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The writers investigate the possibility of an atomistic
theory of matter and electricity which, while excluding
singularities of the field, makes use of no other variables
than the g, of the general relativity theory and the ¢, of
the Maxwell theory. By the consideration of a simple
example they are led to modify slightly the gravitational
equations which then admit regular solutions for the static
spherically symmetric case. These solutions involve the
mathematical represen'tation of physical space by a space
of two identical sheets, a particle being represented by a
“bridge” connecting these sheets. One is able to under-
stand why no neutral particles of negative mass are to be

found. The combined system of gravitational and electro-
magnetic equations are-treated similarly and lead to a
similar interpretation. The most natural elementary
charged particle is found to be one of zero mass. The many-
particle system is expected to be represented by a regular
solution of the field equations corresponding to a space of
two identical sheets joined by many bridges. In this case,
because of the absence of singularities, the field equations
determine both the field and the motion of the particles.
The many-particle problem, which would decide the value
of the theory, has not yet been treated.

N spite of its great success in various fields, the
present theoretical physics is still far from
being able to provide a unified foundation on
which the theoretical treatment of all phenomena
could be based. We have a general relativistic
theory of macroscopic phenomena, which how-
ever has hitherto been unable to account for the
atomic structure of matter and for quantum
effects, and we have a quantum theory, which is
able to account satisfactorily for a large number
of atomic and quantum phenomena but which by
its very nature is unsuited to the principle of
relativity. Under these circumstances it does not
seem superfluous to raise the question as to what
extent the method of general relativity provides
the possibility of accounting for atomic phenom-
ena. It is to such a possibility that we wish to
call attention in the present paper in spite of the
fact that we are not yet able to decide whether
this theory can account for quantum phenomena.
The publication of this theoretical method is
nevertheless justified, in our opinion, because it
provides a clear procedure, characterized by a
minimum of assumptions, the carrying out of
which has no other difficulties to overcome than
those of a mathematical nature.

The question with which we are concerned can
be put as follows: I's an atomistic theory of matter
and electricity conceivable which, while exclud-
ing singularities in the field, makes use of no
other field variables than those of the gravita-
tional field (g,,) and those of the electromagnetic
field in the sense of Maxwell (vector poten-
tials, ¢,)?

One would be inclined to answer this question
in the negative in view of the fact that the
Schwarzschild solution for the spherically sym-
metric static gravitational field and Reissner’s
extension of this solution to the case when ‘an
electrostatic field is also present each have a
singularity. Furthermore the last of the Maxwell
equations, which expresses the vanishing of the
divergence of the (contravariant) electrical field
density, appears to exclude in general the exis-
tence of charge densities, hence also of electrical
particles. ,

For these reasons writers have occasionally
noted the possibility that material particles might
be considered as singularities of the field. This
point of view, however, we cannot accept at all.
For a singularity brings so much arbitrariness
into the theory that it actually nullifies its laws.
A pretty confirmation of this was imparted in a
letter to one of the authors by L. Silberstein. As
is well known, Levi-Civita and Weyl have given
a general method for finding axially symmetric
static solutions of the gravitational equations.
By this method one can readily obtain a solution
which, except for two point singularities lying on
the axis of symmetry, is everywhere regular and
is Euclidean at infinity. Hence if one admitted
singularities as representing particles one would
have here a case of two particles not accelerated
by their gravitational interaction, which would
certainly be excluded physically. Every field
theory, in our opinion, must therefore adhere to
the fundamental principle that singularities of
the field are to be excluded.
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In the following we shall show that it is possible
to do this in a natural way, that the question we
are raising can be answered in the affirmative.

§1. A SpeciaL KIND OF SINGULARITY AND ITS
REMOVAL

The first step to the general theory of relativity
was to be found in the so-called ‘‘Principle of
Equivalence’: If in a space free from gravitation
a reference system is uniformly accelerated, the
reference system can be treated as being ‘‘at
rest,” provided one interprets the condition of
the space with respect to it as a homogeneous
gravitational field. As is well known the latter is
exactly described by the metric field!

ds*= —dx\*—dxe® —dxs?+ a’x 2dx . 1)
The g,, of this field satisfy in general the equations
Rigpm=0, (2)

and hence the equations
Rii=R"1m=0. 3)

The g,, corresponding to (1) are regular for all
finite points of space-time. Nevertheless one
cannot assert that Eqgs. (3) are satisfied by (1)
for all finite values of xi, + + -, x4. This is due to
the fact that the determinant g of the g,, vanishes
for x;=0. The contravariant g* therefore be-
come infinite and the tensors R, and Ry; take
on the form 0/0. From the standpoint of Egs. (3)
the hyperplane x;=0 then represents a singu-
larity of the field.

We now ask whether the field law of gravita-
tion (and later on the field law of gravitation and
electricity) could not be modified in a natural
way without essential change so that the solu-
tion (1) would satisfy the field equations for all
finite points, i.e., also for x;=0. W. Mayer has
called our attention to the fact that one can make
Riyy, and Ry, into rational functions of the g,
and their first two derivatives by multiplying
them by suitable powers of g. It is easy to show

1]t is worth pointing out that this metric field does not

represent the whole Minkowski space but only part of it.
Thus, the transformation that converts
dst= —dg—dg2—dg2+d5d
into (1) is
£1=x1 cosh axy,
£‘2 =X,

§s=us,
£4=1x1 sinh axy.

It follows that only those points for which #2=£. corre-
spond to points for which (1) is the metric.

that in g2R;; there is no longer any denominator.
If then we replace (3) by

Rip*=g?R;,=0, (3a)

this system of equations is satisfied by (1) at all
finite points. This amounts to introducing in place
of the g the cofactors [g, ] of the g, in g in
order to avoid the occurrence of denominators.
One is therefore operating with tensor densities
of a suitable weight instead of with tensors. In
this way one succeeds in avoiding singularities of
that special kind which is characterized by the
vanishing of g.

The solution (1) naturally has no deeper
physical significance insofar as it extends into
spatial infinity. It allows one to see however to
what extent the regularization of the hyper-
surfaces g=0 leads to a theoretical representa-
tion of matter, regarded from the standpoint of
the original theory. Thus, in the framework of
the original theory one has the gravitational
equations

Rik—%gw:R= — Ty (4)

where T is the tensor of mass or energy density.
To interpret (1) in the framework of this theory
we must approximate the line element by a
slightly different one which avoids the singularity
g=0. Accordingly we introduce a small constant
o and let

ds?= —dx\?*—dxe? —dxs?+ (a?x,2+0)dxs?;  (1a)

the smaller ¢(>0) is chosen, the nearer does this
gravitational field come to that of (1). If one
calculates from this the (fictitious) energy
tensor I';; one obtains as nonvanishing com-
ponents

Te=Tu=a’/d/(1+a’?/q)

We see then that the smaller one takes ¢ the
more is the tensor concentrated in the neighbor-
hood of the hypersurface x;=0. From the stand-
point of the original theory the solution (1)
contains a singularity which corresponds to an
energy or mass concentrated in the surface x;=0;
from the standpoint of the modified theory, how-
ever, (1) is a solution of (3a), free from singulari-
ties, which describes the ‘‘field-producing mass,”
without requiring for this the introduction of
any new field quantities.



PARTICLE PROBLEM

It is clear that all equations of the absolute
differential calculus can be written in a form free
from denominators, whereby the tensors are re-
placed by tensor densities of suitable weight.

It is to be noted that in the case of the solution
(1) the whole field consists of two equal halves,
separated by the surface of symmetry x,;=0,
such that for the corresponding points (x1, xs, X3,
x4) and (—x1, x2, X3, x4) the gir are equal. As a
result we find that, although we are permitting
the determinant g to take on the value 0 (for
x1=0), no change of sign of g and in general no
change in the “inertial index” of the quadratic
form (1) occurs. These features are of funda-
mental importance from the point of view of the
physical interpretation, and will be encountered
again in the solutions to be considered later.

§2. THE SCHWARZSCHILD SOLUTION

As is well known, Schwarzschild found the
spherically symmetric static solution of the gravi-
tational equations

——dr*—r*(d0+sin®0de?)
1—2m/r
+(1—2m/r)de?, (5)

(r>2m, 6 from 0 to 7, ¢ from O to 27); the vari-
ables x1, x2, x3, x4 are here 7, 0, ¢, t. The vanishing
of the determinant of the g, for §=0 is unim-
portant, since the corresponding (spatial) direc-
tion is not preferred. On the other hand gy, for
r=2m becomes infinite and hence we have there
a singularity.

If one introduces in place of » a new variable
according to the equation

dst= —

ul=r—2m,
one obtains for ds? the expression
ds?*= —4(u+2m)du?
— (u?+2m)2(d6%+sin?0d ¢?) +—

u:+2m

un?

dt®.  (5a)
These new g,, are regular functions for all values
of the variables. For # =0, however, g4s vanishes,
hence also the determinant g. This does not pre-
vent the field equations (3a), which have no
denominators, from being satisfied for all values
of the independent variables. We are therefore
dealing with a solution of the (new) field equa-
tions, which is free from singularities for all finite
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points. The hypersurface #=0 (or in the original
variables, 7= 2m) plays here the same role as the
hypersurface x;=0 in the previous example.

As u varies from — o to -+ «©, 7 varies from
+ © to 2m and then again from 2m to + «.
If one tries to interpret the regular solution (5a)
in the space of 7, 6, ¢, ¢, one arrives at the follow-
ing conclusion. The four-dimensional space is
described mathematically by two congruent
parts or ‘‘sheets,” corresponding to #>0 and
# <0, which are joined by a hyperplane 7= 2m or
#=0 in which g vanishes.? We call such a con-
nection between the two sheets a “‘bridge.”

We see now in the given solution, free from
singularities, the mathematical representation of
an elementary particle (neutron or neutrino).
Characteristic of the theory we are presenting is
the description of space by means of two sheets.
A bridge, spatially finite, which connects these
sheets characterizes the presence of an electrically
neutral elementary particle. With this concep-
tion one not only obtains the representation of an
elementary particle by using only the field
equations, that is, without introducing new field
quantities to describe the density of matter; one
is also able to understand the atomistic character
of matter as well as the fact that there can be no
particles of negative mass. The latter is made clear
by the following considerations. If we had started
from a Schwarzschild solution with negative m,
we should not have been able to make the solu-
tion regular by introducing a new variable %
instead of 7; that is to say, no ‘‘bridge”’ is possible
that corresponds to a particle of negative mass.

If we consider once more the solution (1) from
the standpoint of the information we have ac-
quired from the Schwarzschild solution, we see
that there also the two congruent halves of the
space for x;>0 and x; <0 can be interpreted as
two sheets each corresponding to the same phys-
ical space. In this sense the example represents
a gravitational field, independent of x, and w3,
which ends in a plane covered with mass and
forming a boundary of the space. In this example,
as well as in the Schwarzschild case, a solution
free from singularities at all finite points is made
possible by the introduction of the modified
gravitational Egs. (3a).

?Because of the symmetry about the hypersurface
£=0, the sign of g does not change at this hypersurface.
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The main value of the considerations we are
presenting consists in that they point the way to a
satisfactory treatment of gravitational mechan-
ics. One of the imperfections of the original rela-
tivistic theory of gravitation was that as a field
theory it was not complete; it introduced the
independent postulate that the law of motion of a
particle is given by the equation of the geodesic.?
A complete field theory knows only fields and not
the concepts of particle and motion. For these
must not exist independently of the field but are
to be treated as part of it. On the basis of the
description of a particle without singularity one
has the possibility of a logically more satisfactory
treatment of the combined problem: The problem
of the field and that of motion coincide.

If several particles are present, this case corre-
sponds to finding a solution without singularities
of the modified Eqgs. (3a), the solution represent-
ing a space with two congruent sheets connected
by several discrete ‘‘bridges.” Every such solu-
tion is at the same time a solution of the field
problem and of the motion problem.

In this case it will not be possible to describe
the whole field by means of a single coordinate
system without introducing singularities. The
simplest procedure appears to be to choose co-
ordinate systems in the following way:

(1) One coordinate system to describe one of
the congruent sheets. With respect to this system
the field will appear to be singular at every bridge.

(2) One coordinate system for every bridge,
to provide a description of the field at the bridge
and in the neighborhood of the latter, which is
free from singularities.

Between the coordinates of the sheet system
and those of each bridge system there must exist
outside of the hypersurfaces g=0, a regular co-
ordinate transformation with nonvanishing de-
terminant.

§3. CoMBINED FIELD. ELECTRICITY

The simplest method of fitting electricity into
the conceptual framework of the general theory
of relativity is based on the following train of

3 To be sure, this weakness was formally avoided in the
original theory of relativity by the introduction of the
energy tensor into the field equations. It was clear, how-
ever, from the very beginning that this was only a pro-
visory completion of the theory in the sense of a phe-
nomenological interpretation.

thoughts. If besides the pure gravitational field
other field variables are also present, the field
equations of gravitation are

Rik—%gikR= "Tiky (4)

where T’ is the “material” energy tensor, i.e.,
that part of the mathematical expression of the
energy which does not depend exclusively on the
2. In the case of the phenomenological represen-
tation of matter—if it is to be considered as
“dust-like,” that is, without pressure—one takes

Tk = p(dx?/ds)(dx*/ds),

where p is the density-scalar, dx?/ds the velocity-
vector of the matter. It is to be noted that 7' is
accordingly a positive quantity.

In general the additional field-variables satisfy
such differential equations that, in consequence
of them, the divergence T ;. »g*™ vanishes. As
the divergence of the left side of (4) vanishes
identically, this means that among all the field
equations those four identities exist which are
needed for their compatibility. Through this con-
dition, in certain cases, the structure of T i, not
however its sign, is determined. It appears
natural to choose this sign in such a way that
the component 7' (in the limit of the special
relativity theory) is always positive.

The Maxwell electromagnetic field, as is well
known, is represented by the antisymmetric
field tensor ¢,,(=0d¢,./0x” —de,/dx*), which satis-
fies the field equations

@ur; 087 =0. (6)

These equations have the well-known conse-
quence that the divergence of the tensor

Ti=58ik0ap0®® — iapr® (7

vanishes. The sign has been so chosen that 74* is
positive for the case of the special relativity
theory. If one puts this T';;, into the gravitational
Eqgs. (4), then the latter together with (6) and
(7) form a theory of gravitation and electricity.

It so happens that we are forced to put the
negative of the above into the gravitational equa-
tions if it is to be possible to obtain static spher-
ically symmetric solutions of the equations, free
from singularities, which could represent elec-
trical particles. Making this change of sign one
finds as the required solution
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1

ds?= — e

1—2m/r—e*/27%

dr?

r(8)

2m €
—72(d6?+sin20d ) + (1 *——“—)d52~
r  2r J

Here m has obviously the significance of a
gravitating mass, e that of an electrical charge.
It turns out that also in this case there is no
difficulty in forming a solution without singu-
larity corresponding to the solution just given.t
Curiously enough, one finds that the mass m is
not determined by the electrical charge ¢, but
that e and m are independent constants of inte-
gration. It also turns out that for the removal of
« the singularity it is not necessary to take the
ponderable mass m positive. In fact, as we.shall
show immediately, there exists a solution free
from singularities for which the mass constant m
vanishes. Because we believe that these massless
solutions are the physically important ones we
will consider here the case m=0.
The field equations without denominators can
be written

Puv = Pu,v— Po,py gz‘PpV;agw= 0,

9
G (Rirt @iapr®—igiteapp®®) =0,

where in the last equation the term in R has been
omitted because it vanishes in consequence of
(7), by which T,* is zero.

If in Eq. (8) (with m=0) one replaces 7 by the
variable # according to the equation

ur=r2— /2

one obtains

pa=¢/(u*+<*/2)4,
dst= —du?— (u*+¢*/2) (d0>+sin%0d¢?)
H[2u2/ (2u?+¢2) Jds2.

p1=p2=p3=0,

J' (8a)

This solution is free from singularities for all
finite points in the space of two sheets and the
charge is again represented by a bridge between
the sheets. It is the representation of an elemen-
tary electrical particle without mass.

¢If we had taken the usual sign for Tj, the solution
would involve +e¢ instead of —¢2. [t would then not be possi-
ble, by making a coordinate transformation, to obtain a solu-
tion free from singularities.
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§4. SUMMARY AND GENERAL REMARKS

If one solves the equations of the general
theory of relativity for the static spherically
symmetric case, with or without an electrostatic
field, one finds that singularities occur in the
solutions. If one modifies the equations in an
unessential manner so as to make them free from
denominators, regular solutions can be obtained,
provided one treats the physical space as consist-
ing of two congruent sheets. The neutral, as well
as the electrical, particle is a portion of space
connecting the two sheets (bridge). In the hyper-
surfaces of contact of the two sheets the deter-
minant of the g,, vanishes.

One might expect that processes in which
several elementary particles take part correspond
to regular solutions of the field equations with
several bridges between the two equivalent
sheets corresponding to the physical space. Only
by investigations of these solutions will one be
able to determine the extent to which the theory
accounts for the facts. For the present one cannot
even know whether regular solutions with more
than one bridge exist at all.

It appears that the most natural electrical
particle in the theory is one without gravitating
mass. One is therefore led, according to this
theory, to consider the electron or proton as a
two-bridge problem.

In favor of the theory one can say that it ex-
plains the atomistic character of matter as well
as the circumstance that there exist no negative
neutral masses, that it introduces no new vari-
ables other than the g,, and ¢,, and that in prin-
ciple it can claim to be complete (or closed). On
the other hand one does not see a priort whether
the theory contains the quantum phenomena.
Nevertheless one should not exclude a priori the
possibility that the theory may contain them.
Thus it might turn out that only such regular
many-bridge solutions can exist for which the

“‘charges” of the electrical bridges are numeri-

cally equal to one another and only two different
“masses’’ occur for the mass bridges, and for which
the stationary ‘‘motions’ are subject to restric-

‘tions like those which we encounter in the quan-

tum theory.

In any case here is a possibility for a general
relativistic theory of matter which is logically
completely satisfying and which contains no new
hypothetical elements.



