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The chief aim of the considerations presented is to
contribute to the understanding of the eEects of high
pressures of foreign gases upon the shape and the position
of a spectral line. A formal distinction is made between
statistical and impact distributions, and the former is
calculated in closed form for an interaction law of the type
Av = —n/r'. The distribution (Eq. (7a)) is a special case of
Pearson's curves. Next the relation between the statistical
and the true distribution is examined from a fundamental
point of view which illuminates the character of the ap-
proximations made in. the various theories of pressure
broadening. Finally, by the use of a simplified procedure,
approximative expressions are developed for the entire
intensity distribution within the line, probably valid for
pressures around 20 atmos. An expression (Eq. (18))
capable of graphical integration, is given which represents

the true distribution for lower pressures. The theoretical
results are compared with experimental data. Some con-
crete conclusions: the shift of the maximum is nearly
proportional to the pressure of the perturbing gas at low

pressure, proportional to its square at high pressures. The
transition occurs at a pressure for which the impact half-
.width = the shift of the statistical maximum. (About 20
atmos. for K—N~, 50 atmos. for Hg —N2. ) At pressures up
to =20 atmos. the impact width determines the shift of
the intensity maximum, the latter being at low pressures
far greater than the shift of the statistical maximum. Half-
widths are also proportional to approximately the first
power of the pressure at low, to the second power at high
pressures. At pressures up to =10 atmos. , the half-width
is about twice the shift of the maximum. The shift is a
function of the temperature as well as the pressure.

HE interesting features of a spectral line
broadened by pressure of foreign gases are

its width, the shift of its frequency maximum,
and its peculiar asymmetry. It is not difficult to
explain all these facts in descriptive physical
terms, attributing each to a separate character-
istic' phenomenon. Thus it is customary to
ascribe the cause of the increased width in some
way to the lack of phase coherence, produced by
the perturbing atoms, of the waves emitted or
absorbed; the frequency shift is linked to the
fact that the average energy of the levels between
which a transition occurs is changed as a conse-
quence of perturbations; the asymmetries,
finally, are regarded as due to the different and
in general irregular statistical weights of the
various transitions of slightly different fre-
quencies.

Theories dealing with the problem at hand are
not entirely in harmony because they emphasize
different aspects of it. The oldest and simplest
theory is that of Lorentz, which explains, with
considerable success, the width of the line on the
assumption that impacts suddenly interrupt the
radiation process. Weisskopf' has adapted this
theory to the problem of continuous collisions,
obtaining essentially the result of Lorentz but
on physically more plausible grounds. We shall

'V. Weisskopf, Zeits. f. Physik 'lS, 287 (1932); Physik.
Zeits. 34, 1 (1933).

later return to it. For the present it suffices to
state that, since random interruptions necessarily
produce symmetrical spreading of frequencies,
this method is inadequate for handling shifts and
asymmetries while dealing correctly with line
widths.

The present writer has attacked the problem
from much the opposite standpoint. ' Neglecting
entirely the width of the line which results from
the incoherence of the phases, a statistical
theory was developed in which the intensity of
any frequency between v and v+dv within the
spectral line is considered proportional to the
time interval during which the optically active
atom is capable of emitting a frequency of this
range. On this basis one obtains spectral distribu-
tion curves' which resemble closely the experi-
mental ones observed at very high pressures,
while correspondence at low pressures fails com-
pletely. The reason for this will later be clear.
Moreover, the statistical theory in question
yields correctly and very simply the mean
frequency, v, of the broadened line. This mean
frequency is strictly proportional to the relative
density of the perturbing gas. Experimentally,
however, it is not the mean frequency but the
maximum frequency which is measured. Yet in
discussing agreement with observation, ~ has

2 H. Margenau, Phys. Rev. 40, 387 (1932).
'H. Margenau, Phys. Rev. 43, 129 (1933).
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been compared with the experimental v, .
because, since the exact distribution of fre-
quencies was not known, v and v,„.were ex-
pected to behave similarly. This procedure,
however, is fundamentally wrong, as the correct
calculation of the statistical distribution will

show. Curiously, however, for low pressures the
expectation happens to be nearly right. —The
considerations of Kulp4 are essentially identical
with those just outlined. —Ariy statistical theory
of pressure broadening misses the important part
of the line width at low pressures, as was already
found, but not clearly understood, in reference 2.
In a sense, it may be said to be complementary
to %'eisskopf's theory. Only at high pressures
does the width of the statistical distribution
agree with the observed line width.

A complete theory which comprises both
aspects, the statistical distribution as well as
that resulting from incoherence of phases, must
be based upon a Fourier analysis of the varying
electric moment of the radiating atom, as was
emphasized by Weisskopf' and by Lenz. ' The
last author has treated the problem, starting with
this theoretically rigorous procedure. His results
are notable inasmuch as they are impeccable in

the range for which they hold, but, due to
unavoidable analytical approximations this range
is unfortunately small. Lenz claims validity for
his results only up to pressures of 1 atmosphere.
Furthermore, the calculatory details of his

method are so unperspicuous that it is impossible
to estimate the error which his treatment entails
at higher pressures, where the characteristic
features of the line can be more easily observed
experimentally. The results of the method to be
presented in this paper agree substantially with
those of Lenz within the limits of validity of
the latter.

Recently, Kuhn' has made a number of
observations exhibiting some of the defects of
the statistical theory of broadening sketched
above. - In particular he 6nds, on the basis of
interesting plausibility arguments, that the in-

tensity maximum should vary as the square of
the pressure. His work also involves the sugges-

tion that to each point of the statistical distribu-

4 M. Kulp, Zeits. f. Physik 19, 495 (1932).
5 W. Lenz, Zeits. f. Physik 80, 423 (1933).
6 H. Kuhn, Proc. Roy, 5oc. A18, 987 (1934).

tion curve should be assigned an intrinsic diffuse-
ness. This can be done, however, only if the
statistical distribution is knowp, The results to
be obtained presently con6rm, in part, Kuhn's
expectations, though with quantitative modi6ca-
tions. They will also show how the fact that the
maximum of the statistical distribution varies as
the square of the relative density f'alls in line

very naturally with observations on the shift of
the intensity maximum.

For the sake of de6niteness we shall continue
to use the term statistical distribution (German
Hamfigkeitsserteillng) in the sense previously
outlined, and refer to the spreading of frequencies
due to incoherence of phases (Weisskopf's SIoss
serbreiIsrlng) as impact broadening St.rictly
speaking, the two effects cannot be separated
either physically or mathematically, yet we
shall treat them in this paper formally as
distinct. The 6rst step will be to obtain and
discuss an approximation to the statistical distri-
bution of frequencies in closed form ()1), the
next to exhibit the relation between the sta-
tistical and the true distribution ($2). It will

then be necessary to modify the former distribu-
tion by incorporating the effect of impact
broadening ($3) and finally to compare the
results with experiments. (ft4);

)1. THE STATISTICAL DISTRIBUTION

For the forces causing the displacement of

energy levels as a result of int.eractions with

foreign perturbers we may refer to London's~

papers. His theory is applied in detail to the
present problem in reference 2, where the
numerical magnitude of these forces is also

roughly computed. If a stationary pertur her
(foreign atom or molecule) is a distance r from
the optically active atom, the frequency which

the latter emits or absorbs differs from the riormal

frequency by an amount

Av = —n/rs+R

where a is a constant and E. a series of even
inverse powers of r beginning with r '. At
reasonably large distances, in most cases prob-

ably for r&10 'cm, R may be neglected against

'F. London, Zeits. f. Physik 63, 245 (1930)', Zeits. f.
physik. Chemic 811, 222 (1930).
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0:/r' C.loser in there follows a range in which II!

becomes appreciable, and for still smaller dis-
tances of separation hv increases in general. In
the analytical work in this section we shall
ignore R. The error introduced thereby is con-
siderable for higher pressures and requires dis-

cussion; as a preliminary guide we recall that at
a pressure of 1 atmos. the mean distance between
atoms is 3.3&10 7 cm. The choice of a modified
law 6 v = a'/—rv to begin with would be of
doubtful utility, for it would falsify the entire
distribution curve, while the procedure here

adopted will produce the maximum at the
correct place, even for moderately high pressures

( 10 a,tmos. ), introducing errors for greater
frequencies only. Also, the choice here made
permits the evaluation of the distribution in

closed form. It should be remarked that, as
long as Eq. (1) holds, the contributions to Av of
the different perturbers are additive, The density

The integration here extends over the range of
r's in which

dp A dv
v ——& —P—& v+—.

2 'r' 2
(3)

By inserting a Dirichlet factor which has the
value 1 in the range (3) and vanishes outside
we can transform (2) to read

of emitting or absorbing atoms is taken to be
very small.

Let us assume uniform distribution of the
perturbers in phase space, and measure all
frequencies from the position of the line at zero
pressure. Then, if the statistical distribution is
denoted by I'(v) and r; is the distance of the fth
perturber from the emitting atom, the total
number of perturbers being n, and the volume V,

I'(v)dv = (4~/V)"J' fgprgr2'
~ r „'dr &

~ dr„(.2)

1
t 4w)" t. r (" sin (-,'pdv)

I'(v)dv=
}
—

}
—

i y 'r ' r 'dy dy„ II dp —e '"'+' ' &""'" (4)

where now the r-integrations may be taken over all accessible configuration space. In this ex-
pression we have changed the sign of 0., which is equivalent to measuring v in the direction
of decreasing frequencies. All shifts will thus conveniently appear with a positive sign although
they are really negative. In (3) we shall now assume that dv~0 which simplifies the sine-factor;
we then split off the integration over the r's and write e'~&~"' in the form 1 —(1 —e' v'"'), obtaining

1 f'4~q"
I'(v) =—

}
—

} dpe '"&
J~ [1—(1 e' &'"')]r'dr-

27r E V)

Consider now the term in } I. The integration
is to be carried from some smallest distance of
approach r~, to the maximum distance of separa-
tion d, which may be related to the total volume
by: 4md'/3= V. But in integrating r'dr we are
permitted without appreciable error to use 0 as
the lower limit, and in integrating the remainder
we may replace the upper limit by ~ because of
the behavior of the integrand. If we integrate
from 0, as we shall do, we are committing an
error whose effect we must later investigate.
With this understanding,

V) 4~V'y
Jt[1—(1 e' ""')jy'dr= }—1——

4L, V&

where we have used the abbreviation

V'= jo (1 e' ~~"')r'dr—

and (5) takes the form'

v()=(&/2 )f d&e '"e '"' '&" (6)

We now proceed to evaluate V'. After substitu-
tion of x for o.p/r' and one partial integration

I am indebted to Professor Lars Onsager for showing
me a mathematically more elegant way of obtaining this
equation. The presentation here chosen is less abstract.

In raising this quantity to the nth power we
allow the volume of the gas to increase indefi-
nitely while maintaining n& ——n/ V constant. Then

lim (1 4mn~V'/—n)"=e '~"' '
n-+co
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this becomes

(np) & t'sin x cos x)

3 o ( xi xl )
(2m'n p)

*'

(1—f)
6

0.2

When this is substituted into (6) there results an
expression which is easily evaluated. The most
convenient procedure is to change the integrand
in (6) to real form by writing

'+J,
and then taking for the variable of integration
in the first integral —p instead of p. The limits
will then be 0 and ~ for both integrals and the
integrands if added, become real ~ The result is

This integral is known; it is of the form

Jo"e "*cos (x' —Px)xdx with x=(vp)l

and reduces to the function

I'(v) = 3~n&n&v & exp (—(4/9)~'nn, '/v) (7).
Henceforth we shall use the abbreviation
X= smnln~, so t-hat (7) becomes

I'(v) =Xv-:e-""'~" (7a)

This distribution is plotted in Fig. 1, where v is
measured in units m.X'.

The maximum of (7) comes at

vmsx. =3~X =(3~) nÃ1

It varies with the square of the relative density
of perturbers as was predicted by Kuhn' (only
his numerical coefficient is in error by a factor

1.35). His conclusion that for large v the
distribution should behave essentially like v &,

based on the supposition of single impacts, is
also verified by (7). The exponential factor in
this expression represents the effect of the co-
operation of several perturbers in producing the

oo ' 2X'
I'(v) =— exp ——n~(2mnp)'

are 0 3

( 2x
«»

~
vP ~(2~np—)—' ~ldp

2
V/e"

FK'. 1. (a) Statistical distribution I'(v); (b) Eq. (21),
with ~=2~X2; (c) Eq. (23), with ~'=2m%'. Abscissae are in
units m)2; the area under each curve is unity.

intensity at a given frequency. The half-width
of (7) is given by 1.85~X' and is therefore also
proportional to n~'.

Before we consider to what extent the sta-
tistical distribution now derived can be expected
to be reproduced in experiments, let us investi-
gate it more critically. The law used for the
energy interaction (Eq. (1)) with the neglect of
R is certainly too simple. To use round numbers
which indicate the order of magnitude of the
various effects, Av will fall first more rapidly
than assumed as we pass from 10A inward, then
less rapidly, and at smaller distances it will rise.
Indeed, from about 5A inward no encounters
are possible. Also, at such close distance, addi-
tivity of the perturbing effects ceases to be
valid. One may therefore expect that those
portions of the distribution curve (7) which
correspond to single impacts at distances be-
tween about 5 and 10A are incorrect. But here
the curve can sometimes be modified very simply
by considering the effects of single impacts alone,
although we feel that the use of a law of the form
Av = OI.'r & will be inadequate for that purpose.

If, in the region of single impacts, that is, for
frequencies which cause the exponential factor
in (7) to be nearly 1, v=f(r) where f(r) may
contain several parameters, then the intensity
at frequency v is given by

I(v)dv =const. J'~„r'dr, whence

I(v) =[~ (v))'dv/dv (9)
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Here pp(v) is written for the solution r= e(v) of
v=f(r) I.n some cases, (9) is given directly by
experiment, and f(r) can then be determined
empirically.

Next, we must estimate the consequences of
carrying the integration in all the way into the
origin. Physically this means that we are in-

cluding in (7) the contribution of very large
frequencies at distances of approach inferior to
the collision diameter, which in reality do not
occur. It is clear that they will modify the tail
of the distribution law which, in (7), is too long.
As a result of their inclusion, the first moment
of (7) does not exist, whereas the true statistical
distribution has a mean (which is equal to
n~Av, Av being the space average, calculated for
a single perturber, over the true Av in place of

(1);Av as given by (1) diverges).
An upper limit for the error thus introduced

may be found as follows: If we wish to cut off
the integration at the lower limit r~ we must
replace U' in (6) by the function

fpP(1 e' "')r d—r+ fp"(e" " e' '" )r —dr,

where F(r) =nr ' for r&r&, but vanishes if r(r&.
The first integral is the old V'. Now the second
integrand in this expression cannot be greater,
in absolute value, than 2, hence the entire
second integral has an absolute value 2r&P/3—
lf this is added to U' in (6) I'(v) is multiplied by
e~ &' t'""1"1'. The exponent here is twice the
number of perturbers contained, on the average,
in the excluded volume. Hence, if we take r~ to
be 5A, the error in (7) cannot be greater than
a few percent even for the largest frequencies
considered at pressures about 1 atmos. For
higher pressures, this upper limit of error grows

very rapidly and is not a good index for the
approximation involved.

To estimate the actual error we rely on

physical considerations. We know that the true
statistical distribution must give practically zero
intensities for v & vI ——n/r~ . The ratio v~/v, . is

independent of n, the strength of interaction; it
is about 104 for relative density unity, 10 for
relative density 30 (again taking r, 5A). In
the la, tter case, Eq. (7) predicts an intensity
about 1/10 maximum at v~, hence at smaller

frequencies we can say that the error due to the

present cause is smaller than 10 percent of the
maximum. The position of the maximum, how-

ever, should not be very strongly in error even
at relative densities 30.

Some caution is also necessary in applying
single-impact considerations to the tail of the
distribution curve. Even at u=10v, . the error
in neglecting the exponential factor in (7)
amounts to more than 10 percent. It will be
seen, however, (cf. (3), that for pressures of a
few atmospheres the maximum of I'(v) has
practically nothing to do with the maximum of
the experimental distribution.

It may be of theoretical interest to remark
that the frequency at which the area under the
curve I'(v) is d'ivided into two equal parts lies
at 4.347r)P. Statisticians will observe that I'(v)
represents a certain type of Pearson's distribu-
tion function. In a previous paper' an attempt
was made to evaluate this function graphically,
but it was not obtained in closed form. The
constants in this section are so chosen that
fp I(v)dv=1, and I' must be regarded as zero
for v (0, although analytically it assumes com-
plex values in that range.

f2. RELATION BETWEEN STATISTICAL AND TRUE
DISTRIBUTION

%hen an atom emits or absorbs light of con-
stant amplitude but varying frequency v(t), the
intensity distribution in the spectral line is
accurately given by the Fourier analysis of its
electric moment e' 'Jp'"&'"' that is, if I(v') is
the intensity associated with a fixed frequency
v' and J(v') the corresponding amplitude,

I(v) =
I J(v) I'

where

J(v') =fdt exp { 2priv't} ex—p {2prijp' v(r)dr}.

Hence

I(v') =ffdtIdtp exp {27ri[Jp"v(r)dr
—fp''v(r)dr+ v'(tp —tI)]}. (10)

The two integrations for which no limits are
stated extend over the entire time during which
the process of radiation occurs, and this interval
may be taken to be infinite since we are not at
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present interested in natural line widths. After
substitution of the variable x for (tq —t() (10)
takes the form

I(v') =J'dt j'dx exp {2mi{v'x J—'0'v(r)dr5}. (11)

Up to this point the analysis is straightforward,
but from here on approximative methods must
be adopted in the solution of any concrete
problem. Two main procedures have been em-
ployed.

The first is based on a Taylor expansion of the
varying phase:

f
g X2

v( r)dr ='ve; 0'1+ v—+ ' ' '

0 2

X2
= v(t)x+ v(t) + ~ ~—. (12)

2

If here all terms but the first are disregarded and
the result is substituted in (11), the integral
over x in this expression becomes a 6-function
which is 0 whenever v(t)g v'. The element dt is
the time during which the frequency is v(t), and
is proportional to the statistical weight I'(v)
which was calculated in (1 for the problem of
broadening by foreign gases. Hence to this
approximation (11) simply reduces to

I(v') =J'I'(v)dv8(v —v') =I'(v').

This observation shows clearly in what sense the
statistical distribution is in error: the second
integral in (11) is not really a 8-function but
has a finite width. The true distribution can be
obtained from the statistical one by "diffusing"
each ordinate of I'(v) in the proper manner.

The second procedure referred to is the
method of impact broadening due to Lorentz
and Weisskopf. ' Its meaning can also be most
clearly understood in view of Eq. (11), for it
amounts to an evaluation of this equation by
substituting a 8-function for dt and by using a
distribution of finite width for the factor of dt.
In detail, one puts dt=8(v —v")dv, and with
respect to the remainder of (11) one makes the
simple assumption that v(r) = v, a constant in

time within the interval —T—7 —T and zero
outside. The frequency distribution is then that
of an interrupted wave train of duration 2T, i.e.,

T

d(J)= e( —")d f e"&" "&*de

= sin [2m-(v' —v") Tj/7r(v' —v").

If this last result is averaged over all emission
times 2T with the correct weight factor, the
familiar "dispersion" curve (cf. reference 1) is
obtained. Weisskopf's treatment differs from
that of Lorentz by its method of computing the
mean time of uninterrupted emission (or ab-
sorption).

In the next section we shall make an attempt
at combining the two procedures now outlined,
using for dt the statistical distribution, and some
suitable diffusing function for the remainder.
The success of the impact theories would recom-
mend the use of a dispersion curve for this
purpose. But in choosing a diffusing function
we must, unfortunately, be guided by consider-
ations as to what functions allow the analysis
to be carried through. Some idea of the true
nature of this function may be obtained, how-
ever, by reverting to Eq. (12).

Suppose we retain the first two terms of the
expansion. Since in the case of a single perturba-
tion v is proportional to the speed with which
the molecules move, the second term is in-

appreciable at sufficiently low temperatures.
The statistical distribution, as is well known,
must therefore agree with the true one at very
low temperatures. —On introducing (12) in (11)
the integration over x leads to

~ I~ ~ e ~ 2 ~ ~t ~ ~ e I~ 2 ~

~

(Ipy
e' ""' "&' "'"*'dx—

{
—

} (1 i)e' '"'—""" (13)
&2vf

v is the time rate at which the frequency varies
as the result of the combined action of all

perturbers; it cannot in general be calculated by
considering single impacts alone. It will depend
on v as well as on the pressure of the perturbing
gas and on its temperature. For the present let
us assume it to vary so slowly with v that the
width of (13) can be computed by treating it as
constant. The real part of (13) is

1 ) & ~(v' —v)' ~(v' —v)'
cos —+sin . (14)

&2[v f) [vi

The imaginary part is of no interest since it
disappears in the next integration in (11). The



PRESSURE EFFECTS ON SPECTRAL LINES 76i

~=const. Bn~p',

where p=const. (n/8)"' T. hus

o) =const. e'en'"8'". (17)

Fio. 2. Graph of the function (14).

A crude estimate of the factors upon which
this width depends can be obtained by calcu-
lating an average of the quantity

~
v~ l over all

perturbers. The ith perturber will contribute

[~ (dv;/dr;)v; cos (r;v;)
~

j'.
Upon averaging over velocities and directions of
motion of the foreign atoms this becomes
c(v) l

~

dv„/dr;
~

'. c is some numerical constant
which we do not care to determine. We now
take the origin of all frequencies at the unper-
turbed position of the spectral line so that v is
identical with the hv of Eq. (1). The term under
the radical will then be 6a/r, ' In sum.ming over
all perturbers we use the method of statistical
mechanics:

P (dv~/dr; (

I =4vnI J'(6a/r )Ir'dr

beginning the integration with some suitable
smallest value rI, Collecting these results we
find for the average in question

Ave
~

v
~

l = Cn ~(c(.'v) l, (16)

where C, a constant, has the dimension L &.

This expression depends but little on the choice
of rI.

It is of interest to compare this impact width
with that calculated by Weisskopf. According
to his theory

function (14) is plotted in Fig. 2, where the
unit (~ v~/v)I is employed in measuring v' —v.

Its width &o is given by (m./ ~

v ~) leo =2, hence

co=2([i )/7r)-*.

The difference in the exponents of Ot and 8 in

(16) a,nd (17) is unimportant, for both expres-
sions are only approximately true. The superi-
ority of Weisskopf's treatment lies in its greater
simplicity and in the opportunity which it offers
for evaluating the constant. The point to be
noticed is that co varies linearly with the relative
density of the perturbing gas. In making use of
these results later we can take the constant in

question from experiment.

$3. MODIFICATION OF THE STATISTICAL THEORY

BY INcLUsIQN oF IMPAcT BRQADENING

so that the modified distribution becomes:

(18a)

co " I'(x)dx

2~ (x—v) '+ a&'/4
(18)

I' being given by (7) for a large range of pres-
sures. (18) could be computed graphically and
should agree well with the observed intensity dis-
tributions. In this procedure, co can be taken either
from (17) or from the experimental half-width
of the line at small pressures; it should be
allowed to increase slowly with v across the line
since large perturbations are accompanied by
larger values of

~

i
~

I (cf. Eq. (15)). The value
of I(v) for two limiting cases can be determined
at once. If —v))co))~)', that is, for the extreme
blue wing of the spectral line, I(v) varies nearly
as 1/v, i.e. , it behaves like the dispersion curve.

' The constants are so chosen that co represents the half-
width and m(x) is normalized to 1.

In the present section we shall calculate (11),
but with the use of a highly simplified distribu-
tion function representing the effect of impact
broadening. The half-width of the function will
be given by (16) or (17).The form of the diffusing
function suggested both by experiment and
theory would be of the dispersion type

IV(X) = ((o/2v)/(X'+-', co'),
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of v. The maximum is, of course, less steep and
is shifted with respect to that of I'(v). There
is now an appreciable intensity at negative
v-values.

The position of the maximum of I() ) is in

general easily obtained by differentiating (21)
with respect to v, treating ~ as a function of v.

An interesting and sufficiently significant result
is obtained, however, if again we take cv to be
constant. The maximum, occurring at vo, is then
given by

On the other hand, if v))cu, (18) takes on the
features of I'(v). At the extreme red side of the
line the true distribution should therefore ap-
proach the statistical one.

We shall not attempt to calculate (18); for
some general features of the true distribution
can probably be recognized by using simpler
trial functions for w(x). Let us first make the
assumption that the impact breadth diffuses all

frequencies within a range ~ in a uniform
manner, allowing co for the present to be a func-
tion of v. This assumption is likely to be better
than the second one whose consequences we will

investigate, namely tha. t m(x) is a triangle
function which confers much greater weight upon
the center than upon the "wings" of the impact
distribution. Before proceeding with the work
we write down some transformations of certain

. integrals which occur, and which the reader can
readily verify.

I (vo+cu/2) =I'( )—0 co/2), (22)

as is directly seen from the equation preceding
(21). According to (22) ) 0 can be determined by
the simple graphical procedure of finding where
the I'(v) curve has a horizontal width ra Th.e
mean of the two abscissae defining this width
is vo.

Now suppose that ~&&x)', which is the case
up to pressures of several atmospheres, as will

be shown in the next section. Then, since I'(v)
rises very rapidly at v=0, the point bounding
the range of width eo on the left lies practically
at v=0, the limit on the right is about co, and
po a)/2. This is true regardless of the precise
behavior of I'(v) for large v. We see that vo in

this case bears very little relation to the maxi-
mum of I'(v) Moreove. r, since cv varies linearly
with n~, v also does. At low pressures the shift
of the observed maximum is thus entirely
occasioned by the increasing impact width of
the line. If this explanation is correct the shift
should roughly correspond to one-half of the
half-width, as will be shown to be the case
empirically.

In case ~(&mX', which prevails for high pres-
sures because X' increases with n&', vo coincides
with the maximum of I', and hence varies with
nj2. The region in which the linear law gradually
changes into the square law is given by cv =~X'.

The actual shape of the line cannot be expected
to be rendered accurately at all by (21) for the
former case cv»mX'. For the reverse condition,
lack of agreement of (21) with observation, if

found, should be attributed mainly to the faults
of I' previously discussed.

J.'I'(x)dx =),j.'x 1e "')*dx—-

P is Gauss' integral

y(x) =2/m. 1J;*e &'dy;

we recall that ()I)( 0() ) = 1. Finally,

f,'xI'(x)dx=2XIb1e "'" a**e—

1. Uniform diffusion

In accordance with the first assumption, t()(x)
will be taken to be the constant 1/~ in the range
—co/2 —x=cu/2, thus ensuring correct normali-
zation. Then

Here it must be remembered that I'(x) is zero
for negative x. Hence, in view of (19),

CO p+os/2

I( )= f x(x —))'(x)Cx Jl )'(x)dx= —
-m ' s —a)/2

If the argument of p becomes imaginary, p is to
be replaced by 1. In Fig. 1 is shown a graph of
this function for ~ =2vrV, the same for all values

2. Diffusion by a triangle function

To see the effect of the particular diffusing function
chosqn upon (he distribution of intensities it seemed well
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to try one other choice:

0
(4/aP) (x+ /2)
(4/co') (co/2 —x)

0

if x(—co/2

if —o)/2~x (0
if 0~x ((o/2
if x)op/2

m represents an isosceles triangle with base co and area 1.
If this is substituted in (18a) with x everywhere replaced
by (x —v), the result is

4 v co
I(p) =— — vjx)—I'(x)dx

oP v—~/2 -2

4 'v+co/2 M+- —+a —x I'(x)dx.
co v 2

The integrals can be evaluated by the use of (19) and (20),
yielding finally

I(v) = 2G ——G —G ' (23)

&"+') " ')
The function G is defined as follows:

G(x) = +20(x)+(2/ ')~ *'/x4(x)
x2

The procedure must be modified somewhat when

~&/2, for then the arguments of some of the G's become
imaginary. Closer inspection shows that when this happens
the corresponding G(x) is to be replaced by (2+1/x2). We
shall not reproduce here the details of the calculation.

Eq, (23) is also plotted in Fig. 1, again assuming co to be
independent of v. As before, the value 2xX' has been chosen
for co, this means that the base of the triangle is equal to
three times the shift of the maximum of I'(v). Strictly
speaking, curves 2 and 3, Fig. 1, are not copiparable
quantitatively because curve 2 has an "impact half
width" twice that of curve 3. By taking ~ in Eq. (23) to be
larger the curves can be made almost to coincide. It is of
interest to notice how little the statistical distribution at
larger frequencies is changed by the process of diffusion.
We wish to emphasize again that Eq. (23), as well as (21),
breaks down when o&)m.X', for in that case the accurate
impact distribution becomes important. It would then be
necessary to evaluate (18)~

The position 'of the maximum of (23) requires comment.
We state merely the results without discussing the work
involved: For co((~X the maximum vo increases with the
square of the relative density, as is clear without calcula-
tion. If cu »n-X2 the increase of vo is not strictly linear with

ni, as was found in example 1), but proportional to a power
of ni intermediate between the first and second. In this case
(co »m)P) ~0 is again far greater than —,'~P, the position of
the maximum of I'(r). As before, the transition region in
which the lower power changes into the second is defined by
co m) ~.

The results of this section are definitely
oversimplified. But before developing the theory
further it seems well to determine whether the

simple functions here derived (Eqs; (21) and
(23)) agree with observations in the pressure
range for which they are theoretically valid.
This pressure range depends, of course, upon
the gases used (cf. next section) since both &u

and X are functions of n, the parameter measuring
the strength of the interactions. For the purpose
of such comparison it would be necessary to
measure the entire line contour rather than shift
and half-width alone, as is customary. We regard
as significant the fact that the maximum of the
true distribution depends at small pressures
largely upon the impact width, and that the
position of this maximum moves toward longer
wave-lengths first nearly linearly with ni, at
higher pressures with ni2.

CI4. COMPARISON 0& RESULTS WITH EXPERIMENTS

The pressure shift of the line maximum is well
known to be nearly proportional to the relative
density of the perturbing gas. Fuchtbauer and
collaborators' have traced this linear law up to
pressures of 50 atmos. Their observations are
made on the 2537A-line of Hg. An essentially
similar behavior is shown by the D lines of Na"
up to relative density =10. ~

Recently, however, Watson and the author"
have extended their measurements on the shift
of the potassium resonance lines to relative
densities above 20 and found definite departures
from linearity in this region in qualitative
confirmation of the theory, the perturbing gas
being N~.

The difference in the behavior of Hg and K is
easily explained. The following is a list of the
values of cv and x)P(=4/9x3nPn) for 1 atmos.
of pressure, together with the 0.'s used in the
computation of )'. These n's are computed for
similar cases in reference 2, their numerical
values are not very accurate, but the ratio of
the two should not be greatly in error. The
values of co, the half-width at 1 atmos. , are
taken from experiment.

"C.Fuchtbauer, G. Joos and O. Dinkelacker, Ann. d.
Physik 71, 204 (1923).

"H, Margenau and W. W. Watson, Phys. Rev. 44, 92
(1933).

"W. W. Watson and H. Margcnag, Phys. Rev. 44, 748
(1933).
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Hg —N2

1.5 X10-» cm' sec.-'
8.3X10' sec. '
1.5X10' sec. '

K—N2
7X10-»cm6sec. I

13X10' sec. '
7X10' sec. '

TABLE I.

s PER IJNIT
RELATIVE
DENSITY

(X109sec. 1)

vo PER UNIT
RELATIVE
DENSITY

(&(109sec. 1)

Vt

VO

The statement previously made, that at pres-
sures of a few atmospheres ~))vr'A', and hence
the impact width dominates the position of the
maximum as well as the width of the line, is

thus seen to be true. Since co varies as n1, and X'

as e&', co becomes equal to mX' at about relative
density 55 for the case Hg —N2, at relative
density 19 for K—N2. It is therefore clear why
strong curvature in the shift curve should not
have been detected by Fuchtbauer and collabo-
rators, but should have revealed itself even at
lower pressures in the other experiments referred
to.

In the pressure effects of foreign gases upon
the D lines or the resonance lines of K, the
statistical intensity distribution impresses its
characteristics more and more markedly upon
the lines from 20 atmos. onward. At pressures
of:this magnitude I'(v) is already in error for
large v, but corrections can probably be applied
by single impact considerations.

As regards half-widths the theory, since it
incorporates all the features of impact broaden-

ing, must be in agreement with experiment
wherever the impact theories agree, that is at
low and medium pressures. This has been amply
tested. At higher pressures the width of the line
should increase according to the statistical
distribution, i.e. , like n1, the turning point being
as before co =~)'. This fact is also verified in the
experiments above considered.

The shift of the maximum is usually supposed
to be independent of the temperature. This is
true only for high pressures, when the statistical
distribution determines the shift. For the latter
depends on temperature only through the Boltz-
mann factor which we have here neglected, and
this dependence is slight. At low pressures the
maximum should exhibit much the same behavior
with respect to temperature variations as does
the impact width. This point has not been
experimentally tested.

It has Peen pointed out that ~ should be
about twice the shift of the maximum in cases
to which the theory applies. The actual half-

width v, is a little larger than (, being com-

Hg 2537 —A
Hg 2537 —N2
Hg 2537 —02
Na 5890—A
Na 5890—N,
K 7665 —N2
K 7699—N2
K 4044 —N2
K 4047 —N,

H, 2537 —CO,
Hg 2537 —H20
Hg 2537 —H2
Na 2537 —H2

9.66
8.26
7.86

17
11.7
13.2
13.2
33
33

13.1
10.6
12.36
19.5

3.73
3.73
3.69
6
5.2
6.2
6.55

16.5
19

3.2
2.34
1.97
4.5

2.6
2.2
2.13
2.84
2 ~ 25
2.13
2.0
2.0
1.75

4.1
4,5
6.3
4.3

I H. Margenau, Phys. Rev. 44, 931 (1933).

pounded from impact width and statistical
width. Ke expect therefore that the ratio of v~

to vp (shift of maximum) exceeds 2 somewhat.
Table I contains experimental values of v~ and

vp at 1 atmos. of pressure. The first column
indicates the spectral line investigated together
with the perturbing gas. The four cases below
the horizontal line should not follow the present
rule, as we shall see.

Both CO2 and H20 have complicated molecules
with permanent electric moments. Their inter-
action with the emitting atom calls into play
additional forces which have not been considered
in f1. These forces can extend the distribution
I'(v) to negative v, thereby increasing the width
and decreasing the shift. A similar situation
exists with regard to H2, although for a different
reason. H2 produces a large impact width through
the factor v& in co because of its lightness, which

explains its efficiency in broadening the line. But
the statistical distribution (7) is inadequate for
this case for reasons which have been discussed
in a previous communication. "It is there shown

in connection with simple examples (Fig. 2)
that, if one adds to ~v of Eq. (1) a range in

which Av is positive, the statistical distribution
becomes nearly symmetrical and the shift of the
maximum very small. Superposition of the
impact width then leads to an explanation of

. the anomalies shown by H2 in Table I.
Although the present treatment is restricted

to resonance lines since for high series lines
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Eq. (1) is not valid, the lines K 4044 and 4047
have been included in Table I. For higher series
lines, Av may have a large positive range, and
therefore I'(v) may contain appreciable "blue"
intensities. The present treatment is entirely
inadequate for dealing with the highest series
members of the alkali spectra, where the atom
in its excited state embraces thousands of
perturbers. '4

While this work was in progress there has
appeared a paper by Minkowski" in which the
intensity distribution of the D lines perturbed

'4 A theory pertaining to these effects has been given by
Fermi, Nuovo Cimento 11, 157 (1934)."R.Minkowski, Zeits, f. Physik 93, 731 (1935).

by small pressures of A is investigated and
compared with the results of Lenz' and Kuhn. '
The agreement is found satisfactory. The con-
siderations here presented do not convict with
these results in their respective ranges of validity
(cf. in particular the remarks on the limiting
form of Eq.' (18)), and hence are not in disagree-
ment with Minkowski's data. It is to be observed
that for his experiments, (7) represents the
accurate statistical distribution. Moreover,
&&xX'. If then the center of the line is completely
absorbed and measurements are conhned to its
wings,

~
v ~&&co&&s.X'. Under this condition I~ v '

on the blue side, I v & on the red side of the
line, as was found.
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The Effect of Crystalline Fields on the Magnetic Susceptibilities of 8m+++ and Eu+++,
and the Heat Capacity of 8m+++

AMELIA FRANK, Department of Physics, University of Wisconsin

(Received August 17, 1935)

The temperature variation of the paramagnetic sus-
ceptibility of Sm+++ is calculated on the assumption that
the ion is subject to a crystalline 6eld which can be repre-
sented by the potential

V= Zt D(~,4+y;4+.;4)+»;2+~y;2 —(a+~)~;2j

the cubic portion of this potential predominant. The
susceptibility is decreased by about 25 percent with respect
to that of the free ion at 74'K when the cubic potential is so
chosen as to give a separation of the J=5/2 levels of about
200 cm ' which is of the order indicated by Spedding's
work on the absorption spectrum of samarium compounds.
The theoretical values of the susceptibility are then in

satisfactory agreement with the experimental data of
Freed over a temperature range from 74'K to room
temperature. The rhombic portion of the 6eld separates
the lowest excited level, into two but the contribution to
the susceptibility is negligible if the rhombic separation
is small compared with the cubic separation. In striking
contrast with Sm+++, Eu behaves like the free ion even in
the presence of a crystalline 6eld. The contribution to the
heat capacity of Sm+++ at various temperatures due to the
excited levels is computed. When the levels which give
good agreement with susceptibility data are used, the
general shape of the curve is the same as that obtained
experimentally by Ahlberg and Freed but the theoretical
values are consistently lower than the experimental values.

THE EFFECT OF CRYSTALLINE FIELDS ON Sm+++

Introd, uction

Van Vleck' has pointed out in his treatment
of the paramagnetic susceptibilities in the rare
earth ions that Sm' and Eu are anomalous in
that some of the consecutive multiplet intervals
are only of the order of k T even though the

' J. H. Van Vleck, Theory of Electric and Magnetic
Susceptibilities, Chapter IX.

~ Here as well as throughout the rest of the paper, the
three plus signs are omitted. %henever the chemical
symbol Sm or Eu appears, it stands for the triply charged
samarium or europium ion.

overall multiplet widths are large. This makes it
necessary to consider the populations of levels
other than the ground state and also second
order Zeeman terms. The theoretical values thus
calculated were shown in a previous paper' to
give good agreement with experimental data on
liquids and solids over a wide temperature range
even though the theory is for the free ion. This
theory can be applied only when the distortion
by interatomic forces is negligible, that is, the
energy to "turn over" an ion against interatomic

' A. Frank, Phys. Rev. 39, 119 (1932).


