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Transition
Intensity

2p —6d 3p —Ss 3p —7s 3p —8s 3d —8f
1.22 0.014 0.006 0.004 0.108

divided by the number of excited atoms in each,
that is to say, radiation per (21*+1)atoms.

Some errors remain in Slack's original' and
revised6 tables. These may be located by com-
parison with Bethe's Table 17 or Table IV, for
n~7 Be.yond this, Slack's values for 1s—8p,

TABLE V. Corrections to Bethe's Table 18a' giving intensities
in units of 10 4 erg/sec.

3d 9f—, 3p —9d, 3p —9s, and 2p 9d—, are, re-
spectively, 26 percent, 8 percent, 15 percent, and
about 10 percent high, and 5 percent low. Max-
well's table' for mean lives in ionized helium is
also not entirely correct, and should likewise be
compared with Bethe or Table IU.

I am indebted to Dr. F. G. Slack for much
information and assistance received in our con-
versations. I also wish to acknowledge the
assistance of Mr. W. J. Boyd, employed by the
Federal Emergency Relief Administration, in
making computations.
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The Energy Distribution of Electrons in the Photoelectric Effect
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The character of the photoelectric emission from a metal
depends on the distribution of electron levels, the transition
probabilities from these levels and the extent to which the
levels are populated by electrons. The last of these is given
by the Fermi factor. Various expressions have been
suggested for the first two. These are discussed, and
equations for the energy distribution derived in each case.
The results are compared with experimental data for
molybdenum, published by Roehr. In all cases the pro-
portion of low energy electrons predicted appears to be too
high. The theory of Mitchell comes nearest to fitting the

experimental data over the low energy range. The stopping
potential currents for higher energy, when plotted on a
logarithmic scale as done by Roehr, fall nicely on the curve
calculated on the theory of Mitchell. It is pointed out that
the agreement obtained with such logarithmic plots is
essentially a check on the dominating Fermi factor, and
that the region of low energies in the energy distribution,
for which the Fermi factor is practically unity, is the
important one for studies of the electronic structure of
metals.

INTRGDUcTIQN

"N most theoretical treatments of electrons in
- - metals' the state of the electrons is considered
to be built up of a combination of single electron
states, one for each electron, each state being
characterized by. a set of quantum numbers k
and associated with a definite energy value e.
In theories of the photoelectric effect this view
is always adopted, and it is furthermore assumed
that each individual photoelectric process in-
volves one single electron, originally of energy e

in the metal: as a result of the process this elec-
tron appears outside with an energy I= e+hv. '

' Cf. Slater, Rev. Mod. Phys. 6, 209 (1934).
2 Except in some theories for the selective effect, in

which a process similar to an Auger eEect is considered:
Wolff, Zeits. f. Physik 52, 158 (1929); Suhrmann, Ergebn.
d. exakt. Naturwiss. 13, 191 (1934); Zener, Phys. Rev.
4i, 15 (1935).

f(u)du=F(e) P PI,

with F(c) = 1/(e' ~0""r+1). (2)

F(c) is the Fermi factor, which gives the proba-
bility of finding an electron in a state of energy
e, when the temperature is T; ~0 is the highest
occupied energy state at T=O. PI, is the proba-
bility of emission from the state k, if occupied
by an electron, and the summation is to be
extended over all states of energy between ~

and e+de, the relation of e to u being that stated
above. In general Pg, is a function of both v and
k. Kith a stopping potential U applied to the

Under these conditions the energy distribu-
tion of the photoelectric emission produced by
radiation of frequency v can always be written.
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Fro. 1. Illustrating in momentum space the transitions occurring in the photoelectric eA'ect,
according to some of the hypotheses proposed. The density of transition lines indicates relative
transition probability.

outer electrode in the usual spherical condenser
arrangement —(r/R)'«1 —for determining the
energy distribution, the current is of course
given by

I(U) =e f(u)du
eV

In principle both I'~ and the distribution of
electron states with respect to energy are
uniquely determined, once the model of the metal
has been chosen. Actually several diAerent ex-
pressions for the saturation current (U=O) have
been suggested, presumably all based on the
Sommerfeld model of electrons in metals. This
is due to the fact that whereas the function
adopted to represent the distribution of electron
states was correctly based on this model, an
independent assumption was made about the
form of P~ in some of the cases. This assumption
was therefore not necessarily compatible with
the model originally adopted.

In the following we shall consider the various
hypotheses proposed for the transition proba-
bilities in the Sommerfeld free electron model and
compare the results to which they lead as regards
the form of f(u) and I(U) with available experi-
mental data.

THEORETICAL EXPRESSIONS FOR THE ENERGY

DISTRI8UTION

According to the Sommerfeld model' the
electron states can be represented by a distribu-

' Sommerfeld, Zeits. f. Physik 47, 1 (1928).

tion of points of constant density filing a three-
dimensional momentum space, the Cartesian
coordinates of which are proportional to the
first three quantum numbers k. The fourth
number stands for the spin. The number of
states between e and &+de is thus proportional
to the volume of the spherical shell I in Fig. 1,
of radii w& and (w+dw)& —in units (2m)&—where
w = e+w, is the kinetic energy inside the metal,
—m, being the potential energy of an electron
in the interior of the metal. The direction of the
normal to the metal surface will be taken to be
that of the vertical s axis in this figure; only
the upper half of the space with positive mo-

mentum components directed outwards is shown.
For the purpose of illustration we may say, that
an electron in one of the states I upon absorption '

of light makes a transition to some state in the
shell' II of kinetic energy m+hv. If this electron
is emitted, it appears outside with a momentum
characteristic of the shell III of kinetic energy
N=m+hv —m, = e+hv. The transition II—&III is

represented by a vertical line, since the retarding
force is normal to the surface. Hence only
absorption transitions to that part of II which
is covered by the indicated parallel projection
of III result in photoelectric emission. The
discussion in the following has been limited to
frequencies for which hv(m, . Ke shall denote
by a the kinetic energy associated with the
momentum component normal to the surface
lnsldp.
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Case (a) Fowler's 1st assumption Pi ——const.

P Pv, ——const. d(w&) =const. (u+w, h—v)&du, (4)
de

f(u) = gi(u+w —liv)4/(s(u hv ao)l&&+1)

or f(u) -F(u h—v) if u&(w. —hv.

This assumption is not consistent with the rule
regarding the transition II—+III. The results
were found by Fowler not to represent experi-

mental data on the total emission, and this
assumption was therefore rejected.

Case (b) Fowler's 2nd assumption4

Q Pi, =const. (w'* —(w. —hv)'*)dw.

This result is obtained, if the light absorption
affects the momentum component perpendicular
to the surface only, and if PI, is constant for all
states within that part of I which is covered by
the projection of III—for all other states: P& =0.

or

(u+w, —kv)' —(w, —kv)* C2(w, —kv)* 1 u 1 ( u
f( )=~ = — —-) ~+-

e(u—hv —ep) JkT+ g e("—"" 'o)~~~+ j 2 m —hv 8 Em —h~)

f(u) uF(u —hv), if u«w. —hv.

This case is illustrated in momentum space by the first diagram of Fig. 1.The transition pr'obabilities
are indicated qualitatively by the density of the transition lines. That these lines must be vertical-
no change of momentum components parallel to the surface. '—can be shown to be required by wave
mechanics not only for the square top potential barrier, which represents the surface in the Sommer-
feld model, but for any kind of surface potential which is a function of the coordinate perpendicular
to the surface only. Case (b) is the one mostly used in recent years for determining work functions
from saturation current measurements by the so-called Fowler method.

Case (c) DuBridge's assumption'

P Pi=const. ((w+hv)' —w.&)(w/(w+hv))ldw.

In this case' the transitions take place radially in momentum space and with uniform density, so
that P Pq is proportional to the volume of the emitting part of I, see Fig. 1.

ebs

(u+w. )'*—(w.)' pu+w. —
hvar

'* C3(w. —hv)'* 1 u u'f' 3 1
f(u) =&

( (
=- ————

(
— (+- (11)

e& "" """r+1 & u+w J e&" " '»'" +1 2 w, w, (Sw, 4(w, —hv))

or f(u) uF(u —kv), if u(&w. —hv. (12)

It has occasionally been stated, somewhat inaccurately, that this theory is based on the same
assumptions used by Fowler in case (b). ' As a matter of fact the picture of the absorption process
is quite different in the two cases, but the final expressions for f(u) are the same to a good approxi-
mation for small energies of the emitted electrons.

Case (d) Fowler's 3rd assumption4

W du wl+ (w —w. +hv) &

P Pi,'=const. dw j =const. dw ln-
e, « ~ g„n~(n —w~+kv)1 (w~ liv) '

(13)

4 Fowler, Phys. Rev. 38, 45 (1931).
' DuBridge, Phys. Rev. 43, 727 (1933).
' This refers to the approximate expression for v "not too

far from the threshold vo" given by DuBridge, which is the
one exclusively used in later work by this author and by
Roehr. DuBridge obtains this approximation from a general
equation deduced for the velocity distribution, Eq. (25) of
his paper. According to the process proposed by Du-

Bridge, I believe that this equation should have a factor
v'/4(v'+( ') & instead of &

—A/1 —g /(v'+g ') &) Granted
this, the general equation of DuBridge calls for Z Pz

f,lf8=const. D(m) (m+hv —m, ) (m/(m+hv))dm which, except
for the "transmission coefficient" D, also leads to the rela-
tion (12) above.

'The situation is correctly stated in the report by
Darrow, Rev. Sci. Inst. 4, 467 (1933).
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In this case (see Fig. 1) the transitions are "vertical" as in (b), but P/, is assumed to be inversely
proportional to the normal component of momentum with which the electron will appear outside,
i.e. , proportional to (n —w, +hv) &.

f(u) =
g(tz —hv —ep)/kT+ ]

(u+w, —hv)'+u'
ln

(w, —hv)'

C4 ( I )&( 1 I
I ]1+— -+

)'»/" +1 Ew, —hv) 4 12 w —hv

or f(u)-u'F(u h—v), if u«w. —hv.

Case (e) MitchelPs theory'

A quantum-mechanical calculation of the transition probabilities has been given by Mitchell for
the Sommerfeld model with a square top potential barrier. Two cases were considered. In the first
a constant amplitude was assumed for the vector potential of the radiation field. The result, illus-
trated in Fig. 1, is that only "vertical" transitions occur and

so that

n(n w, +—hv)'
P/, ——const.

((n+hv) ~+ (n —w. +hv) &)'

ni(n —w. +hv)'dn
P P/, =const. dw

„./,„((n+hv)&+(n —w +hv)')'

(16)

and, with the substitution p=n —w, +kv,

const. p'(p+w, kv) &dp-
)'(u) =-

s(u —kv —ao)//:T+1 ((p+w )y+pg)2

Cpu&
I

&(M—h1'—ep)/kT+ $

3/ui& 3u/ 1 w.
(18)

2 4w, ) 5 w, 0 2 w, —hv)

or f(u) -u &F(u hv), i—f u«w. (19)

Mitchell has also calculated the transition probability on the assumption that the (complex)
amplitude of the vector potential is constant in the metal, but changes discontinuously a.t the
boundary to a different, constant value outside, the relation between the two being that given by the
classical theory for a metal of refractive index n —ik. This introduces an additional factor in the
expression (16), depending on n, k, the polarization and the angle of incidence, as well as on n or P.
For radiation incident near the normal this factor, expressed as a function of p, is:

LP+w, —kv —(k2 n') (hv —P)—+2nk((P+w, ) (hv —P))&j~

y [2nk (h v —P) + (k n+ 1)((Py—w, ) (h v —P) )&]'.

With such values of n and k as are mostly found,
this factor does riot change a great deal near
P=0 for ordinary values of w, and hv, so that
the distribution would still be similar to (18) in

this case.
Tamm, Schubin' and Blochinzew" have also

published a wave-mechanical treatment of this

Mitchell, Proc. Roy. Soc. A146, 442 (1934}.
'Tamm and Schubin, Zeits. f. Physik 68, 97 (1931)."Blochinzew, Physik. Zeits. d. Sowjetunion 1, 781 (1931).

problem. They obtain for the transition proba-
bility

n(n+kv) (n —w, +hv) &

P/, =const. (20)
((n+hv)'+(n w, +hv) —&)4

which leads to the same limiting, form (19) for
small u." The calculation of Tamm, Schubin

n A similar result was obtained for a somewhat different
model by Frohlich, Ann. d. Physik 7, 103 (1930). See
also Sommerfeld and Bethe in Geiger-Scheel, Handbnch der
Physik, second edition (1933), Vol. 24j2, p. 468.
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and Blochinzew has been discussed in the paper
by Mitchell. It is also interesting to note that
an expression for the transition probability
somewhat similar to these, namely,

(a+ & v) l(n —u.+kv) '
P/, ——const. (21)

((0.+kv)'+ (n —rv, +kv)'*)'

has been suggested by Young and Frank, " from
a diA'erent picture of the photoelectric process.
They assume that only "vertical" transitions
take place entirely inside the metal, all with the
same probability. The high energy electron re-
sulting from such a transition inside eventually
impinges on the surface, where it is either
reRected or transmitted. The expression (21)
gives the probability of transmission. " Because
of the factor (n —m, +kv)& this expression will

also lead to (19).

COMPARISON WITH THE RESULTS OF

W. W. RDEHR

In recent years the variation of the photo-
electric yield with frequency has been determined
under high vacuum conditions for several metals,
with very carefully prepared surfaces. " There
are, however, very few results available for the
velocity distribution, obtained. under equally
well-controlled conditions. The best energy
distribution measurements are probably those

"Young and Frank, Phys. Rev. 38, 838 (1931).
"Nordheim, Zeits. f. Physik 46, 833 (1928); Frank and

Young, Phys. Rev. 38, 80 (1931).
"See Hughes and DuBridge, Photoelectric, Phenomena

(McGraw-Hill, 1932).

Frt-. 3. Energy distributions for molybdenum.

for molybdenum published by Roehr, "working
with Du Bridge. Roehr determined stopping
potential curves for the emission with (essen-
tially) a spherioal condenser arrangement, using
monochromatic radiation of three different wave-
lengths, 2654A, 2536A and 2482A. The temper-
ature of the emitter was varied from 300 to
1000'K. The results were compared with the
theory of DuBridge, in which the stopping
potential current is obtained from (12) by inte-
gration. From the properties of the Fermi
function (2) it is easily seen that under these
conditions

CO

f(u)du
(kT)' ~ .v

= C f F(u —kv)di
u/kT=eV/k, T kT & kT)

will be a function of the variable e V/kT denoted
by x, with the parameters C and (kv+fo)/kT=xp.
Near the value xo this function can be written
approximately as C xG(xo —x), with G a uni-

versal function which can be evaluated. Roehr
plots his experimentally determined log (I/x)
against x at constant temperature and compares
this with the curve for log G. He finds that the
latter can be fitted to the points obtained for any
of the three wave-lengths at 300 and 1000'K by
a proper parallel shift, as illustrated by Fig. 8
and Fig. 9 of Roehr's paper. The required shift

"Roehr, Phys. Rev. 44, 866 (1933).
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FIG. 4. Stopping potential curves for molybdenum.
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along the x axis determines xo', the procedure is
very similar to that of the Fowler method in
the case of saturation currents. The conclusion
is, that DuBridge's theory predicts quite accu-
rately the form of the photoelectric energy
distribution curves in the vicinity of the maxi-
mum energy.

In Fig. 2 the limiting form of f(u), sos f(u.)
=const. u"F(u —hv), for small I is shown at
T=O for the five cases (a—e) discussed above:
Eqs. (6), (9), (12), (15) and (19), with n=0, 1,
1/2 and 3/2. Those parts which correspond to
energies less than the critical value (hv+eo)
remain essentially the same for finite values of
T, since F= 1, practically. The experimental
curves for the energy distribution are indicated
by full lines in Fig. 3, reproduced from Roehr's
Fig. 11 and Fig. 12. From a comparison of Fig. 2
and Fig. 3 it should be evident that (a) and (d)
are definitely excluded. Of the others, which
represent the facts in a rough way, Mitchell's
theory, indicated by the dotted lines in Fig. 3,
comes nearest to an approach to the experi-
mental curves, although the fit is far from
perfect. Roehr's data seem to require a value of
n greater than 3/2, something like 2 or 5/2. It
is true that the experimental curves cannot be
very accurate, since they were obtained from
measured stopping potential curves by differ-
entiation. The uncertainty would be greatest in
the steep parts for high energies, particularly in
the curves for the lower temperature. There
could be no doubt, however, that the differences
for low energies are real. This should be evident
from Fig. 4, in which the points and the solid
lines were reproduced from Roehr's stopping
potential curves in Fig. 4 and Fig. 5 of his paper.
The dotted lines represent the curves calculated
on Mitchell's theory.

It should be stated that the accurate expres-
sion (18) has been used throughout for f(N) in

FIG. 5. Analysis of stopping potential measurements at
300'K.

2654

l 000'K
~ A2654A

o $2462A

FIG. 6. Analysis of stopping potential measurements at
1000'K.

the curves based on Mitchell's theory, Figs. 3,
4, 5 and 6. Thus gP& is not simply proportional
to u", as in the approximate expression (19) or
the one used by DuBridge, (12). I have computed
+PI, as a function of u by graphical integration,
using the values m', =14 and m, —he=9, both in
electron volts, for all three frequencies. As a mat-
ter of fact, for the range in question 0(u&1.5,
PPq is rather insensitive to changes in these
parameters. The values used for he+co, which
enters in F(u —hv), were those found by Roehr
in each case.

It is interesting to see how the theory of
Mitchell compares with the experimental data
when plotted as log (I/x) against x, as in Roehr's
Fig. 8 and Fig. 9. This has been done in Fig. 5
and Fig. 6 for the longest and the shortest
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wave-lengths used by Roehr and temperatures
300'K and 1000'K. The points are Roehr's
measured values, the solid lines represent the
curves to be expected by using the form (16) for
P& given by Mitchell. The curves have been
displaced parallel to themselves to produce the
best fit, as in the method used by Roehr. The
fact that there is a different curve for each
wave-length is of course not a feature character-
istic of Mitchell's theory alone. On the assump-
tion used by DuBridge the curves calculated
from (11) or (12) are really diferent for difterent
wave-lengths in a way similar to this.

The agreement in Fig. 5 and Fig. 6 appears to
be about as good as that found by Roehr on
comparison with the curve of DuBridge. This,
I believe, illustrates a point which has not always
been clearly recognized, although there is good
evidence for it already in the paper by Fowler. 4

The fact that a good agreement is obtained with
logarithmic plots like these or like the ones used
in the Fowler method shows that the state of all
the electrons must be described by an anti-
symmetric wave function (exclusion principle),
so that the distribution of electrons over the
available single electron levels will be given by
the Fermi function. But it proves very little
about the correctness of the model used. Thus
Fowler found it very difficult to decide whether
his 2nd or 3rd assumption was the better one,
from comparison with the experimental data,
using logarithmic plots. The great value of these
methods then lies in the fact that they permit
an accurate determination of the work function
(Fowler method) or of u", the maximum energy
of escape if the-electron temperature were 0, in
the stopping potential method. In the latter
case the essence of the method is, that it provides
a means of recognizing, in curves for different
frequencies, the contributions of electrons that
originated in the same energy level in the metal—which is necessary for a photoelectric determi-
nation of k. It must be borne in mind, however,
that the horizontal shift of the theoretical curve
required to fit the experimental data is not
entirely independent of the expression chosen
for the quantity PP&, and this sets a limit to
the accuracy of the work function or I deter-
mined by these methods, until we know the
correct form of QP".

Evidently the part of the energy distribution
which will prove or disprove something about
the model is not the high energy end, where
practically all other features are masked by the
very rapid variation of the Fermi factor, but the
low energy part, where this factor is constant.
It seems desirable to obtain more data on the
energy distribution in this region by some direct
differential method, so that the inaccurate
procedure of differentiating stopping potential
curves could be avoided. An attempt in this
direction is now being made in this laboratory.

The fact that the experimental energy distri-
bution falls below the one predicted'by DuBridge
in the region of low' energy is attributed by
Roehr to a transmission coefficient less than
unity in this region, a possibility already dis-
cussed by DuBridge. ' This explanation is, of
course, not in conflict with the original assump-
tions on which DuBridge's calculations are based.
It is characteristic of the Sommerfeld model,
however, that the electrons are entirely free
inside the metal and therefore not capable of
absorbing radiation. Only at the surface is there
a binding and hence a possibility of light ab-
sorption, as emphasized by Tamm and Schubin
and others. In directions parallel to the surface
the electrons are still effectively free and hence
unable to absorb, which is the reason why the
transitions must be "vertical. " Since therefore
the photoelectric process for this model actually
takes place in the surface of the metal, the
entire effect of the potential barrier must be
included in the transition probability PI, and
there is evidently no place for an additional
transmission factor in this case.

Further discussion of the remaining discrep-
ancy between theory and experiment as regards
the energy distribution for the photoelectric
emission had perhaps better be postponed until
more experimental material is available. It is
possible that the fit could be improved, by taking
into account the variation of the vector potential
with depth near the surface, recently considered

by Schiff and Thomas, " or if reasonably good
approximate solutions could be found for other
types of surface barriers than the square top one.

"Schi8 and Thomas, Phys. Rev. 4'7, 860 (1935).


