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Energy Bands in Copper*

HARRv M. KRUTTER, Massachusetts Institute of Technology

(Received July 19, 1935)

The general method of obtaining energy bands and wave functions for a face-centered lattice
has been outlined. The method has been applied to a copper lattice using a corrected Hartree
potential field. The energy bands as a function of the internuclear distance have been calcu-
lated. The strong overlapping of the 3d band and the 4s band is shown. The assignment of
electrons to the lowest energy bands leads to a satisfactory explanation of the well-known fact
that copper is a good conductor. The various energy bands of the three directions 100, 110
and 111 have been correlated.

IGNER and Seitz' recently introduced
the cellular method and applied it to the

calculation of the lowest energy state of the con-
ducting electron in a sodium lattice and to the
corresponding wave function. Slater' ' extended
their ideas to the calculation of higher energy
states and wave functions in a body-centered
lattice and, in particular, to the higher states of
sodium. In this report, the ideas of Wigner,
Seitz, and Slater will be extended to a face-
centered lattice, in particular to copper.

Wigner and Seitz observed that the potential
field acting on an electron in a metal is very
approximately spherically symmetric in the
neighborhood of a nucleus, so that the Schro-
dinger equation can be solved by the separation
of variables, and numerical integration of the
equation for the radial function, as in problems
of isolated atoms. They then imagined the
crystal to be made up of close-packed cells, one
surrounding each nucleus, approximating spheres,
but bounded by planes so that they fill all space.
If the Schrodinger equation is solved for the
electron in one of these cells, subject to certain
boundary conditions, then the wave function for
the whole lattice can be obtained.

To form the cell for an atom in a face-centered
lattice, construct planes which perpendicularly
bisect the lines drawn from the nucleus in con-
sideration to its twelve nearest neighbors. The
resulting polyhedral cell is a rhombic dodeca-
hedron, as shown in Fig. 1. Each of the twelve

*A preliminary report of these results is given in an
abstract, Krutter, Phys. Rev. 47, 810 (1935).

' Wigner and Seitz, Phys. Rev. 43, 804 (1933).' Slater, Phys. Rev. 45, 794 (1934).
3 Slater, Rev. Mod, Phys. 0, 209 (1934).

faces is a rhombus, and the midpoints of all of
the faces are at the same distance from the
center.

To solve the Schrodinger equation exactly for
the lattice, assuming that the correct potential
is given, the procedure would be the following
one. The wave equation is solved within the cell,
subject to the boundary conditions that the wave
function and its normal derivative be continuous
in passing across the faces of the cell and satisfy
the Bloch4 condition in passing from one cell to
another.

As the exact solution of this problem is im-

practical at present, it is necessary to proceed by
satisfying these conditions approximately. The
method actually used. will be to solve the
Schrodinger equation within the cell, requiring

FIG. 1. Polyhedral cell for a face-centered lattice.

4 For discussion, see Sommerfeld and Bethe, "Electronen
theoric der Metalle, "Handbuck der Physik, Vol. 24, second
edition.
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continuity of the wave function and its normal
derivative Rt the midpoints of the fRces of the
cell and taking into account the Bloch condition.
In a face-centered lattice, this means fitting
boundary conditions at twelve points, all at the
same distance from the nucleus.

SEcTIoN 1.. STATEMENT oF BovNDARv

.CONDITIONS

The distance between an atom and a nearest
neighbor is also the perpendicular distance
between opposite faces of the cell. Accordingly,
the boundary condition is that in going from a
point on one of the faces of the cell to a perpen-
dicularly opposite point on the opposite face, the
wave function is multiplied by e"" where ~rl

represents the perpendicular distance between
faces. The normal derivative is multiplied by
—e'~ " in the same process.

U, the wave function, can be split up into an
even part U, and an odd part U . U, is un-

changed on going from one point to a diametri-
cally opposite point, whereas U changes sign in
this process. It is. convenient to write U in the
form U = Ug+i V„. Then if the function is

U, +i U„at the midpoint of one face, it is

V, —iV„at the opposite point. Likewise, if the
normal derivative is V,'+i U„' at the midpoint
of one face, then it is U, ' —z V„' at the other. It
should be noticed that in the case of midpoints,
perpendicularly opposite and diametrically op-
posite denote the same thing.

More explicitly the boundary conditions are:

U, +f,U =e'" "(U„s'U„),—

U, '+iU, '= —e'"'"(U„'—iU '),

where the U's are computed at the midpoints of
the faces. There are six such pairs of conditions
for the six pairs of opposite faces. If the terms
U„, U ', U„U,' are combined, these equations
reduce very conveniently to

—Ug'/ U„' = U„/U, = tan (0 r/2)

Six pairs of equations of this sort give in all
twelve equations to be satisfied.

To satisfy these conditions at the midpoints,
it is necessary to build up V, as a sum of six
independent functions Rnd slmllRI ly six inde-
pendent functions for V„.Now this could be done
by the use of any number of spherical harmonics,
but we select only the twelve lowest spherical
harmonics which should reproduce most cor-
rectly the energy bands originating from s, p
and d levels in the atomic case. The f band will

probably not be obtained correctly, since we
are not using all of the f functions. The func-
tions which are chosen are: (1) an s function;
(2) three p functions with spherical harmonics
x/r; y/r, s/r; (3) the Ave d functions with spheri-
cal harmonics xy/r', ys/r', sx/r', (»' —r')/r',
(x' —y')/r', and (4) only three of the seven possi-
ble f functions, naively, x(y' —s')/r' y(x' s')/r'—
s(x' y') /r'. —

Let R=r/2 be the distance from the nucleus
to the midpoint where the boundary COQdltlons

are to be satisfied. This distance is the same for
all midpoints in a face-centered lattice, i.e. , all
the faces are at the same distance from the
nucleus. Ke denote the radial part of the wave
functions by s, p, d and f The wav. e function
built up in this manner is U= Ug+i V„, where

U, =A s+2[Bxy+ Cs(y x) +Ds(x+ y) +—E(3s' r') +F(x' y') ]d/—r', —
U. =v2[G(x+y)+H(x —y)+Is]P/r+2v2[Qs(x' —3')+~Ix(3' —s')+3 (x' —s') I

+ T'I x(y' s') y(x' —s') I
—]fj",—

x', y, s are the Cartesian coordinates, and x'+y'+s~= r2.

Boundary conditions are to be satisfied at the midpoints corresponding to values of v2(x/R),
v2(y/R), &2(s/R) equal to 110, 1—10, 101, 10-1, 011, 01—1. The corresponding values of tan (k R)
are denoted by X, L„M, X, 0, 8 where %=tan (fr,,+k„)R/V2, I-=tan (0, k „)R/42, etc. — .

The twelve equations obtained from the boundary conditions are;

X[As+(8 —2E)d] 2[Gp+Sf] =0-,
L[Ae (B+2E)d] 2[Hp—+Tf]=�, —

0&V[As+(

—C+D+E+ F)d] [(G+H+I)p+ (Q—5 T)f]= 0, — —

(1)
(2)
(3)
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%[As+ (C D—+E+F)d] —[(G+H I—)P (—Q+S+ T)f]= 0,
O[As+(C+D+E F-)d] L—(G H—+I)P+( Q-S-+T)f]=o
P[As+ ( —C D+—E—F)d] —[(G H —I)p—+(Q —S+T)f]=0,

As'+ (B—2E)d'+2K[Gp'+Sf'] = 0,
As' —(B+2E)d +2L[IIP +Tf ]=0
As'+ ( —C+D+E+ F)d'+M[(G+II+I) p'+ (Q —S—T)f'] =0,
As'+ (C D+—E+F)d'+N[(G+H I)p'—+(—Q —S—T)f']= 0,
As'+ (C+D+.E—F)d'+O[(G II+—I)p'+ (—Q —S+T)f'] = 0,
As'+ ( —C D+E—F)d'+—P[(G II —I)p'—+(Q S+—T)f'] = 0.

(4)
(5)
(6)
(7)
(8)
(9)

(10)
(»)
(12)

There are twelve simultaneous linear homo-
geneous equations for the twelve coefficients A,
8, . T and, as such, they have nonvanishing
solutions only when the determinant of the coef-
ficients is zero. This gives a single relation be-
tween the six quantities X, L, M, N, 0 and P
in terms of s, s', p, etc. , which are obtained from
numerical integration of the Schrodinger equa-
tion. Other relations arise because of the fact
that they are derived from only three inde-
pendent quantities, the three components of k

(k„k„, k,). If a definite energy and a definite R
are chosen, then the values s, p, d and f at the
midpoints are fixed. So, if two variables deter-
mining the direction of k are arbitrarily assumed,
then for each energy, internuclear distance, and
wave normal, these equations will determine the
electronic momentum k.

The task is then to look for solutions for which
X, L„M, N, 0, P are real, or, in other words, for
real values of k, , k„, k, ~ Complex values of k

would correspond to damped waves in which we
are not interested. The regions of energy and
internuclear distance where this condition is
satisfied will then correspond to the allowed
energy bands. Complex values of k will then
correspond to forbidden bands.

SECTION 2. SOLUTIONS OF THE EQUATIONS

If we consider propagation in the xy plane,
i.e. , k, = 0, the equations split up into two sets,
one containing four equations and the other con-
taining eight equations. The four equation set
contains only the constants C, D, I, Q and the
corresponding wave function changes sign on re-
flection through the xy plane. The set of eight
equations contains the remaining eight constants,
and its corresponding wave function is unchanged
on reflection through the xy plane. These two

d1

0
3fd
0

0 Mp'
d/ Ppr
0 —p

Pd —p

Mf'
Pf'—=0f-f—

Solving this, the relation

1 d' r P f&, 1 d' r P f iM'+ —
(
—+ f-P'+ —

/

-—+-
2 d Ep' f'), 2 d Ep' f'J

f& '

2 d &p' f')
is obtained.

This equation can be solved for any direction
in the k, =0 plane, so that the electronic mo-
mentum can be obtained as a function of the
energy. The mechanics of this type of calculation
have been given in detail by Slater' and will
therefore not be repeated.

sets of equations can in principle be solved
separately. But, for all twelve coefficients to be
different from zero demands that the deter-
minant of each of the two sets of equations be
zero. This, however, gives one more condition
than before. As a result, the equation must be
satisfied by letting the coeScients of one of the
two sets be zero and satisfying the determinantal
equations connected with the other set.

Set I
Let us consider the first set of equations in

which C, D, I, QW0 and all the other coefficients
are zero.

(—C+D)d'+M[Ip'+Qf'] =0,
(C+D)d'+PI Ip' Qf'] =o—,

M( —C+D)d (Ip+Qf) =—0,
P'C+D)d (, Ip Qf)—= o. —

C+D and D —C are chosen as new constants.
The determinantal equation then becomes
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In the special directions 100 and 110 these
equations break down into even simpler ones.

100 direction, P =0=0.
Class I: C =D; all other coefficients are zero.

We obtain the condition d =0. This is a so-called
zero width band. In this particular direction, for
the energy for which d' =0, the electron can have
any value of k. The wave function which fits the
boundary conditions is then U=Dyzd/r'.

Class II: C = D; I,—Q, C, D &0; all other coef-
ficients are zero. The condition

Class II: C= Q= 0. The relation is

M' = —pd'/p'd

with the wave function

Set II

U= 2Dz(x+y)d/r'+iV2I(z/r) p

Although it is possible to solve set I for any
direction in the k, =0 plane, the set of eight
equations cannot be solved as easily. However,
they can be solved in the particular directions
100 and 11.0. Since this process is simply algebraic
manipulation, only the results will be recorded.

100 direction.
Class III: B/0, G= —II, S= —T; all other

coefficients are zero.

K' = (2pd'f/p'df'—) /(pl p'+flf'),
U= Bxydlr'+i {v2Gyp/r+2&2Sy(x' z')f/r' I . —

Class IV: S= T, F=8; all other coefficients are
zero.

K' = d'f/df', —
U =E(z' y') d /r'+i v2Sx(y—' z')f/r'. —

Class V: 3Z =' —F, G =H; all other coefficients
except A are zero.

K' = —(3s'pd'/Sp'd)/(s'/s+d'/d),
U =A s+ 2E(y'+ z' 2x') d/r'+i2v2G—xP/r

K' = (2d'Pf—ld p'f') l (p/P'+flf')

is obtained with the corresponding wave function

U =4Dxzd/r'+i {V2I(z/r) p+ 2v2Qz(x' y')f/r—') .

110 direction, M =P.,
Class I: D = I=0. The relation M'= d'f/d—f'

is obtained with a corresponding wave function

U = C(y x)zd—/r'+i v2Qz(x' y') f/—r'

110direction. The 110 direction simplifies con-
siderably, but not so completely as the 100 direc-
tion. The eight equation set breaks up into two
groups.

Class III: II, F, T/0; all other coefficients
are zero.

M' = (2P—d'f/p'df') /(p/p'+flf')
U= 2F(x' y—')d/r'

+i {v2H(x y) p/—r+ 2%2T(y x) (z'—+xy)f/r' I .

Classes IV and V will be discussed more com-
pletely since they are more complicated. Al-
though we will give only one set of equations, it
turns out that there are two cases contained in
it. Since M =P in the 110 direction, our original
eight equations now become five after splitting
off Class III. In this set only A, 8, E, G and S
are different from zero. The equations reduce to

As'+( B—2E)d'=—0,
K{ A s+ (B—2E)d] —2 (Gp+ Sf) =0,

M{ As+Ed] —(Gp Sf) =0-,
As'+(B —2E)d'+2K(Gp'+Sf') =0,

As'+Ed'+ M(Gp' —Sf') =0,

The determinantal equation of this is

S

$
s' 0

Xs Xd
Ms 0

—2d
—2d

d/

—2Xd
3IId

0 0
2KP' 2Kf'
Mp' —Mf' =0.

—2P 2f-
p f

This equation is to be solved in conjunction
with the relation K=2M/(1 —M'). This is best
done graphically as follows: X is plotted as a func-
tion of M using the equation K = 2M/(1 —M').
The biquadratic equation is then plotted. The
intersections of these two curves determine the
allowed X and M values, which in turn define k.
This is repeated for various energies, which
means different coefficients for the biquadratic in
K and M since the values of s, s', p, p', etc.
depend on the energy.

Solving this, the following equation is obtained:

2K'M'p'df'(5sd'+ s'd)
+K'd'(pf'+ p'f) (Ss'd+sd')
+4KMd'(pf' p'f) (s'd sd—')—

+2M'd'(Pf'+P'f) (2sd'+s'd)+12s'Pd' f= 0.
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while

d' = zero (zero width band),

U= C(y —x) (s —x —y)d/r'.

Class II: 8 = —2D, D =E, 2G= —I; all other
coefficients except 5 are zero.

&' = —(4pd'f/p'df) l (3p/ p'+flf')
U= 2D(3z' —r'+s(x+y) —2xy)d/r'

+i I v2G(x+y 2z)—plr
+ 2V2S [x(y' s') + y (x' —s') ] fir' I .—

Class III: Q= 2T, C=——F; all other coef-
ficients except II are zero

(4pd'f/p—'df') /(3p/p'+flf')
U= 2C(y —x) (x+y+s)d/r'

+.i I V2FI(x y)P/r—
+2%2 T(y x) (z'+ xy+—2z(x+ y))f/r' }.

Class IV: D= —8, B=—2D; all other coef-
ficients are zero. d'=zero, while

U =D(r' 3z'+z(x+y) —2xy) d/r'—
Class V: 8 =D, G = I; all other coefficients

except A are zero.

X' = —(2s'pd'/sp'd) /(s'/s+d'/d),
U= As+28(xy+xs+ys) d/r'

+iv2G(x+y+s) p/r

Class VI: Q = T; all other coefficients are zero.
f =zero.

U iQ I s(x'=y') +x(—y' z') —y (—x' —s') }f/r'

Although the twelve equations have been
solved for these special cases, it turns out to be
simpler, especially for the 100 direction and the
111 direction, to set up our original equations to
take into account the symmetry properties of
these special directions. Solving with the sym-
metry property gives very good clues as to how
the classes in the various directions are con-
nected to one another.

111 direction

K=M=0; L=N =P =zero. 1t is also possible
to treat the original twelve equations for an
electron moving in the 111 direction. The equa-
tions break down into six groups; the results of
the algebraic manipulation are recorded below.

Class I: C=F; all other coefficients are zero.

SEC+OX 3. AVVUCATION 'tO COVPER LATTICE

Everything, thus far, is applicable to any face-
centered lattice. However, to proceed further,
it is necessary to confine the discussion to a
particular metal. Then given a potential field,
it is possible to calculate s, p, d and f, and so be
able to determine how the energy varies as a
function of k.

In obtaining radial solutions of the Schrodinger
equation for a free atom, it is necessary to fin
solutions which remain finite at infinity. How-
ever, in the cellular method, any solution can be
used, since only the wave function as far as the
cell boundaries is used. The wave function is
continued in the next cell in accordance with the
Bloch theorem.

Since the correct potential is unknown in the
case of copper, it is necessary to take as an
approximation a potential field having the
correct general characteristics. As a first approx-
imation to the potential field, it seemed advisable
to use the Cu+ field of Hartree. ' This should be
accurate enough to give a general idea of the
manner in which the atomic 4s, 4p, and higher
levels spread into energy bands as the lattice is
compressed. In studying the splitting up of the
3d level, a slight correction was made. The 4s
wave function in the field of Cu+ was calculated,
and its contribution to the potential field was
determined. The contribution was added to Cu+
and the contribution of one of the 3d electrons,
as given by Hartree, was subtracted. This was
the potential field used in the calculation of the
3d wave functions in the lattice. It is essentially
the potential field due to the nucleus and to the
1s' 3d'4s electrons.

Using the potential field discussed, the wave
functions were calculated by numerical integra-
tion for a set of energy values. In Fig. 2 the
energy is plotted as a function of internuclear
distance for s'=0, s=0, p'=0, etc. To discuss
the energy bands, it is really necessary to plot
different sets of energy versus internuclear
distance curves for different directions of k. The
broad features can, however, be discussed by
means of this diagram. The 4s level at infinite
separation spreads into a band, limited by s' = 0
and s=0 as the lattice is compressed. As the

'Hartree, Proc. Roy. Soc. A141, 282 (j.933); A143, 506
(1934).
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3d

.0-

.4

.6- 3d

,8—

lattice is compressed still further, the 3d band,
limited by d' = 0 and d = 0, overlaps the 4s band,
so that at normal separation, denoted by the
vertical line in Fig. 2, the 3d band and the 4s
band overlap considerably. Although the normal
configuration of the free copper atom is 3d"4s,
as the lattice is compressed the electrons can no
longer be described by s or d wave functions, but
instead it is necessary to build up the wave
function by a combination of s and d wave
functions with also a little p a,nd f

Higher energy bands arising from higher
energy atomic levels, overlap in a very compli-
cated fashion. But the approximations used in
setting up the problem are not good enough to
allow the discussion of the higher bands, even
qualitatively. The discussion, will therefore be
restricted to the lower energy bands.

The minimum of the 4s' = 0 curve is at r = 2.7.
This is in good agreement with the values of the
actual effective internuclear distance obtained
in the following manner. If the volume occupied
by a copper atom in the actual lattice of spacing
3.61 Angstroms is calculated and from it the
radius of the sphere having the same volume,
then the radius obtained is 2.66 atomic units.
The good agreement must mean that the
minimum of the total energy curve must be tied
up intimately with the minimum of the 4s'=0
curve. Wigner and Seitz have pointed out the
close connection in the case of sodium, The cor-
relation in copper is not as clear.

The unhatched regions at large internuclear
distance represent forbidden energy bands inde-
pendent of the direction of k. These correspond

7 R

FIG. 2. Energy as a function of internuclear distance.
(Energy measured in Rydberg units. )

P=0

I

.2

I f+$.-0

FIG. 3. Energy as a function of momentum for an electron
moving in 100 direction. (8=2,6.)

to the well-known energy gaps in atomic levels.
As the lattice is compressed to the actual inter-
nuclear distance, the energy gaps depend on
the direction of k and are consequently not
represented in this diagram.

More information can be obtained if the de-
pendence of k on the energy is discussed. To do
this, it is convenient to discuss a momentum
space, in which certain zones are formed. If the
energy contours are plotted in this space, the gaps
in energy come at the boundary of the zones.
For a detailed discussion of this, the reader is
referred to Slater. ' It is more convenient in the
case of copper to cut through this zone along
three particular lines. These are the 100, 110
and 111 directions. Quantitative calculations
can be carried out only in the 100, 110 and 111
directions. But these are sufficient to give a
general idea of all directions. The first problem
that arises is that of accounting for the eleven
electrons of the 3d"4s normal configuration,
when the lattice is compressed. This can be
done if the energy versus k curves are studied.
In Fig. 3, the energy is plotted as a function of
k at R =2.6 for propagation in the 100 direction.
Class V, for this direction, splits into two parts,
so that for the range of energy shown, there are
six different energy versus k curves. The vertical
line denotes the boundary of the first momentum
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;~2~=a5 d

.2

I

I,
P=o

.0
4-

d=o

.2
.6—

4=0

.8-
I

k

Fzo. 5. Energy as a function of momentum for an electron
moving in 111 direction, (R =2.6.)

.6

.e-
8=0
- &2--05
S

.2 4 .6 .8 l.0 l.2 k

Vro. 4. Energy as a function of momentum for an electron
moving in 110 direction. (2=2.C.)

zone. The diagram is repeated continuously as
the value of k is increased. For higher energies
there will be other bands, but these cannot be
calculated accurately with the method used thus
far.

Now the electrons will fill the bands, first filling
the lower ones. Two electrons (degeneracy in

spin) are assigned to each band. This leaves the
Class V top band only half filled, so that there
are 10 electrons filling 5 bands completely. The
eleventh electron is in an unfilled band. This
electron will play an important part in dis-

cussions on conductivity. Electrons in unfilled
bands are the conduction electrons. Noncon-
ductors have all filled bands.

In Figs. 4 and 5, the energy as a function of k

at A=2.6 is plotted for propagation in the 110
and 111 directions. The vertical lines denoting
the edge of the zone come at different values of
k in each different direction. The assignment of
electrons again leaves the bands denoted by
Class V only half filled. And again, the Class V
band is split in two. This indicates that the
bands denoted by Class V in the three directions
100, 110 and 111 are slices of the same band.

The next point of interest is the correspondence
between the energy versus k curve of the con-

ducting electron and the free electron parabola
e=k' in atomic units. In the 100 direction (see

Fig. 3) the correspondence is very good. In Fig.
6, the top Class V bands are plotted on the same

scale for the different directions. It is seen that
the slope of the various energy versus k curves

agree closely with the slope of the free electron

TABLE I.

CLASS

I
II

III
IV
V

100

d'=0
&' = —2Pd'fld(Pf'+fP')
&' = —2pd'f/d(pf'+f p')
X' = —d'f/df'
X' = —3s'pd'/p'(ds'+ 2d's)

110

3P = —d'f/df'
M' = —pd'/p'd~' = —pd'f!d(Pf'+fP')

See Graph
See Graph

d'=0
E' = —4pd'f/d (3pf '+fp')
&' = —4pd'f/d(3pf'+f p')
d'=0

X' = —2s'pd'/p'(s'd+ sd')
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.2

.5

.7

I
IT

Q2 R

FIG. 7. Energy contours of Class V, k, =0 and R = 2.6.
in the first zone of momentum space.

.2 .4 .6

FIG. 6. Comparison of energy versus momentum curves
for Class V. (I&=2.6.)

curve for values of k corresponding to a half
filled first momentum zone.

In Fig. 7, the energy contours for the con-
duction electron have been plotted in the k, = 0
section of the first zone. If the electron were

exactly free electron-like, the contours would be
exactly circles. For small values of k, the curves
are decidedly not free electron curves. However,
for larger values of k, the contours approximate
circles.

The real part of the wave function for an
electron moving in the 100 direction as seen by
cutting through in the 110 direction was plotted
for k = 0.596 with R = 2.6 for the distance
between atoms. The correspondence between
this curve and the real part of the e"~ of a free
electron, i.e. , cos (k r), was found to be satis-
factory. This concludes the various checks of the
free electron behavior of the conduction electron.

It should also be mentioned that if a wave
function is computed in any direction except
those directions along which boundary conditions
are satisfied, the wave functions will not fit
exactly as we pass from cell to cell in ordinary
space.

The final remaining point of interest is that
of the correlation of the various classes for the

three directions. This is necessary, as it is desir-
able at least to be able to take average values
for example of dE/dk for various directions for a
given energy. The various bands, although
solved for different directions, have been corre-
lated by consideration of the nodal properties of
the wave functions of the various classes. This
correlation is given in Table I.*

The general method of obtaining energy bands
and wave functions for a face-centered lattice has
been outlined. The method has been applied to
a copper lattice using a corrected Hartree poten-
tial field. The energy bands as a function of the
internuclear distance have been calculated. The
strong overlapping of the 3d band and the 4s
band is shown. The assignment of electrons to
the various energy bands leads to the result that,
theoretically, copper is a good conductor, a well-

known experimental fact. The various energy
bands of the three particular directions 100, 110,
111 have been correlated. For more quantitative
results than those obtained, the approximations
used in this report must be improved. The first
and most important step in this direction is the
task of obtaining a better poteritial field. This
would take the form of a self-consistent Hartree
problem for metals.

The author wishes to express his appreciation
to Professor J. C. Slater and Dr. G. E. Kimball
for many helpful discussions.

*Note addedin proof: It appears from further study that
these correlations must be revised. See a forthcoming paper
by J. C. Slater.


