3 atoms, and hence of
the whole YX3 molecule about the figure axis.
To denotes the kinetic energy of the X atoms
within their plane and relative to G. We shall
presently evaluate To, the only point to consider
for the instant is that there can be no interaction
terms between To and the tipping term ~IS' since
the displacements of the particles for the two
motions are always perpendicular.

The first two terms of T may be combined be-
cause of the condition that the angular momen-
tum of the system perpendicular to the symmetry
axis must remain zero throughout the motion.
(This is equivalent to the demand, explained
earlier, that we examine the motion in a moving
coordinate system x, y, s, which is fixed by the
equilibrium configuration of the system. ) Thus,
phj'&=I8 where k is the height of the pyramid.
But ph'+I=A, the moment of inertia of the
molecule perpendicular to the symmetry axis.
By substitution we obtain for the first two terms
of the kinetic energy pA jP/C. It has appeared
simplest to develop the kinetic energy as a func-
tion of y& and one might continue to treat the
motion using this coordinate. Such a treatment
would suffer a disadvantage, however, in that yj
does not specify a geometric property of the sys-
tem, since the actual geometric configuration is
determined both by y& and by the tipping of the
X3 triangle. That is to say, it involves the mo-
mentum relation an'd hence implies that the posi-
tions of the particles are a function both of y~ and
of the masses. This difficulty, which becomes par-
ticularly important when we examine isotope
effects, may be obviated by choosing a geometric
coordinate, one which characterizes a geometric
property of the system and is independent of the
masses. For example we may use the perpendicu-
lar distance between the Y atom and the normal
to the X3 plane through G. Let this be called y.
Clearly

y =y&+h8 or y = (1+2~k'/C)y& ——(2A/C)y&

by reason of the momentum relation.
Up to the present we have considered a dis-

FIG. i.
Xp

placement y perpendicular to the symmetry a'xis

and lying in the plane of the paper (Fig. 1). Let
the corresponding displacement perpendicular to
the plane of the paper be x. Making the indicated
substitutions we obtain

T= ', (pC/2A-) (P+j') +To.

The kinetic energy To of the X atoms within their
plane and relative to their center of gravity G has
appeared many times in the literature' since it is
the kinetic energy for a triatomic molecule. We
begin by expressing it as a function of g&, g2,
and g3, the changes in distance between pairs of
atoms.

—(2/9) (~W2+Q~V8+ 9298) I

A linear transformation may now be made
which diagonalizes To and at the same time intro-
duces symmetric coordinates. Let

3 ($1+g2+g3)r

' N. Bjerrum, Verh. d. D. Phys. Ges. 10, 737 (1914).

in which case TD= ',m(&'+r'I+@) -The displace. -

ments corresponding to g, g, and g are shown in

Fig. 2 and it is at once evident that P and q form
a degenerate pair capable of describing a J vi-
bration. f belongs to the other symmetry class
and hence for our present purpose it may be dis-

regarded.
The motions corresponding to $ and q are

subject to the condition that the linear and angu-
lar momenta of the system must remain zero.
This serves to determine both the direction and
magnitude of the actual space displacements of
the particles which may be characterized as fol-



It is now necessary to transform to the normal
coordinates x2, x4, y2, and y4 whereby

II=I1i(xm, x4)+IIi(yg, y4),

IIi(xp, x4) = —',(P.,'+P.,'+l~mx2'+l~4x4').

Iows. (1) Tile displaceilleiit of aiiy individual
atom in the P motion is perpendicular to its dis-
placement in the g motion. (2) The displacements
of all the particles are the same and are given,
respectively, by d, = t/3& and d„.=q/3'* where i is
the number of the atom and runs from 1 to 3.

The total kinetic energy thus becomes

T= ,'m{a(x'-+ j') +p+ r'I'I,

where n=IiC/2mA
The potential energy may be written as a

general quadratic form involving the arbitrary
coe%cients u, b, and c.

fI= 2 I &(x'+X')+&(8+v') +2~(xk+yn) )

Although there are ten coefhcients entering a
general quadratic form containing four variables,
the above expression is the most general one
which may be used for the potential energy. This
is due to the axial symmetry of the molecule,
which insures first, that x and y and afso $ and g
must enter on the same footing, and second,
that the coefficients of such terms as xy, xg, etc. ,

must vaIllsh.
The Hamiltonian clearly may be divided into

the sum of iwo identical Hamiltonians, the 6rst a
function of x and ( and the second of y and g.
Either of these may be treated by the method
of normal vibrations, which yields the following
relations between the X's, where the normal
frequency v, =X,'*/2':

m(X2+li4) =a/o. +fi, m'l~gXg ——(ab c')/n—
This result is in agreement with the expres-

sions obtained by J. E. Rosenthai6 for the fre-
quencies of the YX3 molecule although the nota-
tion is somewhat different. We reproduce it here
merely because it is one of the steps in the calcu-
lation of the internal angular momentum factors
i2 and f'..

6 J. E. Rosenthal, Phys. Rev. 4V, 235 (1935). The rela-
tions between our constants and those of Dr. RosenthaI
are 2 =u, 3D=b, and 382=c'.

The normal coordinates x2, x4 are related to x
and $ by means of a linear transformation whose
coefhcients are proportional to the 6rst minors of
the determinant which gave the X's. We 6nd

x=ZA, x„, $=ZB;x;, i=2, 4,

where A;= (rNX, —fi)/Lnz~(m)„—b)'+mc']l,

8;=c/Lma(m, X;—b)'+wc'$l.

Identical expressions connect y2 and y4 with y
and g.

The angular momentum of the entire system
might be determined by finding the angular mo-
mentum of each particle and summing. However
it will be more convenient to divide the molecule
into two parts, the Y atom and the X3 group.
Now, as is well known, the angular momentum of
any group of particles (say X,) is equal to the
angular momentum of the particles relative to
their center of gravity G, plus the contribution
due to the center of gravity. Thus Y and G
together, which constitute a two particle group,
will possess an angular momentum p(xiy& yix&)—
=p(C/2A)'( j xyx) T—he a.ngular momentum of
the X3 group relative to G may be found by
considering the momentum of any one particle
and multiplying by 3. We obtain —m(b) —gj).
This expression is preceded by a minus sign since
it is oppositely directed from the momentum of
Y and G. The reader may easily verify this state-
ment by drawing several phases of the motion
illustrated in Fig. 2. The momentum due to Y
and G has the same direction as the rotation of
the electric moment, since Y and G are the
carriers of the electric charges.

We may now transform to the normal coordin-
ates and (xj yx) becomes A 22(x2—j2—y2x2)
+A4 (x4j4 —y4x4) +AgA4(x2$4 v4S2+x4iim $2S4).
The eigenvalues of these terms may be found
very easily when we recall that the wave func-
tions are the usual Herrnitian orthogonal func-
tions in the variables 2'(i;/Ii) ~x, and 2ir(r ~/li) ~y;.
We obtain Aq'li/2m or A4'h/2ir for the first ex-
cited states of v2 and v4, respectively. Thus the
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contribution to f; from the motion of Y and G is
p(C/2A)'A;2. From similar reasoning one obtains
the remaining part of g;. which is due to the
momentum of the X3 particles relative to G.

Adding these two terms and substituting for
A; and 8; we have finally

where

f'; = (C/2A —8;)/(1+ 6;)

6,= 2mA c'/p C(mX, —f )'.
i=2, 4,

7 To be published in the near future.
M. V. Migeotte and E. F. Barker, Phys. Rev. , in press.

The sum $2+$4 may now be determined by
direct substitution. The resulting complicated
expression may be reduced by means of the rela-
tions between ) 2 and )4 to the simple form
Zf = C/2A —1. The fact that Zl turns out to be
independent of the force constants a, b, and c, is
both an example of the general theorem relating
to Zg and a verification that our calculations
have been free from algebraic errors.

These formulae may be used in the analysis of
the spectra of NH3 and ND3. The experimental
data are as follows.

The long wave perpendicular band v4 of NH3
has been mapped by E. F. Barker' and has its
center at 1631 cm '. It shows an intense central
region of absorption which is between 30 and 40
cm ' wide. This no doubt corresponds to a
clustering of zero branch lines whose spacing
Av4 may be estimated at around 3 cm '. The spec-
trum of ND3 has been studied by M. V. Migeotte
and E. F. Barker' who have found both of the
fundamental perpendicular bands, v2

——2556 and
~4=1188. The short wave bands consist of a set
of equally spaced lines (the zero-branch lines)
with a spacing Av2=5. 2 cm '. The long wave
band v4 exhibits a strong central absorption cor-
responding to a spacing of from 1 to 2 cm '. We
wish to express our gratitude to Professor Barker
and Dr. Migeotte for allowing us to reproduce
here a portion of their unpublished data.

We shall adopt the following procedure. By
means of the observed band centers v4 of NH3 and
~2, v4 of ND3, the potential constants a, b, and c
may be determined. From a knowledge of these
constants, the p's and finally the fine structure
spacings may be computed and compared with
the observed spacings. In making all these calcu-
lations we require the ratio of the moments of

TABLE I. Values of the g's and line spacings.

f2 Av2 CQMP. Av2 OBs. f4 Av4CQMP. AP4 OBs.

NH3 —0.004 7.15 — —0.171 5.76 ~3 to 4
ND3 + .104 4.81 5.2 —.257 2.66 ~i to 2

inertia C/2A. To find this we shall use the line
spacings of the pure rotation spectra of the am-
monias. Wright and Randall' obtained for NH3
that li/4''A =19.88 whereas Barnes, Benedict
and Lewis' found for ND3 that li/4~A=10. 22
cm '. These data yield C/2A =0.825 and 0.847
for NH3 and ND3, respectively. Unfortunately
this ratio is extremely sensitive to small changes
in the line spacings and appears to be determined
with an accuracy of not better than 5 to 10 per-
cent. The potential constants are then found to
be @=9.42, b=4.12, c= &3.97X10' dynes/cm.
Here again the errors are considerable, amounting
to at least 5 percent. This is due to two causes:
first to the inaccuracy in C/2A; second, to the
fact that we have used the observed positions of
the fundamental bands rather than the normal
frequencies which are demanded by the theory.
The normal frequencies themselves may be found
only when all the anharmonic constants are
known.

The results of the calculations on the f's and
the line spacings are shown in Table I.

The agreement between the computed and
observed Av is not at all satisfactory although it
appears to be best in the one case, Av2 of ND3,
where the experimental data are most precise.
We feel that these results do not constitute any
real test of the theory. They show rather that the
hv are sensitive to the potential constants and to
the ratio C/2A, and consequently it may be
possible through them to obtainmore exact values
for the molecular constants. This must wait how-

'

ever in the case of the ammonias until further
measurements are available on the line spacings.

The next class of molecules to be considered is
the axial system ZYX3 to which the methyl
halides belong. There exist three perpendicular
bands which are determined by six potential
constants. The task of computing the individual
g's in terms of the six constants becomes rather

' N. Wright and H. M. Randall, Phys. Rev. 44, 391
(1933)."R.B. Barnes, W. S. Benedict and C. M. Lewis, Phys.
Rev. 45, 347 (1934).
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but are connected by the momentum relation

Ijbj=A'8

Fzo. 3.

arduous and for the present we shall merely ob-
tain an expression for Zg over the three perpen-
dicular fundamental bands. Now Zf is inde-
pendent of the potential constants and therefore
may be calculated by using any limiting force
field. The result is then correct for all force fields.

We have chosen the limiting field to be such
that the YX3 group is held together by very
strong forces while the Z particle is very weakly
bound to the YX3group. The three perpendicular
frequencies may now be characterized by v2 and
v4 which correspond to a motion within the YX3
group itself, the Z atom standing still, and v6,

which is to be correlated with a vibration of the
Z atom against a rigid pyramid YX3. In this
latter mode of vibration, the Z atom moves in a
path perpendicular to the symmetry line against
the center of gravity G of the YX3 pyramid. This
motion is shown in Fig. 3. In order to preserve the
constancy of the angular momentum the pyramid
must tip through the angle 0.

In this extreme type of force field the frequen-
cies v2 and v4 belong to a motion of the YX3 group
alone and hence we have l 2+$4 C/2A' ———1 where
A ' is the moment of inertia of the YX3 pyramid
about an axis perpendicular to the symmetry
axis and drawn through G. C is the moment of
inertia of the YX3 group, or, in fact, of the entire
molecule ZYX3 along the symmetry axis. It re-
mains now to compute g6. The total kinetic en-

ergy for the motion v6 is the sum of the energies of
Z, of G and of the tipping of the pyramid.

T= 2(IJ. j'+A'8')-
where y is the sum of the displacements of Z and
of G and p~ is the reduced mass p~

——M~(%~+3m)/
3f1+%2+3m; M~, 3II2 and m are the masses of a
Z, Y and X atom, respectively.

The coordinates y and 0 are not independent

where b is the equilibrium distance between Z

and G. Thus

T=5( ~+I ~'&'/A')8

This expression may be somewhat simplified by
recalling that A '+ p~b' =A, the moment of inertia
of the whole molecule about an axis perpendicu-
lar to the symmetry axis. We shall also introduce
the coordinate x, corresponding to a displacement
of Z relative to G, out from the plane of the paper
in Fig. 3.

T=-,'(A)A /A')(x' +j')

The kinetic energy may however be written
as a function of the normal coordinates x6 and y6.

T= 2 (i p+ je')

and therefore we have the relations

x=(A'/p~A)axe and y=(A'/@~A)~y8.

The total angular momentum of the system
about the symmetry axis is most easily obtained
by decomposing it into two parts. First, consider
the contribution due to the motion of Z and G.
This is clearly p&(xj—yx). The second contribu-
tion is that coming from the motion of the YX3
pyramid relative to its center of gravity G. This
becomes p2(x~j~ —y~x~) where p~ is the reduced
mass 3mM~/(3m+&2) and x~, y~ are the dis-
placements of the Y atom relative to the center
of gravity of'the X3 group, perpendicular to and
in the plane of the paper (Fig. 3), respectively. "
The coordinate y~

——h0 where, as earlier, h is the
height of the YX& pyramid. Hence, through the
momentum relation y~ is connected with y.
Thus y~=(y~bh/A')y and the total angular mo-
mentum of the ZYX3 molecule becomes

(q, + q2(q~bh/A')') (xj—yx)

or in terms of the normal coordinates

"In considering this second contribution we have treated
the YX pyramid as two units, the Y atom and the X3
group. It might be thought that there would be a third
contribution to the angular momentum coming from the
motion of the X3 group relative to its center of gravity.
This term is however zero since, relative to their center of
gravity, the displacements of each X atom are always
parallel to the symmetry axis.
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La~+u2(e»&/A')'](A'/a~A) (&66—&6*6).

The eigenvalues of (x6j6—y~x6) may be found
by the method indicated in the calculations on
the YX3 molecules. For the 6rst excited state
they are &II/2v. Therefore

f, = [PI+@2(P»h/A')'](A'/P&A).

A simple calculation reduces this to the form

f'6 = C/2A —C/2A '+ 1.
'I

The sum over all the t's therefore becomes
Zl = C/2A. We wish to emphasize again that, al-
though this result has been obtained from a
computation using a limiting and physically un-
real force field, it will hold true for any actual
force 6eld. The conditions for its strict validity
are, harmonicity of the motion apd no resonance
relations between the frequencies. It is clear that
this method of the limiting fields may be used to
determine the Z| for any axial molecule.

The fundamental perpendicular bands of the
methyl halide molecules have all been observed
by Bennett and Meyer" and their fine structure
measured. Since in the present theory Zf and
not the individual g's themselves have been com-
puted, it will be possible to make use of the sum
of the line spacings only. Adding the line spacings
of the three perpendicular bands we obtain
evidently"

&&v= L(3 —Zl)/C —3/A]k/4~'
= (3/C —7/2A) lI/4s'.

The observations of Bennett and Meyer yield
Zdv = 24.65, 27.15, 28.32 and 28.5 cm ' for CH3F,
CH3C1, CHSBr and CHSI, respectively. The mo-
ment of inertia A has been measured directly from
the line spacing of the parallel type bands in the
case of methyl Huoride" and methyl chloride" and
found to be 39.5 and 50)& 10 ".For the remaining
methyl halides we have only the estimates" based

''-W. H. Bennett and C. F. Meyer, Phys. Rev. 32, 888
(1928)."In the preliminary note, Dennison and Johnston, Phys.
Rev. 4'7, 93 (1935), an error appeared in this formula which
slightly affected the resulting values of the moments of
inertia. Since the publication of the note, a more precise
measurement has become available for the moment of
inertia A of methyl chloride which is incorporated in the
present paper.

E. F. Barker and E. K. Plyler, J. Chem. Phys. 3,
367 (1935)."S.L. Gerhard and D. M. Dennison, Phys. Rev. 43
197 (1933).

upon the envelopes of the parallel bands, namely,
89 and 99)&10 ', respectively. These values are
admittedly not very accurate, but small errors in
them will have almost no inHuence upon the
computation of C since the term 3/C is so much
larger than 7/2A.

The indicated substitutions are easily made
and give the following numbers for the moment of
inertia C of methyl Huoride to methyl iodide:
5.61, 5.35, 5.44, arid 5.44)(10 ". The corre-
sponding H —H distances are 1.84, 1.80, 1.81 and
1.81 &&10 cm. In the next section we shall 6nd
the moment of inertia of methane A =5.47 X 10 "
and H —H=1.81&(10 ' through an analogous
method. Direct measurements on the moment of
inertia of methane through the line spacings of
methyl deuteride" are now available and give
A =5.298 and H —H=1.785. We feel that these
results are to be interpreted by saying that, within
the present limits of error, the dimensions of
the H3 triangle and presumably of the CH3 group
remain unchanged throughout the series of me-
thane and the methyl halides. There are two
principal sources of error: on the experimental
side the line spacings of many of the methyl
halide bands are not very accurately known; on
the theoretical side we have taken no account of
the departures from harmonic motion. The total
error in C could be as high as 10 percent although
probably it is nearer 5 percent. W'e do not mean
to imply that the CH3 group undergoes no change
as we proceed from CH4 to CH3I, but only that
our calculations show that whatever change does
occur, must be smaller, possibly much smaller,
than 5 to 10 percent.

$3. THE OVERTONES OF AXIALLY SYMMETRIC

MQLECULES

Transitions from the normal state to excited
states higher than the 6rst result in overtone
bands. The fine structure spacing of the perpen-
dicular bands will evidently be given by the
same formula as that for the fundamentals
Av= [(1—1)/C —1/A]h/4m2. It is our purpose to
compute the f's appropriate for the lower over-
tones of the molecules YX3 and ZYX3. We shall
begin by treating the overtones 2v;. As usual the

N. Ginsburg and E. F. Barker, J. Chem. Phys. 3, 668
(1935).
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wave function in first approximation is separable
in the normal coordinates. Consider that part
which depends upon x; and y;. It is now simpler
to transform to polar coordinates p;, 0; where p;
is proportional to a displacement say of the Y
atom perpendicular to the symmetry axis, and 0;
gives the angle of turning about the symmetry
axis. Thus p'2=x'2+yP and tan 0;=y'/x;. These
coordinates and the resulting wave functions are
identical with those employed in describing the
CO2 molecule. "The wave function of the normal
state (at least that part depending upon p, and

e;) is R&»oo while the excited state in question is

characterized by the three functions R(p) 'e

and R(p) . The coefficients of i0 show that the
eigenvalues of (x,j; y;i;) f—or the excited state
are ~2 and 0.

Now the electric moment perpendicular to the
symmetry axis is proportional to x; or to y;, that
is, to pe ". It is thus clear that the matrix ele-

ments of the electric moment all vanish since the
integrand is periodic in 0. This is to be expected,
for up until now we have considered only the
lowest order approximation, in which the motion
is strictly harmonic and in which no overtone
bands can appear. We must therefore consider
the modifications to the wave functions caused by
deviations from harmonicity. The perturbing
function ) V' may be expanded as a periodic
series in 30, the factor 3 signifying the threefold
symmetry of the X3 group. Thus

y P ~ yg P mt'3im8

For the present discussion where we are inter-
ested in the possibility but not the actual prob-
ability of a transition, it is sufficient to consider
the effect of the perturbation on the wave func-
tion of the normal state. By the usual formulae

of perturbation theory we obtain R"+X Z S
m= —co

Xe" ~ where S is a function of p. It is now
evident that no transitions resulting in perpen-
dicular bands occur to the state R".The matrix
eleme'nt of the electric moment does however re-
ceive a contribution from. the two wave functions
S'e+"~ and R' e+"~ and also from the terms
S'e '" and R22e "~ These considerations give us
an answer to the question of the appropriate P.

' A. Adel and D. M. Dennison, Phys. Rev. 43, 716
(1933).

It must have the magnitude 2g; (from the magni-
tude of the eigenvalue of (x;j,—y,~') and it
must have the negative sign. This last conclusion,
namely, that the direction of rotation of the
electric moment is reversed may be seen from
the fact that in the fundamental bands we con-
nect R" and R"e", and the coefficient of i0
goes 0—+1. In the present case the coefficient of
i0 goes 3~2 thus giving a reversal of direction.

The next -overtone 3v; corresponds to a transi-
tion from the normal state to an excited state
described by the four wave functions R"e
and R33e '". By an application of the reasoning
just employed, it appears that a transition re-

sulting in a perpendicular type band may occur
only to R"e ". The g characterizing the fine

structure spacing is therefore just g; itself. In
this manner we could compute the g for any
harmonic nv; but the result would be rather
meaningless for large values of n since here the
inHuence of the anharmonic terms will become
appreciable. The reader must not confuse the
fact that although we have made use of the
existence of the anharmonicity in order to find

the selection rules, we have not taken account of
its effect'on the fine structure.

One further type of overtone may be discussed
profitably, namely, the combination band v;+~1.
Three possibilities exist. First v, and I'I may both
be parallel bands, in which case v;+vI, is also
parallel and hence not included in the present
treatment. Secondly, one of the bands, say v;,
is perpendicular while the other vI is parallel ~

The presence of energy in a parallel mode of
vibration does not at all change the internal
angular momentum and hence the g for the over-
tone v;+ vk is just f;. The third case where v;

and vA are both perpendicular is somewhat more
complex. The excited state is fourfold degener-
ate and is specified by the wave functions

(~'+~k) and R.&&RI &&t'+s(~'—k)

ternal angular momentum is additive and de-
pends upon the coefficients of 0; and 0A, hence
the angular momentum belonging with these
wave functions is ~(f,+gq)h/2m and ~(f, ga)k—
/2~, respectively. The electric moment with
components p, and p„ is given by p, +i p,„
=a;p;e"'+ah p~e"~ where a; and a~ are propor-
tionality factors. We must now consider the in-
fluence of the anharmonicity on the wave func-
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tions. The perturbing energy ) V' is composed of
a sum of terms of the type

$p(p p )Quml&i+(3m' —t&1)Hsj

where m& and m2 are integers. The threefold sym-
metry of the molecule shows itself in the fact that
the sum of the coefficients of 0; and 0~ must be a
multiple of three.

As before it will be sufficient to obtain the
form of the perturbed wave function of the nor-
mal state. This is evidently

R DORADO+ g Q g'Ill 'IrI2e I I.'IrI lft i+ (3trI2 trt 1)ttAJ

A simple trial now makes it clear that no transi-
tions of the perpendicular type may occur from
the normal state to the wave functions
R;RI,e '(~' ~» since the integral is always
periodic either in 0; or 01,. Transitions may occur,
however, to the states R;Rke '"'+'». The par-
ticular terms of the perturbed normal state wave
functions which furnish a nonperiodic integrand
have the following dependence upon the angles,
e '&~'+'~» or e '&'~'+'». From these considerations
we see that the f appropriate for the band v;+vt,
has the magnitude f;+g~ and that it has the
negative sign. The reasoning which fixes the sign
is identical with that employed in the case of the
overtone 2v;.

An application of this result may be made to
the band of NH3 which lies at about 2p. The
band, "which is of the perpendicular variety, is
composed of a set of equispaced lines with a
spacing constant Av=9. 98 cm '. The position of
the band center would be consistent with its
identification as either v~+v4 or v2+v4 where v~

and v4 are the perpendicular fundamentals and vj

is the high frequency parallel band. In the first
case v&+v4, the g would be equal to g4 and the
fine structure should resemble that of the funda-
mental v~. However, this is not what is observed
since v4 shows a strong central region of absorp-
tion corresponding to Av 3 or 4. Under the
second identification, v2+ v4, the appropriate g
would. be —(iq+14) =1—C/2A. Substituting in
the formula for the line spacing we obtain
IIv = II/8m'A That—is to say,. the spacing should
be just half the spacing of a parallel type band
or 9.94 cm ', in very good agreement with the
observations.

' Stinchcomb and Barker, Phys. Rev. 33, 305 (1929).

The only other existing data on the fine struc-
ture of overtones of axial molecules appear to be
those by Nielsen and Barker'9 on methyl
chloride. The methyl chloride molecule possesses
three fundamental perpendicular bands v2, v4,

and v6. The fine structure of each has been meas-
ured by Bennett and Meyer" and found to be
8.2, 12.0 and 6.95 cm ', respectively. From these
values, together with the moments of inertia A
and C already cited, we obtain |2 ——0.100,
$4= —0.268 and (6=0.220.

Nielsen and Barker observed a perpendicular
band at about 6100 cm ' which they identify with
2v2. The appropriate t for this overtone we com-
puted to be —2(2 = —0.200, which yields
hv=11.3 cm '. The experimental value of the
spacing was 12.0 cm '.

The next perpendicular bands which they re-
solved lie at about 4360 and 4460 cm ' and were
labeled v2+v3 and v2+2v5. These correspond to
the sum of a perpendicula'r v2 with a parallel fre-
quency v3 or 2v& and accordingly should have the
(= f2 and hv = 8.2 cm '. Actually they were found
to have the spacings 8.4 and 8.6 cm ', respec-
tively.

The final perpendicular region observed by
Nielsen and Barker lies at 2462 cm ' and shows a
spacing of 9.7 cm '. They identified this band as
v6+2v5 in which case f= g6 and Av =6.95 cm ' in
bad agreement with the measurements. A second
identification which would yield essentially the
same position for the band center is v4+v6. The
appropriate i for such a combination is —(f4+f6)

=+0.048 giving Av=8. 74 cm '.
The agreements which have been obtained be-

tween the predicted and observed line spacings of
the perpendicular overtone bands of ammonia
and methyl chloride we regard as very satis-
factory. The deviations which are in no case
larger than 10 percent are no doubt caused by the
effect of the anharmonic terms whose influence is
of course greater on the overtone bands than on
the fundamentals.

)4. SPHERICALLY SYMMETRIC MOLECULES

The symmetrical molecule YX4 possesses four
fundamental frequencies v~, v2, v3, and v4 which
are single, doubly, triply and triply degenerate,

"A. H. Nielsen and E. F. Barker, Phys. Rev. 46, 970
(&934).
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respectively. The first two, v& and v2 involve no
motion of the Y atom and are consequently in-
active in the infrared. On the other hand v~ and v4

are both active and correspond in first approxima-
tion to isotropic harmonic oscillators in space.
Each of these latter may possess an internal angu-
lar momentum f';b/22r and we shall first sketch
the method of calculating g3 and f4 as functions
of the potential constants.

The tetrahedral system YX4 has nine degrees
of vibrational freedom and hence must be de-
scribed by nine coordinates. It seems very con-
venient and straightforward to specify them in
the following manner. The positions of the four X
particles may be fixed relative to their center of
gravity G by means of the mutual displacements
q1 q2 ' ' ' qs of the particles along the edges of the
tetrahedron defined by the equilibrium con-
figuration X4. Let q~ and q~, q3 and q4, q5 and q6
reIate to opposite edges of the tetrahedron.
Finally, the displacement of Y relative to G may
be given by three Cartesian coordinates x, y, s.
These rectangular axes may be chosen in any
manner, but it is convenient to let x, y, and s
be lines perpendicular to the opposite edges of
the equilibrium tetrahedron X4 1 and 2, 3 and 4,
and 5 and 6, respectively. This numbering of the
edges corresponds with the subscripts of the q's.

The potential energy of the system V can now
be written as a general quadratic form in the nine
coordinates. The number of independent con-
stants is greatly reduced, however, by reason of
the tetrahedral symmetry and has been shown to
be only five."The number and the nature of
these constants may be explained by the follow-
ing description. The axes x, y and s are a11 equiv-
alent and hence x', y', and s' have the same co-
eS.cient, say a. Similarly all the q' have the same
coeS.cient, b. There are two types of cross prod-
ucts between the q's, first, cross products between
adjacent edges (for example qlqs) and second,
cross products between opposite edges, as q~q2.

These two classes require the constants c and d,
respectively. Finally, the tetrahedral symmetry is
unchanged by reversing the direction of one of
the Cartesian axes, say the x axis, and simultane-
ously interchanging the two opposite edges in this
case q~ and q2. Thus there may be a cross product

term of the sort x(ql —q2) but no terms such as xy.
Hence

~= 2 I a{x'+3'+s')+b(ql'+q2'+qS'+q4'+q5'+q6')

+2c(qlqs+qlq4+glq5+glg6+q2gS+q2g4

+q2q5+q2q6+qSq5+qSq6+q4q5+q4q6)

+2d(qlq2+qSq4+q5q6)+2e[x(g —q )

+~(qS —q4)+s(q5 —q6)) I.

The kinetic energy of the YX4 molecule was
found by Dennison" using coordinates identical
with those defined here, except for a nonessential
charge in the orientation of the xys axes.

2'= l I~(x'+i'+e')+(Sm/8)(q '+q '+qs'

+g4 +g5 . +q6 ) 2 (m/8) (glqs+ q i/4+ qlq5

+glq6+g2gS+g2g4+q2q5+g2g6+qSq5+gSq6

+q q4+5q4q )6+2(m/8)( qql2+gSq4+g"q6) I, ,

where y=4mM/(4m+M) and m and 3II are the
masses of the X and Y particles, respectively.
The determinant giving the normal frequencies
v; =X;l/22r may be readily solved and yields,

m) g =4b+4d+16c, mX2 ——b+d —2c,

m() 3+X4) =ma/I4+2b 2d, —

m2(XSX4) = 2m(ab ad 2e2)/p— —

The normal frequencies of the YX4 molecule
have already been computed by J. E. RosenthaP'
as a function of five constants, A, 8, C, D and E
which are connected with our constants by the
linear relations, A =a, B = (b —d)/4, C= (b+d)/4—c/2 and D'=e'/2 B= (b+.d)/4+c

The internal angular momentum associated
with the frequencies v3 and v4 may be calculated
by a method essentially similar to that employed
in the treatment of the YX3 molecule. The first
minors of the normal determinant will give the
coordinates x, y, s, q~ qe as linear functions of
the normal coordinates. These functions in the
case of the motions v3 and v4 are indeterminate to
the extent of the threefold degeneracy. This de-
generacy may be removed if we assume that the
angular momentum lies along some definite axis,

' J. E. Rosenthal, Phys. Rev. 45, 538 (1934). 2' D. M. Dennison, Astrophys. J. 52, 84 (1925).
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say the z axis. This means that the amplitude of
s is zero while the amplitude of x and y are equal
but ninety degrees out of phase. The amplitudes
of all the q's, and hence the actual space displace-
ments of all particles, are then completely de-
fined. The angular momentum may be divided
into the two parts: that caused by the motion of
the Y particle and 0, namely, p(xj —yx) and that
caused by the motion of the X particles relative
to G. These two contributions are then added
and evaluated in terms of the normal coordinates
exactly as was. done in the case of the YXg
molecule. The calculation is somewhat compli-
cated but eventually leads to the simple result"

0'= (~' l)/-(~*+1)

where 8;=4pe'/m(pX; a )';—i =. 3, 4.
The frequencies v& and v& belong to the same

symmetry class and are the only fundamental
frequencies of this class. Hence according to
Teller's theorem &~+|4 should be independent of
the force constants. Upon making the addition
and using the relations between ) ~ and ) 4 we find

P&+f4= —,'. This result may also be obtained from
the formula Zi =C/2A for the ZYXq molecule.
In this latter system as the Z atom is changed
into an X atom and the molecule assumes the
tetrahedral form, the frequencies v2, v4 and v6, go
over into the frequencies va, v2 and v~ of YX4, re-
spectively. " Therefore the f2+f4+&6 C/2A——of
ZYX~ becomes is+f2+f4 C/2A =——-', for YX4.
We must now consider the following question.
What is the internal angular momentum to be
associated with the inactive frequency v2 of YX4?
By drawing the displacements of the particles it
is easy to show that each X particle does indeed
possess an angular momentum, but that these
angular momenta are all equal and all directed
either towards, or directly away from the central
Y atom. Consequently the total angular momen-
tum vanishes and hence g~ ——0. Thus fg+g4= ~ in

agreement with the result obtained by direct
calculation.

The formulae for the g's are of great practical
importance in the interpretation of the spectrum
of methane. In the first place, they enable one to

22 The formula for p; appears to be slightly different from
that published by us earlier. The difference is due solely to
a small change in the notation and to the fact that we there
employed Dr. Rosenthal's constants."D. M. Dennison, Rev. Mod. Phys. 3, 304 (1931).

calculate the moment of inertia by summing the
line spacings of the bands vg and v4. Thus Av~

+hv4 ——(2 i—3 $4)h/47r'A =3&/8n'A. Secondly,
they supply a fifth datum which together with the
values of the four fundamental frequencies just
allows us to determine the five potential con-
stants of the molecule. The measurements of
Cooley'4 gave the following values for the line

spacings. Av&=9. 771 cm ' and hv~=5. 409 cm '.
Following through the indicated substitutions
we find 2=5.47&(10 ", fg=0.0345, $4=0.4655.
The molecular dimensions are H —H = 1.81)&10 '
and C —H =1.11&(10 cm.

The values of the fundamental frequencies
v~ ——2914, v2

——1520, v~ ——3014, and (4=1304 cm '

together with either i ~ or i'4 (the i's are not inde-
pendent since Zf= ,') se-rve to fix the potential
constants. Ke find

u = 7.670 )& 10~ dynes/cm c= —0.018 e = &1.807
a=1.616 d = —0.289

or in Dr. Rosenthal's notation

A = 7.6'/0X10' dynes/cm C=0.341 2 = 0.313
8=0.476 D = ~1.278.

These data do not determine the sign of e or
of D, but the recent paper of Ginsburg and
Barker" on the spectrum of methyl deuteride
shows conclusively that the positive sign is the
one to be chosen. The work just cited is extremely
important from our point of view since the values
of the fundamental frequencies of CH&D together
with the line spacing of the parallel bands yield
independent values for the moment of inertia and
the potential constants of methane. It turns out
that A =5.298X10 ", which is about 3 percent
lower than our figure. This agreement is quite as
good as could be expected from a theory which

neglects second-order perturbations. The poten-
tial constants obtained by Ginsburg and Barker
differ from ours by amounts around 5 percent.
We regard a divergence of this order of magnitude
as being inevitable for the following reason. Gins-
burg and Barker in their calculations were forced
to use the observed positions of the fundamental
bands and not the actual normal frequencies
themselves. The difference between these two is
of the order of 10 to 50 cm ' and will introduce

"J.P. Cooley, Astrophys. J. 02, 73 (1925).
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errors into the potential constants of around 5

percent. Thus we do not believe that the con-
stants derived from the spectrum of methyl
deuteride are essentially more accurate than those
quoted here. A second way to make this clear is to
calculate the frequencies of CH3D by using our
potential constants and the formulae of Dr.
Rosenthal. "The differences between the calcu-
lated and observed frequencies are 18, 39, 22, 17,
7 and 5 cm '. But these are just of the order of
magnitude of the shift in the position of a band
caused by the existence of anharmonic terms in
the potential.

The spectrum of methyl deuteride presents
one further point where we may apply our theory
and that is the fine structure spacing of the per-
pendicular bands v~, v4 and v6. In the formula
Ai, = [(1—f'~)/C —1/A]h/4&r' the moments of
inertia A and C are known. The internal angular
momentum factors l; are completely fixed by the
potential constants of methane and the masses of
the particles. The actual computation of the g's

was carried out by means of the method used

previously, but eventually became so involved
that recourse was had to a numerical evaluation.
The only check that we have on the calculation
is that the sum of the g's turns out to have its
expected value C/2A =0.370. We obtained,
|2=0.03, g. = —0.25, and f6——0.59 from which the
line spacings Av2 ——2.3 hv4 ——5.2 and Av6= —3.3
cm 3 are readily deduced.

The observations of Ginsburg and Barker are
as follows. The frequency v2 lies at 2983.0 cm '
and has a strong central 'region of absorption
indicating Av2~1 cm '. This band, however, is in

strong resonance interaction with the band 2v4

and consequently its line spacing will be greatly
perturbed acd no agreement with the theoretical
spacing is to be expected. .

The band v4 occurs at 1477.1 cm '. Its line

spacing is somewhat irregular but appears to lie

between 5 and 6 cm ', in good agreement with
our estimate of 5.2 cm '. The frequency v6 at
1156.3 cm ' consists of regularly spaced lines
whose constant ranges from 3.8 to 4.5 cm '. Our
value of 3.3 does not seem to be seriously in error.

"In the letter by Dennison and Johnston the frequencies
of all the heavy methanes are computed and presented in a
table which we omit in the present paper.

)5. THE OVERTONES OF SPHERICALLY SYMMETRIC

MOLECULES

A treatment of the overtones of the YX4
molecule may be made along the same lines as
that used in the discussion of the overtones of
ZYX3, but it is somewhat more complicated in
that we are here concerned with tetrahedral
rather than threefold symmetry. Ke shall con-
sider only two types of overtone, 2v;, i =3, 4,
and v3+v4.

Dennison and Ingram" in their paper on the
overtones nv; of methane, calculated the multi-
plicity of.the excited states. They showed that
since the motion is similar to that of a three-
dimensional isotropic oscillator, the wave func-
tions may be expanded in terms of functions

f&,&"'f&»"'It&,p' where ni+n2+ni ——n the quan-
tum number of thestate. P isoneof the Hermitian
orthogonal functions and the rectangular coor-
dinates x, y, s are proportional to the normal co-
ordinates. (Because of the degeneracy the mo-
tions corresponding to v3 and v4 each require
three normal coordinates. ) The function

I&&,&"'p&»"'p&,&"' is conveniently abbreviated by
the symbol (nin2&is) and it was shown that a
perturbing function having tetrahedral symmetry
will connect (&i&&i~n3) with (ni'n2'n3') providing
ni+n~', n2+n2' and n3+n3' are either all even
or all odd integers. One further statement must
be made before beginning the analysis. A transi-
tion which is active must connect two wave
functions for which one of the quantum numbers
changes by one unit while the other two remain
unchanged. Thus (niemni)~(mi —1, em, N3) corre-
sponds to a nonvanishing electric moment in the
g direction.

The normal state is characterized in first ap-
proximation by (000) but the perturbation will

add terms of the sort X(ni&inn~) where ni, n2, and
ns are either all even or all odd'integers. The first
excited state is given (in first approximation)
by the three functions (100), (010) and (001).
Clearly, transitions to it from the normal state
may occur resulting in the fundamental band v;.
The internal angular momentum of this excited
state is 1';l&/2m. and it is easy to show that its
component, say along the s axis, is (xj yi) l ~h/27&—

26 D. M. Dennison and S. B. Ingram, Phys. Rev. 36,
1451 (1930).
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Thus the eigenvalues of (xj y—i) for this state
are +1, 0, —1.

Dennison and Ingram obtained the result
that the second excited state n = 2 is broken up
into three states. The first and second of these
are single and doubly degenerate, respectively,
and both are described by linear combinations of
the wave functions (200), (020) and (002). No
transitions may occur to either of these states
since it is impossible to select a wave function
(ni333333) entering the perturbed part of the normal
state wave function which will combine actively
with the functions (200), (020) or (002). The
third part of the state n = 2 is triply degenerate
and uses the functions (011), (101) and (110).A
transition may occur from the normal state to
this state by means of the particular term X(111)
in the normal state wave function. Since the
quantum number decreases rather than in-

creases in going from the normal to the excited
states, we would expect the g of 2v; to be nega-
tive. This may be verified by direct calculation.
The magnitude of the g depends upon the eigen-
values of (xj—yi) for the states (011), (101),
and (110). A simple computation shows these
to be +1, 0, and —i. Thus we obtain the result
that the fine structure of the overtone 2v;, i=3, 4
has a spacing constant (1 —f') 73/43r3A where

The excited state leading to the overtone
nv3+mv4 may be characterized by the symbol
(ni333333) [mim3m3] where 333+n3+n3 nand mi-—
+m3+m3=m. The subscripts 1, 2, 3 refer to the
xys directions, respectively. The excited state of
v3+v4 is ninefold degenerate; the wave functions
consisting of functions of the type (100)[100],
(010)[001],etc. The first problem is to find how
the tetrahedral symmetry will regroup the nine
functions. This is easily done by writing out the
secular determinant, using any perturbing func-
tion ) V' of tetrahedral symmetry. It soon ap-
pears that the only nonvanishing elements are
those for which the changes in n&+m&, n2+m2
and n3+m3 are either all even or all odd integers.
The secular determinant now shows that the nine

degenerate levels arrange themselves into two
triple states, orle double, and one single state.
Tetrahedral symmetry will not further reduce
the degeneracy.

The first triple state is described by the wave

functions

1/2* {(100)[001]+(001)[100]},
1/2'* {(010)[001]+(001)[010]}

and
1/2' {(100)[010]+(010)[100]}.

The second triple state is given by three func-
tions of the type 1/2& {(100)[001]—(001)[100]}
while the double and single states are given by
certain linear combinations of the functions
(100)[100],(010)[010]and (001)[001].To find

the selection rules we must consider the perturbed
part of normal state wave functions, the most
significant terms of which for our purpose are of
the type

X {(100)[011]+(010)[101]+(001)[110]}.

These show that transitions may take place to
the first triple state but not to the second triple
state nor to the double or single state. Moreover
in the term giving rise to the allowed transition,
the quantum number decreases rather than in-

creases, showing that the g will have the negative
sign.

To obtain the magnitude of the g it is only
necessary to calculate the eigenvalues of the
angular momentum along some particular axis,
say the s axis. The displacements used in com-

puting the momentum are linear combinations of
the normal coordinates with proportionality
factors depending upon g3 and |4.Thus the angu-
lar momentum of the system about the s axis in
unitS Of l3/23r iS,

(P3 333+f 4 334)(f 3~'03+f4'V4)

(f 3'y 3+—f'4'y4) (F3 &3+l 4 &4)

The eigenvalues of this function for the triple
state in question are easily found to be &-3, (f'3+ f 4)

and 0. Thus the g appropriate for the band
33+3'4 is 3(f3+f4—) = —4 and the line spacing of
this overtone should be Sh/163r3A.

These results may now be compared with the
experimental data. Although Cooley observed
the positions of a number of the overtone bands of
methane, he succeeded in resolving the fine struc-
ture of only one. He found a faint series of lines in

the neighborhood of 3.5p with a line spacing of
about 15.3 cm '. This series he assumed to be
the negative branch of a band with its center at
2824 cm ' and hence he identified it as v~+v4.
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Now the state v2 has no angular mome@turn and
therefore v2+v4 should have the same line spacing
as v4, that is, 5.4 cm, in direct disagreement with
the observations. A plausible way out of this
difficulty is to assume that the faint series of
lines found by Cooley is really the positive
branch of the overtone 2m& with its center lying
at about 2608 cm '. Such an assumption is
quite consistent with the observed data as far
as it is now known. In that case the line spacing
should be (1+&4)k/4m A = 14.8 cm ', which is in

very good agreement with the experimental
determination.

The overtone bands of methane have also been
studied by Moorhead. " He was able to resolve
the fine structure of two bands; a band at 1.66@
which gave he=10.4 cm ' and a band at 2.20'
with a spacing of 10.7 cm '. The first of these
Moorhead identified as 2v3, which according to
our theory should have a spacing of (1+1'8)k/
4~'A =10.5 cm—'. The band at 2.20@ which was
also located by Cooley is probably ~2+v3. Its
line spacing should be the same as that of the
fundamental ~3 itself or about 9.8 cm '. This
agreement, while less good, is still satisfactory.

In a recent paper Steward and Nielsen" report
on the infrared absorption spect;rum of silane,
SiH4. The general features of the spectrum are
very similar to those of methane with the excep-
tion of the fact that the fine structure lines are

7 G. J. Moorhead, Phys. Rev. 39, 83 (1932)."W. B.Steward and H. H. Nielsen, Phys. Rev. 4'7, 828
(1935).

not single but show satellites. This is probably
due to the influence of the higher order perturb-
ing terms which have not been included in the
present theory. Ignoring as far as possible the
multiplet structure, they obtain for the line
spacing of the fundamentals v3 and v4 the values
5.7 and 3.5 cm ', respectively. From these data
it follows that $3 ——0.07 and f4 ——0.43. Steward
and Nielsen also observed the positions of a
number of the overtones of silane and succeeded
in partially resolving the fine structure of two of
them, namely, the bands at 3095 cm ' and 3153
cm '. These showed spacings of about 9.7 and
4.7 cm ', respectively. The band at 3095 cm '
they identified as va+v4. According to our theory
it should have a spacing of Sh/16''A =7.7 cm '.
The second band they consider to be v&+v4, in
which case it would have the same spacing as v4,

that is, 3.5 cm '. The agreements in neither case
are very satisfactory and certainly not as good as
those found for methane. This is perhaps just
what is to be expected since, if the higher order
terms are sufficiently large to produce a splitting
of the fine structure lines, they will no doubt ap-
preciably affect the values of the line spacing.

Note added in proof: Very recently A. H. Nielsen and
H. H. Nielsen have succeeded in resolving the two overtone
bands of methane s &+74 and u3+n4 (Phys. Rev. , this issue).
They obtain the spacing constants 5.3 and 13.5 cm ',
respectively. According to our theory the spacing of v&+v4

should be just that of v4, namely, 5.4 cm ' while the spac-
ing of vs+u4 is Sh/167l-'A =12.6 cm '. Ke wish to express
our appreciation to the authors of this paper for allowing
us to see and use their unpublished data.
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Geiger-Counter Characteristics with Ayylied Potentials Reversed
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(Received September 16, 1935)

The paper describes experiments made with Geiger-
Muller counters in which the cylinder potential is positive
with respect to the wire instead of negative as' ordinarily
used. The counter operates under reduced efficiency with
this reversed condition. When used as a double coincidence
set the reduction in efficiency is greater than for a single
counter. The paper also describes experiments confirming
a view that the inefFiciency of the reversed counter may be

explained by supposing the counter action to be produced
when a positive ion strikes the wire and liberates from it a
secondary electron. Whenever such an electron is liberated
a discharge takes place, but the probability of liberation is
low. However, it seems reasonable that the probabilities
of such liberation of secondary electrons as 'found by
Penning and others stands in agreement with the efficiency
observed in the counter experiments cited above.


