

Fig. 3. Λ-doubling curves for the $E^{2} \Pi$ state of SrH .
may not be accurate. If it is correct as given, the failure of the curve to return to zero at $J=0$ must be attributed to another perturbation. Because of this possibility of error in the P_{1} and R_{1} branches at low J values, however, we do not evaluate the usual p_{0} and q_{0} quantities involved in the Λ-doubling. The other molecular constants, determined from the $\Delta_{2} F$ values in the customary manner, ${ }^{2}$ are presented in Table IV.

Satellite branches should be observed in this band. We have located the ${ }^{R} Q_{21}$ branch at large J values but the other satellite branches cannot be definitely established because of the many weaker lines of the other bands present in this region.

Table IV. Rotational constants of the $E^{2} \Pi \rightarrow N^{2} \Sigma(0,0)$ SrH band at 5323A.

N^{2} state:$B_{0}=3.6198$ $D_{0}=-1.287 \times 10^{-4}$ $E^{2} \Pi$ state $:$ $B_{0}, *-\frac{1}{2}=3.6388$ $D_{0}=-1.03 \times 10^{-4}$ $A=117$ $B_{0}, *+\frac{1}{2}=3.8687$	

Electronic States of SrH

In our earlier work ${ }^{1}$ on the red bands of SrH we noted that the $A^{2} \Pi$ and $B^{2} \Sigma$ states stand to each other in the relation of "pure precession," being undoubtedly $5 p \sigma^{2} 5 p \pi^{2} \Pi$ and $5 p \sigma^{2} 5 p \sigma^{2} \Sigma$ respectively. The $N^{2} \Sigma^{+}$normal state is probably $5 s \sigma^{2} 4 d \sigma^{2} \Sigma$. The E state may be either $5 s \sigma^{2} 4 d \pi \pi^{2} \Pi$ or $5 s \sigma 5 p \sigma 5 p \pi^{2} \Pi$. The D state might then well be $5 s \sigma 5 p \sigma^{2} \Sigma$, and the lack of strong interaction with the E state could be due to the large difference in the B constant of the D state from that of all other states. For our analysis of one of the bands of the D system, with v^{\prime} as yet unknown, indicates B^{\prime} to be only 1.91 . The lack of strong interaction may also be due to the presence of the $C^{2} \Sigma$ state above the E state, thus neutralizing in part the effect of the D state.
The D system of SrH as well as the C and B systems of SrD will be discussed in a further paper.

The $3 p^{3} \Sigma \rightarrow 2 s^{3} \Sigma$ Bands of HD and D_{2}

G. H. Dieke, The Johns Hopkins University
(Received July 18, 1935)

Abstract

The $3 p^{3} \Sigma \rightarrow 2 s^{3} \Sigma$ bands of HD and D_{2} which form the most conspicious regularities in the near infrared are given and the band constants calculated.

IN a previous communication ${ }^{1}$ the so-called Fulcher bands ($3 p^{3} \Pi \rightarrow 2 s^{3} \Sigma$) of the isotopes HD and D_{2} of the hydrogen molecule were given. There is a band system $3 p^{3} \Sigma \rightarrow 2 s^{3} \Sigma$ chiefly lying in the extreme red and near infrared closely connected with the Fulcher bands. It has the same final state, and the initial states belong to the same complex, i.e., they differ only by the value of the projection Λ of the orbital momentum on the internuclear axis.

[^0]The present paper contains chiefly the empirical data of the $3 p^{3} \Sigma \rightarrow 2 s^{3} \Sigma$ system. A theoretical discussion of the $3 p$ complex is given in the following paper, which will also contain an account of the perturbations in both systems. The general remarks about the production of the spectrum, the wave-length measurements, etc., made in the previous paper ${ }^{1}$ apply also to the present investigation.

In the far red and infrared the sensitivity of the photographic plates varies rapidly with the

Table I. The $3 p^{3} \Sigma \rightarrow 2 s^{3} \Sigma$ bands of $H D$.

wave-length. The photographic intensities depend very much on the plate used and the sensitization employed. Relative intensities appear sometimes completely distorted even over a comparatively narrow region. This accounts for almost all the apparent intensity anomalies found in the tables.

The frequencies and intensities of the bands are given in the Tables I for HD and II for D_{2}. The bands contain a large part of the strongest lines in the infrared and are the most prominent feature in that part of the spectrum. Only those bands which are fairly complete are listed. There are several weaker bands, the position of which can be calculated and of which a number of lines can be found. They, as well as bands with higher values of V^{\prime}, are left for a later occasion as undoubtedly their identification will be much more certain when the other strong lines in this region have been classified.
The rotational constants were calculated in the
usual way, ${ }^{1}$ and they are listed in Table III. The spaces left open are the vibrational levels which are so strongly perturbed that no reliable values can be obtained.
As shown more in detail in the following paper, the B_{v} values calculated directly from the observations cannot be used for the calculation of the moment of inertia or other constants which have to do with the vibration and rotationless state of the molecule. It is necessary to take into account the influence of the interaction with the $3 p^{3} \Pi$ state. If we correct for this in the way indicated in the following paper the new values for B_{v} are

	HD	D_{2}
B_{0}	20.257	13.553
B_{1}	19.259	13.045
B_{2}	18.236	12.504.

This includes the B_{v} of all those levels which are far enough from any $3 p \Pi$ level, so that only the regular Λ doubling has to be taken into account.
B_{e} can then be calculated from $B_{v}=B_{e}$

Table II. The $3 p^{3} \Sigma \rightarrow 2 s^{3} \Sigma$ bands of D_{2}.

Table III. Rotational constants of the $3 p^{3} \Sigma$ level.

$-\alpha(V+1 / 2)$. In evaluating these constants the B_{0} value of D_{2} which is less reliable than the others was disregarded.
We find then

	HD	D_{2}
B_{e}	20.766	13.856
α	1.010	0.541
I_{e}	$1.3319 \cdot 10^{-40}$	$1.9961 \cdot 10^{-40}$
r_{e}	$1.09662 \cdot 10^{-8}$	$1.09649 \cdot 10^{-8}$
	average $r_{0}=1.09655 \cdot 10^{-8}$.	

The ratio of the B_{e} values is 0.6672 which compares well with the theoretical value 0.6671 . The ratio 0.534 of the α is lower than the theoretical value 0.544 , but the accuracy with which the α can be determined in this case is hardly better than this agreement.
If the constants would be calculated in the same way from the observed B_{v} without the correction, the ratio of the B_{e} values would be 0.6692 which is considerably different from the theoretical value 0.6671 .
With the rotational energy of initial and final states known, the origins of all the bands can be calculated and they are given in the Tables IV and V. The values marked with $a+$ are the origins of those bands which have strong perturbations. They are obtained only from the $P(1)$ line as the $J^{\prime}=0$ level cannot be perturbed. ${ }^{2}$ As they are calculated from one line only they are less accurate than the other values.

The constants in the formula for the vibrational energy

$$
\omega v-x v^{2}+y v^{3}-z v^{4}+\cdots(v=V+1 / 2)
$$

[^1]Table IV. Zero lines of the $3 p^{3} \Sigma \rightarrow 2 s^{3} \Sigma$ bands of $H D$.

$V^{\prime \prime}$	0	1	2	3
0	11624.55			
1	13	427.56	11224.80	
2	15	129.24	12926.46	
3		14525.41^{+}	12525.41^{+}	
4		16018.66	13918.64	11918.67
5		17400.16	15300.16	13300.18
6				14521.32

Table V. Zero lines of the $3 p^{3} \Sigma \rightarrow 2 s^{3} \Sigma$ bands of D_{2}

$V^{\prime \prime} V^{\prime \prime}$	0	1	2	3	4	5

0	11649.14					
1	13137.49					
2	14558.24	12743.35				
3	15911.16	14096.23	12350.41			
4		15380.22	13634.40	11956.15		
5			14847.31^{+}	13 169.12+		
6			15985.94	14307.64	12695.57	
7				$15366.35{ }^{+}$	13 754.23+	12207.29^{+}
8				16336.30	14724.19	13177.25
9					15591.37	14044.37

are

	ω	x	y	z	ν_{e}
H_{2}	2196.13	65.80	-0.433		11838.91
HD	1905.17	51.70	0.522	-0.091	11825.68
D_{2}	1556.64	34.51	0.287	0.04	11813.40
$\mathrm{D}_{2}: \mathrm{HD}$	0.81706	0.6675	0.550	-0.44	-
ρ^{n}	.81675	0.6671	0.544	0.445	-

The values for H_{2} are obtained from the formula given by Richardson and Das. ${ }^{3}$ They cannot be compared directly with the constants for HD and D_{2} as they were calculated in a different way from less complete data.

The ratio of the constants for D_{2} and HD, which is given in the fourth row, is again approximately equal to the theoretical ρ^{n} values calculated from the mass ratios. The remarks about the agreement in the Fulcher bands ${ }^{1}$ apply also here. In another paper ${ }^{2}$ it was shown that the agreement cannot be expected to be better, and that if a higher accuracy is desired, various corrections must be applied. In that paper also the shifts between the origins ν_{e} of the band systems were discussed.

I wish to thank Dr. C. R. Jeppesen for his help with the measurements of the lines.

[^2]
[^0]: ${ }^{\text {º G. H. Dieke and R. W. Blue, Phys. Rev. 47, } 261 \text { (1935). }}$

[^1]: ${ }^{2}$ G. H. Dieke, Phys. Rev. 47, 870 (1935).

[^2]: ${ }^{3}$ O. W. Richardson and K. Das, Proc. Roy. Soc. A122, 688 (1929).

