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The factors which determine the work function of a
metal are described in a qualitative way. The work function
is defined as the difference in energy between a lattice with
an equal number of ions and electrons, and the lattice with
the same number of ions, but with one electron removed.
The work function is then found by first calculating the
energy of a lattice with #n; ions and #, electrons. The final
formula gives the work functions of monovalent metals in
terms of the heats of sublimation. This formula is approxi-
mate, and can claim validity only in a qualitative way, as

one of the important factors, the electric double layer on
the surface, is omitted entirely, and it is assumed that the
Fermi energy is as great as if the electrons were entirely
free. The values obtained from this formula check very
closely with the experimental values for the a'kalis, so that
it can be concluded that the double layer is probably small
for these metals. Finally, the deviations to be expected for
other than monovalent metals are considered. A more
exact calculation of the work function of one substance
(Na) will be given by one of us in an ensuing paper.

(1)

T is perhaps not quite superfluous to have,

in addition to-a more exact calculation of a
physical quantity, an approximate treatment
which merely shows how the quantity in question
is determined, and the lines along which a more
exact calculation could be carried out. Such a
treatment often leads to a simple formula by
means of which the magnitude of the quantity
may be readily determined. A treatment of this
nature has been given by O. K. Rice! for the
binding energies of the alkalis.

We intend to give here an approximate
calculation, on somewhat different lines, of the
work functions of monovalent metals, the main
result being a formula which relates the work
function with the heat of sublimation. We do
this for two reasons; first, because a more exact
treatment seems to involve a great deal of
computational labor, and second, because the
connection between the work function and other
properties is empirically very pronounced. In
fact, Sommerfeld,? in his original paper on the
electron theory of metals, has already noticed
that if one orders the metals according to their
work functions (or according to their Volta
potentials), the series is the same as if one orders
them according to the Fermi energy of the
electrons, calculated on the basis of the free
electron theory. The greater the Fermi energy,
the greater the work function. This fact was

1 0. K. Rice, Phys. Rev. 44, 318 (1933).
( 2A.) Sommerfeld, Naturwiss. 15, 825 (1927); 16, 374
1928).
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rather puzzling on the basis of the naive free
electron theories of that time, but an explanation
was given later by Frenkel.? Although Sommer-
feld and Bethe! have shown that the details of
his calculations cannot be maintained, we feel
that his basic idea is correct, namely that the
binding energy of the electrons (i.e., work
function) increases with the kinetic energy. The
connection between the kinetic and potential
energy, as given by the virial theorem in a
Coulomb field, has been utilized by Tamm and
Blochinzev® on the basis of the Fermi-Thomas
model. It seems to us, however, that it is danger-
ous to use the Fermi-Thomas model in this
connection, because this model does not yield
the metallic bond.®
(2)

The work function may be defined as the
difference in energy between a lattice with an
equal number of ions and electrons, and the
lattice with the same number of ions, but with
one electron removed. It is assumed in both
cases that the lowest electronic states are com-
pletely filled, so that the electron is removed
from the highest energy state of the neutral
metal. It is necessary to specify the position of
the electron after its removal from the lattice,
because, in general, the work function is different

3 J. Frenkel, Zeits. f. Physik 49, 31 (1928).

4 See article by A. Sommerfeld and H. Bethe in the
Handbuch der Physik, Vol. 24, Berlin, 1933, p. 424.

5].)Tamm and D. Blochinzev, Zeits. . Physik 77, 774
(1932).

¢ For a discussion of the Fermi-Thomas model as applied
to the metallic state, see J. C. Slater and H. M. Krutter,
Phys. Rev. 47, 559 (1935).
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for different crystallographic planes. We shall

suppose that the electron is at a point in the

neighborhood of a surface plane of the crystal,
the distance from this plane being small com-
pared with the dimensions of the plane, but large
in comparison with atomic dimensions. We shall
calculate this energy difference by calculating
the energy E(n;, n.) of a lattice with #; ions and
n, electrons where we may suppose that |#7;—n,|
<n; so that effects connected with the finite
capacity of the sample may be neglected. For
the calculation of E(n; n.) we shall use the
method of orbital wave functions. This method
requires hardly any modification of the scheme?
used for n;=n,, i.e., for uncharged metals.

There is only one important difference, that
due to the electric double layer which the
electron cloud and the ions may form on the
surface of the metal.® These double layers are
due to the fact that the electron distribution
will not be symmetric around the surface ions,
as it is around the inner ones. It will extend
partly outside of the limits of the spheres
surrounding the ions* of the surface, and in the
inside of the spheres it will have partly greater,
partly smaller densities than in the inner s
spheres. This alteration of the charge density
may result in double layers on the surface of the
metal. The double layers will be such that they
generate a constant potential inside the metal.
The potential outside the metal, however, will
not be constant, but will vary in such a way that
the potential differences between the outer
neighborhoods of differently oriented crystal
surfaces will be equal to the differences in the
moments of the double layers of the correspond-
ing surfaces. These differences are revealed
experimentally as the differences in the work
functions of the different surface planes of the
same crystal. This shows, conversely, that the
double layer is of the same order of magnitude
as these differences, i.e., around } to 1 electron
volt.?

The total energy of the lattice with »; ions
and #. electrons can be considered as containing

7E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);
46, 509 (1934) (I and 11); E. Wigner, Phys. Rev. 46, 1002
(1934) (I1I); F. Seitz, Phys. Rev. 47, 400 (1935) (IV).

8 J. Frenkel, Zeits. f. Physik 51, 232 (1928).

* ‘s spheres,”’ reference 7, II.

9 H. E. Farnsworth and B. A. Rose, Nat. Acad. Sci. 19,
777 (1935); B. A. Rose, Phys. Rev. 44, 585 (1933).

three parts: (1) the energy which the lattice
would have if the surface ions were surrounded
with the same symmetric charge distribution
which prevails in the interior; (2) the energy
change of the inner ions and electrons due to the
double layer on the surface; (3) the energy of
this double layer. We shall assume that the
electron comes from the interior of the metal,
i.e., that the double layer remains unchanged,
and that the density of the electrons changes in
the interior only. This is, strictly speaking,
incorrect, as one can easily see that the density
will be practically unchanged in the interior, and
that the electron will come from the surface.
The result for the work function cannot be
incorrect in spite of this, because the energy
required to move an electron from the surface
to the interior of a metal is of a much smaller
order of magnitude than the energy required to
remove an electron from the metal (or, the work
function). If the energy necessary to move an
electron from the surface to the interior were
appreciable, the electrons would have already
rearranged themselves in the neutral metal.
We shall omit in the final result the change in
energy of the second and third part of E(n;, n,).
This is not allowable, of course, but this part of
the work function is just equal to the moment
of the double layer, and cannot be taken into
account without an explicit calculation of the
latter, which is reserved for a later paper by
one of us. :

@)

We can now use for the calculation of E(n;, n.)
the scheme of reference 7. The kinetic energy of
the ions will be neglected, so that the total
energy contains three parts, 3Ze;V; for the
ions, 1Ze;V; for the electrons, and the kinetic
energy of the latter. The first part can be calcu-
lated as follows: First one assumes that the
density of electrons everywhere, except in the
s sphere of the ion under consideration, is as
great as it would be if #n,=n;. Then, the charges
outside this s sphere will have no effect on our
ion, because the potential of the electrons in
every other s sphere will be nullified by the
potential of the ion inside.!* Only the double

10 We neglect the small correction of Appendix 2,
reference 7, I1.
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layer of the surface will be effective, and we
obtain as the first contribution to the energy of
the crystal:

i (ne/2n:) [ |¥|*Vdy+%eD], (1)

where 7V is the potential of the ion core, D is the
moment of the double layer, and the integration
must be extended over the s sphere of the ion.
The factor #; comes in, because we have #; ions,
the factor #./n; because there are only that
many electrons in the mean in the s sphere;
(1) should still be averaged over the wave
functions of the different free electrons. The fact
that there are ((n;—1)/n:;)(n;—n,) electrons
missing outside the s sphere introduces a further
correction :

%Zeiq):"v (13)
where ®, is the potential of the missing electrons
at the jth ion, and is of the order of magnitude
(n;—n.)e/R where R is a lateral dimension of
the crystal.

The potential energy of the electrons is more
complicated. First, again, we can supplement
the missing electrons outside the s sphere in
which our electron happens to be. The potential
energy due to the nearest ion is 3 V(7). To this
the electron interaction energy must be added,
which, if the charge distribution is assumed to
be uniform, amounts to (1#./n:)(3¢*/2rs—e**/2rs)
where 7, is the radius of the s sphere. These
two terms give, together with the contribution
from the double layer, if averaged over all
positions of the electron under consideration in
the s sphere:

ne[%f l‘[/l 2Vd7)+0-632n5/n11’8—%eD] (2)

with definitions similar to those used in (1).
The electrons missing outside the s sphere, yield
the following correction to the energy:

— (ne/2n;)Zed;. (2a)

Next we must take into account the effects of
the different holes. The Fermi hole (exchange
energy) gives —0.458¢%/7, if n.=mn; One easily
sees that 7, must be replaced by (n:;/n.), if
n.#~n; Similarly, if we denote by r.f(r;) the
correlation function,! the correlation energy for

11 Represented by the lower curve, Fig. 7, reference 7,
1.
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one electron is —e*f ((n:/n.)r;). The total contri-
bution from these sources is:

—n.[(0.458¢%/7,) (n./ni)t+eXf((ni/n)r) 1. (3)
Finally, the kinetic energy of the electrons gives:
— (B*no/ 2m) [ * Ao, %)

which again should be averaged over the different
free electron wave functions.

The energy of the double layer due to the
electrons and ions inside the crystal is simply :

—3eD(n.—n;).

This energy will change, even though the double
layer itself is unchanged.

If we add all these quantities together, (4)
together with the first terms of (1) and (2) gives,
because of the Schrédinger equation — (%%/2m) Ay
+ VY =Ey just n.E, where still the mean value
of E over all occupied states of the electrons
must be taken. This gives the energy E, of the
lowest free electron level, augmented by the
mean value of the Fermi energy, F, i.e.,

no(Eo+ F(n./n:)t);
F=(97/10)(3/2m)}(R,/7.P). (5)
Thus the total energy is:
E(ni, no) =n(Eo+ F(ne/n:)?)
4+ (n.2/n)(0.6e*/rs) +(1/2n;) (n;—ne) Z®;
—n.[(0.458¢%/7.) (no/n:)' +ef((ni/ne)rs) ]
—eD(n.—mn;). (6)

(4)

The derivative of E(#u;, n,) at n;=mn, is the
work function ¢ with the negative sign.

—@=FE+5F/3+1.2¢?/r,— (4/3)(0.458¢%/7,)
—ef(rs)+eXr f (r)/3—eD. (7)

The derivative of the sum in (6) tends to zero
with increasing size of the crystal, and has
therefore been omitted. If we omit the double
layer term, and replace the Fermi energy by its
value for free electrons, the only unknown
quantity in (7) is Ey One can express FE, in
terms of the ionization energy I, and the heat of



THEORY OF WORK FUNCTIONS 87

TABLE 1. Work functions of the alkalis.

Metal ¥ I+H F Peale, Pexp.
Li 3.28 7.04 2.07 2.19 2.28!
Na 4.00 6.25 1.89 2.15 2.25%

2.46*

K 4.97 5.27 1.22 2.20 2.24!
' 2.243

2.172

Rb 5.32 5.03 1.07 2.20 2.193
2.16*

Cs 5.73 4.70 .92 2.15 1.963
1.87!

1.814

1 A. R. Olpin (see reference 13).

2Z. Berkes, Math. Phys. Lapok 41, 131 (1934).
3J. J. Brady, Phys. Rev. 41, 613 (1932).

4 K. H. Kingdon, Phys. Rev. 25, 892 (1925).

sublimation, H,

I+ H=—(3/n)E(ni, n,)—
= —Eo——

(a/ane)E(nu ne)

F—0.6e2/r,+0.458¢%/7 ,+ef(r,), (8)

which, of course, is the result of reference 7.
We have, from (7) and (8)

o=I+H—%F—0.6e*/r,4+0.458¢%/3r,
—erf'(rs)/3+eD. (9)

Table I gives the work functions of the
alkalis as calculated from (9) under the assump-
tion that D=0. The Fermi energy for Li was
taken from the work of F. Seitz,”? and the free
electron values were used for the remaining
metals. The check with the experimental values!®
is extremely good, considering the approximate
nature of the theory, and shows that the double
layer is probably small for these metals. The
double layer may, however, give an important
contribution to the work functions of other
metals.

The solid curve of Fig. 1 gives the theoretical
values of I4+H—¢ in electron volts plotted
against 7, in Bohr units. It is assumed that the
Fermi energy has its classical free electron value,
and that D=0. The light broken line connects
the experimental values for the monovalent
metals. Most of the discrepancy for Li (r,=3.28)
is accounted for by the deviation of the Fermi

12 See reference 7, IV.

13 For the experimental values of the work function, see
A. L. Hughes and L. A. DuBridge, Photoelectric Phe-

nomena, McGraw-Hill, 1932, p. 75. For the heats of
sublimation, see J. Sherman, Chem. Rev. 11, 93 (1932).
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F1G. 1. Theoretical curve of I+H— ¢ for monovalgnt
metals, assuming no surface double layer. Broken line
connects experimental values for these metals.

energy from its free electron value.?? The experi-
mental values of I+ — ¢ for other than mono-
valent metals are also shown in Fig. 1. A calcu-
lation similar to the preceding one could be
made for these metals by treating all valence
electrons as free. The work function could then
be obtained as the difference of quantities which
are even greater than those for monovalent
metals. One can obtain an orientation, however,
by considering only one electron as free, the rest
belonging to the “ion’” core. There will then be
two main modifications of the foregoing con-
siderations. First, the Fermi energy will be even
further from its classical value. It will in general
be smaller than this if the levels of the last
electron all belong to the same Brillouin zone;
it may be greater or smaller if they extend over
both sides of a gap between two zones. Second,
a large part of the cohesion will be due to the
interaction of the “‘ions.” Thus in (9), only that
part of the heat of sublimation should be inserted
which results from the outermost electron. This
correction is, indeed, in the right direction to
bring the experimental points for these metals
closer to the theoretical curve.



