EFFECT OF CRYSTALLINE FIELDS

Eq. (1) is not valid, the lines K 4044 and 4047
have been included in Table I. For higher series
lines, Av may have a large positive range, and
therefore I’(v) may contain appreciable ‘‘blue”
intensities. The present treatment is entirely
inadequate for dealing with the highest series
members of the alkali spectra, where the atom
in its excited state embraces thousands of
perturbers.4

While this work was in progress there has
appeared a paper by Minkowski® in which the
intensity distribution of the D lines perturbed

1 A theory pertaining to these effects has been given by
Fermi, Nuovo Cimento 11, 157 (1934).
16 R. Minkowski, Zeits. f. Physik 93, 731 (1935).
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by small pressures of 4 is investigated and
compared with the results of Lenz® and Kuhn.$
The agreement is found satisfactory. The con-
siderations here presented do not conflict with
these results in their respective ranges of validity
(cf. in particular the remarks on the limiting
form of Eq: (18)), and hence are not in disagree-
ment with Minkowski’s data. It is to be observed
that for his experiments, (7) represents the
accurate statistical distribution. Moreover,
>wA2 If then the center of the line is completely
absorbed and measurements are confined to its
wings, |v|>w>7 2 Under this condition I~ p~2
on the blue side, I~»~% on the red side of the
line, as was found.
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The temperature variation of the paramagnetic sus-
ceptibility of Sm*** is calculated on the assumption that
the ion is subject to a crystalline field which can be repre-
sented by the potential

V =3[D(xi*+y:t+2:) + Axd + By — (A +B)zt],
1

the cubic portion of this potential predominant. The
susceptibility is decreased by about 25 percent with respect
to that of the free ion at 74°K when the cubic potential is so
chosen as to give a separation of the J=5/2 levels of about
200 cm™ which is of the order indicated by Spedding’s
work on the absorption spectrum of samarium compounds.
The theoretical values of the susceptibility are then in

TuE EFFECT OF CRYSTALLINE FIELDS ON Sm*++

Introduction

Van Vleck! has pointed out in his treatment
of the paramagnetic susceptibilities in the rare
earth ions that Sm? and Eu are anomalous in
that some of the consecutive multiplet intervals
are only of the order of 2T even though the

1J. H. Van Vleck, Theory of Electric and Magnetic
Susceptibilities, Chapter 1X.

2 Here as well as throughout the rest of the paper, the
three plus signs are omitted. Whenever the chemical

symbol Sm or Eu appears, it stands for the triply charged
samarium or europium ion.

satisfactory agreement with the experimental data of
Freed over a temperature range from 74°K to room
temperature. The rhombic portion of the field separates
the lowest excited level into two but the contribution to
the susceptibility is negligible if the rhombic separation
is small compared with the cubic separation. In striking
contrast with Sm*++, Eu behaves like the free ion even in
the presence of a crystalline field. The contribution to the
heat capacity of Sm*** at various temperatures due to the
excited levels is computed. When the levels which give
good agreement with susceptibility data are used, the
general shape of the curve is the same as that obtained
experimentally by Ahlberg and Freed but the theoretical
values are consistently lower than the experimental values.

overall multiplet widths are large. This makes it
necessary to consider the populations of levels
other than the ground state and also second
order Zeeman terms. The theoretical values thus
calculated were shown in a previous paper? to
give good agreement with experimental data on
liquids and solids over a wide temperature range
even though the theory is for the free ion. This
theory can be applied only when the distortion
by interatomic forces is negligible, that is, the
energy to ‘‘turn over’ an ion against interatomic

3 A. Frank, Phys. Rev. 39, 119 (1932).
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F1G. 1. The energy levels, J=5/2, 7/2, of the *H con-
figuration: (a) for the free ion and (b) in the presence of a
field of cubic symmetry. The addition of a rhombic field
splits the levels further as in c. .

forces must be small compared with £T. It is not
surprising, therefore, thdt the calculated values
deviate considerably from the experimental data
on liquid and solid compounds of samarium at
low temperatures. The deviation becomes ‘ap-
parent at 150°K and increases as the temperature
decreases.

The calculations are extended in this paper to
take into account the interatomic forces for Sm
and thus extend the data to lower temperatures
than in the preceding article. Since the type of
ionic field is unknown, the general procedure used
by Penney and Schlapp? for other rare earths is
followed, that is, we assume crystalline fields of
simple symmetries and determine which types
give good agreement with experimental data.
The effect of such fields is to remove the de-
generacy in the energy levels which exists when
the intra-atomic spin-orbit interaction alone is
considered. A type of field used successfully for
the hydrated sulphates of other rare earths is
one represented by a potential

V=DZ_ (xi4+ye4+zi4).

in which the summation is taken over all of the
electrons in the incomplete shell of the ion and
the values of D are assumed positive. The sig-
nificante of the sign of D has been discussed by
Gorter,® the positive sign in the case of the rare
earth salts suggesting an octahedral arrangement
of the 6 oxygen atoms surrounding the metal ion.

Bethe® has shown that a field of cubic sym-
metry breaks up the J=35/2 state into two levels,

4W. G. Penney and R. Schlapp, Phys. Rev. 41, 194
(1932).

5 C. J. Gorter, Phys. Rev. 42, 437 (1932).
¢ H. Bethe, Ann. d. Physik 3, 133 (1929).
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corresponding in his notation to the irreducible
representations I'; and T's of the cubic group
which have twofold and fourfold degeneracy,
respectively. An interatomic field of rhombic
symmetry splits I's further into two doubly
degenerate levels. There remains the Kramers
degeneracy, always present in systems with an
odd number of electrons, which is removed only
by a magnetic field. For the J=5/2 state of Sm,
whose multiplet type is ¢H, the level T'g is of
higher energy than I';. Similarly, J=7/2 breaks
up into three levels corresponding to T's, I'; and
I's, the fourfold degenerate level T's lying be-
tween the other two which are doubly degenerate.
The J=5/2, 7/2 levels of the ¢H configuration
in the presence of crystalline fields are shown
diagrammatically in Fig. 1.

An added interest in this problem arises from
the experiments of Spedding,” who has studied
the absorption spectrum of the samarium ion in
solids. His work indicates an appreciable splitting
of the normal state of Sm such as one would
obtain with a crystalline field. However Spedding
gives the separation of the normal state into
four levels with a possible fifth, whereas, if the
method of crystalline potentials is applicable, it
is impossible to obtain more than three. Some of
Spedding’s observed levels fit the susceptibility
data very satisfactorily: Van Vleck has suggested
that the additional levels of Spedding may
possibly be vibrational effects.$

The Hamiltonian matrix with a cubic crystalline
potential

The complete Hamiltonian function is given by

Jk=A(- S)+DZ(xi4+yi"+Zi4)+(L,+ZS,)HB

where z is taken as the direction of the applied

7F. H. Spedding, Phys. Rev. 46, 975 (1934).

8 Spedding (J. Am. Chem. Soc. 54, 2593 (1932)) has
imputed some of his extra levels to ‘“electronic isomers,"”
thereby attributing some of the states to electronic
configurations other than 4f. However, such an idea
appears at variance with the whole Hund scheme of the
magnetic susceptibilities of the rare earths, notably its
success in Pr and Nd when amplified by crystalline
potentials in the Penney—Schlapp fashion. Also it is
doubtful whether the existence of electronic isomers would
be compatible with the chemical near-identity of the
various rare earths. Even if Spedding’s electronic isomer
model were accepted, his attempted calculation of the
magnetic susceptibility of Sm by this model would be in
error. Among the mistakes we may mention the fact that,
if the orbital magnetic moment were quenchéd, the
statistical weight of the upper state would be 2 and not 18.
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1 6 7
Wiss— 3480 —G/7 1560(6)2Q/11 (210)4G/14
+5(6)'G/14
1560(6)4Q/11 Wis—17,0480/33
+5(6)}G/14 +286G/189 —52(35)'G/189
+1183G?/810F
Wia—19,5440/33
7 (210)}G/14 —52(35)4G/189 +26G/27
+91G?/54F

F1G. 2. Cubic factor of the secular determinant JC’. Numbers designating rows and columns
correspond to subscripts on the wave functions y,’.

2 5 3 4
5 Wi/o— 3480 1560(6)}Q/11 4(5)iG/21 —5(2)4G/14
~11G/21 ~5(6)iG/14
1560(6)Q/11 W2 —17,048Q/33
5 ~5(6)1G/14 +26G/63 —(30)G/7 —52(3)iG/63
+1547G*/810F
3 Wis—816Q —1560(10)}Q/11
4(5)'G/21 — (304G /7 +5G/21 +2(10)iG/7
Wi —12,8880/33
4 —~5(2)}G/14 —52(3)1G/63 —1560(10)}Q/11 —26G/21
+2(10)iG/7 +91G?/54F

F1G. 3. Quartic factor of the secular determinant JC'.

magnetic field and B is the Bohr magneton
eh/4wmc. A(L-S) is the spin-orbit interaction
which is diagonal in J (and independent of M)
since we assume that the crystalline field does
not destroy the Russell-Saunders coupling. The
eigenvalues of A(L-S) will be referred to as W.

(L.+2S,)HB is the contribution to the energy
due to the presence of the magnetic field. This is
regarded as a small perturbation in calculating
the susceptibility, inasmuch as the magnetic
separation is small compared with 27. As has
been emphasized previously,® the calculations for
Sm and Eu differ from those of the rest of the rare
earth group in that the separation between the
lowest multiplet levels is comparable with k7.
It is therefore necessary to take into account the
off-diagonal elements of the energy due to the
magnetic field, formulae for which are given
elsewhere.? In the complete secular determinant
only the levels J=5/2 and J=7/2 are con-
sidered since, at low temperatures higher levels
are not appreciably occupied, whereas at high
temperatures the interaction between ions in the

9.J. H. Van Vleck, reference 1, p. 167.

crystal, accounted for by the cubic potential,
is not important. However, the interaction be-
tween J=7/2 and J=9/2 is not neglected
insofar as the magnetic moment is concerned.
This contribution to the magnetic moment is
taken care of by adding to the diagonal elements
of J=7/2 the second-order perturbation term
[(L.42S.)(J, M; T+1, M)/ (Wy—Wsp1) with
J=7/2.

General expressions for the elements of the
cubic field potential are given by Schlapp and
Penney!? in either the J, M or M, Mg systems
of representation and so need not be repeated
here. These, however, do not include the elements
off-diagonal in J which may be obtained by
expanding the wave functions in the form

Yy, m=2SL 8 YL s

My, J, M, M M, M—M,

The coefficients in the expansion are given by
Wigner.!! For the multiplet type ¢H, the elements
1 R. Schlapp and W. G. Penney, Phys. Rev. 42, 666

(1932). See also reference 4.
W E. Wigner, Gruppentheorie, p. 206.
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of V=DY (x#+y:#+2:*) not diagonal in J are,
1

for J=35/2:

V(J, M; J+1, M)=V(J+1, M; J, M)

=—1560 (5)* Q/11 (M= +£5/2)
=—2080 (3)} Q/11 (M=+3/2)
= 780 (10)}Q/11 (M=£1/2)

V(J, M; J+1, MF4)=V(J+1, MF4; J, M)

=—520 (15)}Q/11 (M=+£5/2)
= 3120 Q/11 (M=£3/2)
=—780 (14)}Q/11 (M==1/2)

with Q=¢’D/c. D is the cubic field constant, ¢’ is
the ratio of the matrix elements calculated for a
system of # electrons to those for a one electron
system, and ¢ is a constant computed for a one
electron system. The constant ¢’/c is the same
as the absolute value of the constant ¢ used by
Penney and Schlapp.* By use of spur relations as
explained by Penney and Schlapp, ¢'/c is de-
termined to be +5031/165 with I=/"¢"r*R*(r)dr.
R(r) is the radial wave function for one of the
equivalent electrons. The positive value thus
obtained for ¢’'/c¢ requires T'; to be of lower
energy than T's for J=5/2 for the type of cubic
field we have assumed in which D is positive
(see Fig. 1).

If the elements off-diagonal in J are neglected,
the secular determinant factors, no factor being
of higher order than two. The complete de-
terminant is therefore simplified by transforming
to a system of representation which diagonalizes
those terms of the cubic field potential already
diagonal in J. The following transformation of
the original wave functions (¢, ») accomplishes
this simplification :

Y1 =2, =172

Yo' = (5/6) 50, 232+ (1/6)4s/2, %572

Yas' = (5/6)Wss2, 52— (1/6)Ws/2, 232,

Yd =@/ W2, .2+ (1/ 2012, x50,

Vs’ = (3/H) W2, war2— (1/2)172, 232,

Yo' = (5/12) W, 1724+ (T/12) 2, 172,

Yar' = (5/12) W0, 12— (T/12)Mos2, £1s2.

Figs. 2 and 3 give the secular determinant 3¢’

in this new system of representation, factored
into two identical quartics and two identical

cubics with F substituted for (Wy,2— Wyys), and
G for HB.
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TABLE 1. Effective Bohr magneton numbers for Sm.

teft (THEORY) kett (Exp.)

T°K »=0 (cm)~1 173.6 (cm)™! 207 cm™! FREED!?
(FREE ION)

74 1.06 94 91 91

85 1.09 .99 .97 .96
112 1.16 1.11 1.09 1.08
170 1.29 1.28 1.27 1.26
205 1.37 1.37 1.36 1.35
240 1.44 1.44 1.44 1.44
293 1.55 1.56 1.56 1.57

The terms off the diagonal which depend on
the cubic field occur in such a way as to require
the solution of nothing more complicated than a
quadratic to completely diagonalize them. Such a
transformation, however, presents numerical
difficulties because of the scrambling of the
J=5/2 and J=7/2 terms. It would be possible
to carry out the calculation in general terms by
expanding the radicals which occur in the trans-
formation matrix in terms of Q/(W;—Wyi1).
It is less laborious to make this second trans-
formation by the substitution of numerical values
for W and Q, until by trial and error a value of
Q is found which gives results in agreement with
experimental data. The values substituted for
W are the multiplet energies used in the pre-
vious work on Sm, with the screening constant ¢
taken as 33. '

Energy values are obtained to second powers in
the magnetic field H by applying perturbation
theory to the matrix 3¢”" which results from the
second transformation and which is therefore
diagonal except for linear terms in /. Thus

W50 (s m) 45 (3¢ (n; ') ] ’
M Wo(n; ) —WO(n'; n')

where Won; n) is that part of 3¢"(n; n) inde-
pendent of the magnetic field. C

Comparison of computed and experimental sus-
ceptibilities

. Several sets of energy levels W, corresponding

to several choices of the constant Q were used

and the molar susceptibility (x) readily calcu-

lated from
NkT dlog Z

X=—"

H dH

12§, Freed, J. Am. Chem. Soc. 52, 2702 (1930).
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where Z is the partition function

Z=Y e WnlkT,
n

Table I gives computed and experimental values
at various temperatures of the effective Bohr
magneton number defined as

sest=[3kTx/NB>J%.

The values of » referred to in the table are values
of the separation of the J=35/2 level due to the
cubic field corresponding to different choices of
the constant Q. It is evident from the table that
satisfactory agreement is obtained when the
splitting of the J=5/2 level due to the cubic
field is in the neighborhood of 200 cm~1,

Experimental values of p.s; at room tempera-
ture reported by other observers are

1.58 (anh. sul.) Cabrera and Duperier®
1.55 (hyd. sul.) Selwood!4
1.66 (hyd. sul.) Rodden.!

The high effective magneton number given by
Rodden would be in satisfactory agreement with
the theory if the screening constant were taken
as 34 instead of 33. Experimental values for the
oxides of samarium are not included since it is
not expected that the same type of crystalline
field applies to both oxides and sulphates.!

The effect of adding a small rhombic potential to
the crystalline field

Spedding” has reported excited levels at 160
cm™!, 188 cm™!, 225 cm™!, and possibly one at
245 cm™' from the absorption spectrum of
Sm,(SO,);3- 8H;O. The values of » chosen for
Table I are approximately the mean of 160 cm™!
and 188 cm™!, and the mean of 188 cm™! and
225 cm™. An interatomic field of rhombic
symmetry will remove the degeneracy in the
upper J=35/2 level but will leave the center of
gravity unchanged. The calculation which follows
shows that the inclusion of a rhombic field which

13 Experimental values on anhydrous sulphates of Sm
and Eu were communicated by Professor Cabrera to
Professor Van Vleck. Earlier work of Cabrera and Duperier
on hydrous sulphates of Sm and Eu may be found in
Compte rendus 188, 1640 (1929).

1P, W. Selwood, J. Am. Chem. Soc. 56, 2392 (1934).

15 C. J. Rodden, J. Am. Chem. Soc. 56, 648 (1934).

18 Experimental values of the susceptibility of Sm,O; of
various observers are tabulated by C. Wiersma and B. H.
Schultz, Physica 13, 171 (1933), P. W. Selwood, reference
14, and A. Frank, reference 2. )
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will separate this level into two of those reported
by Spedding will not destroy the good agreement
with experimental data insofar as the sus-
ceptibility is concerned.

The rhombic field can be represented by the
potential

Z[Ax?—f—Bin — (A +B)z:%],

the matrix elements of which are given by
Schlapp and Penney.!® If this rhombic field is
assumed to be a small perturbation, it is sufficient
to consider the effect only on the lowest levels of
Sm. In the Hamiltonian matrix which results
from the first transformation of the wave func-
tions, new elements 3C'(n; n')=3"(n"; n) are
added as follows:

3'(1;1)=—3'(2: 2)=4a(4+B),
3¢'(15 2) =4a(4 —B)/(3)},

3'(1; 3)=—(5)'a(4+B),

3'(2; 3)=(5)%a(4—B)/(3)}

with a=a’/b’, where a’ is the ratio of the matrix
elements calculated for a system of # electrons
to those for a one electron system, and &’ is the
constant calculated for a one electron system.
The addition of the rhombic terms to the com-
plete secular determinant complicates it con-
siderably. For example, the addition of the
elements 3¢’'(1; 2) and 3¢’(1; 3) spoils the factor-
ization into quartics and cubics as given by
Figs. 2 and 3. However, if we assume the energy
(R) due to the rhombic field small compared with
kT and also small compared with the separation
(hv) due to the cubic field, it is possible to expand
the susceptibility in terms of R/kT and R/hv.
Then, by using spur relations, the contribution
due to the rhombic field can be determined with-
out solving the secular determinant which in-
cludes these terms. A general expression for this
expansion in terms of spurs is given by Serber.!?
Since the matrix elements of the magnetic
moment were originally given corresponding to
the application of the magnetic field along the z
axis, it is necessary to determine the magnetic
moment along the ¥ and ¥ axes in order to com-
pute the average susceptibility. This can be
done most conveniently by a cyclic permutation
of the rhombic parameters, 4, B, and — (4 +B).

17 R, Serber, Phys. Rev. 43, 1011 (1933).
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F1G. 4. Variation of electronic heat capacity of Smt++
with temperature. Solid lines show theoretical values using
levels at (a) 187 and 225 cm™, (b) 160 and 187 cm™L.
Circlés designate experimental values of Ahlberg and Freed.

The terms in the expansion are symmetric in
A, B, and —(4+B) and therefore those which
are of the first order in the rhombic field energy
average to zero. The average contribution to the
susceptibility is proportional to the square of
the separation due to the rhombic field, to as
good an approximation as is needed.

The computations show that the addition of
the rhombic splitting has little effect on the sus-
ceptibility, as long as it is small compared with
the cubic portion of the field. For example,
with »=192 cm™!, a rhombic separation of 65
cm™! (giving Spedding’s levels 160 and 225 cm™)
lowers uers by only 0.8 percent at 74°K, the
change in uw.i; decreasing with increasing tem-
peratures. For smaller rhombic separations, the
decrease in u.s rapidly becomes less so that,
with =174 cm™, the effect of a rhombic separa-
tion of 25 cm™! (giving Spedding’s levels 160
and 187 cm™) is negligible. Thus the important
factor is the mean of the excited levels and any
two of the levels reported by Spedding give
values for the susceptibility in satisfactory
agreement with the experimental data available.
Therefore we may conclude that the samarium
ion in a solid such as Sm»(SOy);- 8H,0 is probably
in a crystalline field, predominantly of cubic
symmetry such that the separation of the J=5/2
level is in the neighborhood of 200 cm™.

AMELIA FRANK

TaBLE 11. Effective Bohr magneton numbers for Eu.

reft (THEORY)? teft (EXPERIMENT)

SeL-  HUGHES & CABRERA &
T°K o =33 o =34 WwooD!8  PEARCE!? DUPERIERS
(hyd. (hyd. (anh.
sul.) sul.) sul.)
83 2.18 2.33 2.06
153 2.84 2.97 2.73
223 3.18 3.29 3.14
293 3.40 3.51 3.41 3.63 3.61 3.53
343 3.53 3.63 3.58
400 3.65 3.75 3.75

Temperature variation of the heat capacity in Sm

The contribution of the multiplet levels to the
heat capacity of Sm at various temperatures is
given in a previous paper but these values are
increased considerably by the assumption of a
crystalline field which splits the lowest multiplet
level. The solid lines of Fig. 4 show the theoretical
curves for the temperature variation of the heat
capacity. Curves for other combinations of levels
which give good agreement with the suscepti-
bility data lie close to those given on the graph.
The lack of good agreement with the absolute
values found experimentally by Ahlberg and
Freed?® is not surprising. These experimental
values represent the difference between the
heat capacities of 3[Smz(SO4);-8H,O] and
1[Gd2(SOy)3: 8H,O]. Since these are large quan-
tities relative to their difference, possibly the
error in the difference may be considerable.
Moreover additional levels as reported by
Spedding would contribute to the heat capacity.

ErrFecT oF CRYSTALLINE Fi1ELDs IN Ev

Experimental data

Since the previous work on the theoretical
susceptibility for the free europium ion,? several
experimenters have published values of the
susceptibilities of europium compounds. Table
II lists the data on sulphates as one may expect
these values to give better agreement with the
theory for the free ion than values obtained from
the oxides, since the latter are firmer chemical
compounds. The fact that Selwood’s values at
temperatures below room temperature are lower

18 P, W. Selwood, J. Am. Chem. Soc. 55, 4869 (1933).

19 Hughes and Pearce, J. Am. Chem. Soc. 55, 3277
(1933). It is not stated in this paper whether diamagnetic
corrections had been made.

20 J, Ahlberg and S. Freed, J. Am. Chem. Soc. 57, 431
(1935).
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F16. 5. The energy levels, J=0, 1, 2, of the "F configura-
tion: (a) for the free ion and (b) in the presence of a field of
cubic symmetry. The addition of a rhombic field splits the
levels further as in c.

than the theoretical values suggests the possibility
that the susceptibility is lowered by a crystalline
field as in the case of Sm. However, calculations
similar to those for Sm show that the presence
of fields of cubic and rhombic symmetry has
very little effect upon Eu.

Effect of crystalline fields on the energy values
and the susceptibility

It is not surprising that the effect of a crystal-
line field of cubic symmetry is less for the
europium ion than for samarium because the

lowest state (J=0) is nondegenerate and the.

degeneracy in the J=1 level is not removed by
the cubic field. The analysis of Bethe shows that
the J=2 level separates into two levels corre-
sponding to the irreducible representations TI'j
and T Furthermore, since J=2 and J=1
belong to different representations of the cubic
group, there are no matrix elements of the cubic
field between them. For Eu, whose multiplet
type is 7F, the doubly degenerate T'; level is of
higher energy than the triply degenerate T
level. A diagram of these levels is given in
Fig. 5.

It is sufficient for the purpose of this calcula-
tion to consider the effect of a cubic field which
partially removes the degeneracy in the J=2
level, and a rhombic field which completely re-
‘moves the threefold degeneracy in the J=1
level. If the effect of the rhombic matrix elements
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between J=1 and J=2 and of cubic elements
between J=2 and J=3 are neglected, the
secular determinant is readily diagonalized in
all but the magnetic terms, and their contribu-
tion to the energy may be obtained by perturba-
tion theory.

With the rhombic field absent and the cubic
separation equal to 200 cm™!, the effective Bohr
magneton number is smaller than that for the
free ion by 1 percent at room temperature when
the screening constant is taken as 34. The change
in pesr is less when the screening constant is
taken as 33. At low temperatures the change is
negligible since only the normal state has an
appreciable population and the normal state is
not affected by the cubic field. Moreover a cubic
separation as great as 200 cm™! is improbable in
Eu. In terms of constants defined previously in
connection with the discussion of the cubic field
in Sm, the energy of separation of the J=2 level
due to the cubic field is 440Q/7=260ID/63.
If we assume the integral I to be nearly the same
in both cases, the value of D necessary to separate
the J=2 level of Eu by 200 cm™! must be about
350 times the value to separate the J=5/2 level
of Sm by the same amount. And since even the
improbable separation of 200 cm™ produces
little change in the effective magneton number,
Eu may be considered gas-like in the presence of
a cubic field, a result which one should expect
from the group theory analysis since the cubic
field has no effect on the lowest two levels of Eu.

The average contribution due to the rhombic
field may be determined by expanding the ex-
pression for the susceptibility if we assume the
rhombic energies small compared with 2T and
small compared with the multiplet energies.
The rhombic terms increase uers by less than 1
percent at 83°K if the maximum separation
introduced by the rhombic field is 100 cm™.
The change due to the rhombic field is less at
higher temperatures. Thus the effect of crystal-
line fields may be considered of little importance
in the case of Eu.

In conclusion I wish to express my gratitude
to Professor J. H. Van Vleck under whose
guidance this work was done.



