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An. experimental and theoretical investigation of the
absorption spectrum of MgO in the near infrared is re-
ported. Part A is devoted to the experimental results,
which were obtained by use of a rocksalt spectrometer.
They show that the fundamental absorption is accom-
panied by a great deal of secondary structure. In Part B
an interpretation of the results of A is undertaken on the
basis of a quantum-mechanical treatment of anharmonic

potential forces. On this basis, it is shown that a cubic
crystal of the MgO type should not possess but a single
near infrared absorption as previous calculations had
indicated, but should possess an extremely complicated
secondary structure. In Part C the possibilities of obtaining
a quantitative correlation between experiment and theory
are discussed and it is concluded that the former must be
made the object of additional refinements.

INTRQDUGTIGN"

N the work to be described in the following
- - paper, both experimental and theoretical in-
vestigations were carried on and are published
here simultaneously. In order to keep them
somewhat apart, we have decided to present the
details of the 6rst in Part A and those of the
second in Part B, and to present a general ac-
count of their connection in the introduction and
the conclusion.

As a result of conclusions drawn from the
classical theory of crystal structure of Madelung,
Born, von Karman and other workers in the
field, ' it was generally believed until the past few
years, that a cubic crystal possessed but one ab-
sorption frequency, corresponding to a motion in
which like ions move together and unlike ions
are 180' out of phase. For the alkali-halide crys-
tals, this fundamental should be expected to vary
inversely as the effective mass m&m2/(m~+mm) of
the two ions, and in fact, it was found that those
corresponding to LiF, NaCI and KBr are at
wave-lengths 32.6, 61.1 and 83.3p, respectively.
It is as a result of this fact that these crystals
show a large transparency in the near infrared,
KI being transparent as far out as 33@.

Because of the supposed simplicity of their
spectra, it was concluded that they should be

*The experimental section of this paper (Part A) is
principally due to R. B. Barnes and R. R. Brattain, and
the theoretical section (Part B) was developed principally
by F. Seitz while a fellow in theoretical physics at Prince-
ton University.

~ E. Madelung, Nachr. Gott. M. P. Klasse, March 1909
and Jan. 1910; Physik. Zeits. 11, 898 (1910);M. Born and
Th. von Karman, Physik. Zeits. 13, 97 (1912); M. Horn
and M. Goeppert-Mayer, Geiger-Scheel IIandbmch der
Physik, Vol. 24b.
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ideal substances on which to test the classical
theory of dispersion in the infrared, and in 1930
Czerny' presented the results of his attempt to
use NaC1 for this purpose. He reported the pres-
ence. of a weak secondary maximum of absorption
upon the short wave-length side of the funda-
mental. A similar result was obtained for KC1.
In a second paper' it was shown that these
crystals possessed not one but several secondary
maxima, giving rise to absorption curves which
differed considerably from those predicted on the
basis of the previously mentioned theories, and
only by using a layer of crystal 0.17p, thick were
the authors able to obtain a curve of the theoret-
ical type. Fig. 1, taken directly from the above
paper shows the type of curve obtained for NaCl ~

Continuing this work, Barnes4 showed that some
6fteen crystals of this type possessed similar
secondary maxima. At this time a good deal of
structure was observed, but since the resolving
power was very low, the work published was to.
be regarded as being essentially envelopes of
possible additional structure.

Following this, Born and Blackman'" sought an
explanation of these results on the basis of an-
harmonic terms in the potential function of inter-
action of the lattice atoms, and handled the
problem of a linear diatomic chain along classical
mechanical lines. Their results showed that such
terms would give rise to additional maxima, one
on the short wave-length side of the fundamental

' M. Czerny, Zeits. f. Physik 65, 600 (1930).' R. Bowling Barnes and M. Czerny, Zeits. f. Physik V2,
447 (1931).

4 R. Bowling Barnes, Zeits. f. Physik '7S, 723 (1932).' M. Born and M. Blackman, Zeits. f. Physik 82, 551
(1933); M. Hlackman, Zeits. f. Physik 86, 421 (1933).
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Fie. 1. Transmission of. thin films of NaC1. (Barnes and
Cze my. )

and one on the long wave-length side (the former

agreeing reasonably well with the experimental
values), so that a qualitative check of the validity
of this assumption was obtained.

When good specimens of MgO became avail-

able, it was decided that a more thorough in-

vestigation of the structure of the absorption
spectrum of a cubic crystal could be carried
through than had been done previously. ' This
crystal is particularly suitable for near infrared
investigation since its spectrum lies closer to the
visible than does that of any other cubic crystal,
and, moreover, it may be obtained in perfect
crystalline as well as powdered form. Under these
favorable circumstances an investigation was
carried through and the principal experimental
results may be tabulated as follows:

1. The absorption spectra of (a) powdered, (b) evap-
orated films and (c) cleavage plates of crystalline MgO
are identical as far as maxima are concerned as long as
the particle size of the powder is not such as to give rise

to anomalous scattering or refracting e6ects.
2. The fine structure is reproducible on various thick-

nesses of material and indicates that there are more than
forty absorption peaks on the near infrared side of the
largest absorption peak when the crystal is at room

temperature.
3. The fundamental absorption line does not lie at

14.2p, as has been previously supposed, but is further in

the infrared.
6 R. Bowling Barnes and R. Robert Brattain, Phys. Rev.

4V, 416 (1935).

From this work, it was concluded that the re-
sults of Born and Blackman were not general
enough to handle the case at hand and another
approach to the theoretical side of the problem
was undertaken. For this purpose it was assumed
that the crystal could be handled as a three-di-
mensional quantum-mechanical system of inter-
acting particles arranged at the mesh points of
the NaC1 type lattice and a general potential
function of interaction was set up using only the
group theoretical restrictions required by sym-
metry. This is to be contrasted with the type of
potential function employed in the Born treat-
ment of ionic crystals in which central forces are
assumed between particles. The recent high pre-
cision work on the eiastic coefficients by Quimby,
Balamuth, Rose and Durand' indicates conclu-
sively that the Cauchy-Poisson relations are not
valid, the c» of Voigt being only about half of the
corresponding c44 for divalent ionic crystals of the
type of MgO, while for monovalent crystals of
the type of NaC1, c» is ten percent larger than c44

in the neighborhood of absolute zero. Since
equality of c» and c44 was essential for the validity
of the Born theory these facts point to a basic
lack of generality in it and for this reason it is
found necessary, for the time being, to employ a
phenomenological description of potential fields
in much the same way that is done in handling
molecuIar potential functions.

By employing the anharmonic terms as per-
turbations, normal coordinates were introduced
so as to afford a suitable system of quantum-
mechanical variables and from these the first-
order energy spectrum arising from the harmonic
terms was determined. It is of course identical
with the classical energy spectrum and for the
diatomic face-centered lattice is included inside
of two zones, in each of which there are three
branches corresponding to the three directions of
polarization of waves. The perturbing terms were
then regarded as being such as to alter the selec-
tion rules for transitions without appreciably
affecting the energy spectrum, and it was found
that this effect can be regarded as important only
for transitions in which two waves whose momen-

tum vectorslie in the neighborhood of the sur-

7 L. Balamuth, Phys. Rev. 45, 721 (1934);we are deeply
indebted to these people for the use of results of their work
that is as yet unpublished.
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FIG. 2. Rocksalt spectrometer and amplifier.

faces of the zones and at regions near these
surfaces where the energy gradient is zero, are
simultaneously excited, since in this case the inte-
grated effect of many insignificant absorption
lines is appreciable in the vicinity of one wave-
length. In this case both the sum and difference
energies of the two waves will give rise to ab-
sorption peaks. The conclusions drawn were as
follows:

1. The first-order anharmonic terms give rise to a large
number of absorption lines of types to be described in a
later section.

2. Any attempt at determining correlations between
the experiment and theory at this stage of the develop-
ment of the former is premature since the conditions under
which the theory is presented are such that they will be
realized best at low temperatures and it is only when such
experiments are carried out that correlations may be
sought for. There is no reason for expecting that such
correlations do not exist, however.

PART A. EXPERIMENTAL SECTION. THE NEAR

INFRARED SPEcTRUM QF MgO

In order to be able to obtain better experi-
mental results, a cubic crystal was sought whose
fundamental corresponded to a wave-length in
the near infrared where higher resolution could
be employed. Consequently, the authors were

pleased to learn that The Norton Company,
using an electric furnace which operated at a
temperature above 2500'C were able to fuse
MgO, and prepare large Hawless single crystals
from the molten material. The samples obtained
possessed almost every property which would
make them suited for this purpose. They were
clear, hard, easy to cleave (down to 0.075 mm),
were not affected by water, were obtainable in
sizes up to 3 &(4)&1 cm, possessed almost perfect
cleavage planes so that no polishing or grinding
was necessary, were very tough and resistant to
acids and heat, and the material had. its funda-
mental in the near infrared. Both transmission
and reHection measurements were made through-
out the region from 1p, to 15.6p. Previous x-ray
investigations have shown that MgO crystals
are cubic in their structure being of the NaC1 or
face-centered type. '

fll. Apparatus and procedure

For this investigation in which it was desired
to be able to study the absorption of the samples
throughout the near infrared, the experimental
set-up shown in Fig. 2 proved very satisfactory.
The radiation from a hot platinum strip (S),

' P. P. Ewald and C. Hermann, Strncturbericht (Leipzig,
&93&).
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FIG. 3. Transmissions of cleaved plates of MgO. (a) 0.12 mm; (b) 0.47 mm; (c) 1.75 mm;
(d) 3.05 mm.

which was operated from a 22-volt transformer
at a current of 20 amperes, was brought to a focus
upon the sample by 3f&, and after diverging was
focused upon the slit of the spectrometer by the
mirror 3f~. After emerging from the spectrometer
which contained a rocksalt prism and a Kads-
worth mirror, this radiation was then concen-
trated upon a Moll linear thermopile. The latter
was connected as shown to an original Moll gal-
vanometer (55 ohms internal resistance), the
deflections of which were then amplified by
means of the photoelectric relay' system. The
filament Ii (4 volts, 4 amperes) was focused by
the two lenses over the galvanometer mirror to
the photoelectric cell, I', which was a selenium
cell of the blocking layer type and had an active
surface 3)&3 cm. The use of the grids as shown in-
creased the sensitivity threefold. An H.S. Leeds
and Northrup 16.4-ohm galvanometer was then
used to read the currents produced by the photo-
electric cell. After taking extreme precautions to
avoid any unsteadiness due to fluctuations in the
temperature and pressure of the room, the relay
system was set and used at a magnification of
about 150-fold. The thermocouple, although not
of the vacuum type, was placed in an evacuated
container in order to avoid the pressure eBects

R. Bowling Barnes and F. Matossi, Zeits. f. Physik 76,
24 (1932); L. Bergmann, Physik. Zeits. 32, 688 (1931).

referred to just above. The scale distance was
2.5 meters.

The calibration of the instrument was deter-
mined empirically, by mapping the positions on
the scale of many well-known sharp bands such as
those of H20, the emission arid absorption bands
of CO2, the reflection bands of quartz, the ab-
sorption bands of benzene, toluene and cyclo-
hexane. Points were thus obtained at rather close
intervals out to 15.2p, . The transmission curves
obtained were accurately reproducible as far out
as the measurements were made. The authors
realize that the extreme wave-lengths may be
uncertain, due to errors in the calibration curve,
by as much as &0.05@.The calibration curve was
checked frequently, and aside from a shift back
and forth from time to time of less than ~0.01p,
due to changes in the temperature of the prism,
was found to be constant.

At the position marked A in Fig. 2, a sliding
tower was built which enabled the sample to be
moved in and out of the light beam, several
measurements being taken in each of these two
positions. The curves plotted below are in every
case the actual percentage transmissions as
measured, no corrections having been made for
the losses of energy at the two surfaces of the
crystal. The accuracy of the curves with regard
to the ordinates is about +2 percent.
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FIG. 4. (a) Transmission of a thin cleaved plate, t =0.075 mm. (b) Transmission of a 1p layer

of MgO evaporated onto a nitrocellulose film. (c) Transmission of a layer of MgO fumed onto
a plate of NaC1.

(2. Results

(a) Fig. 3 shows the results plotted to a p
scale for different thicknesses of MgO prepared
by cleaving plates from one of the large single
crystals. The similarity between the curves will

be noted. The agreement of the secondary struc-
ture in the various plates is good considering the
resolving power of the instrument and the fact
that as we proceed to greater thicknesses, the
relative strengths and breadths of the absorption
lines vary giving rise to absorption peaks of new

shapes.

In Fig. 4 curve (a) the composite curve result-
ing from many separate runs on a cleaved plate
0.075 mm is given. No experimental points are
indicated but each of the minima shown has been
checked in at least two or three of the individual
sets of measurements. The structure is quite
complicated, yielding some 40 absorption lines
between 6p and 15.5p.

(h) In the work of Czerny and Barnes3 thin
films of the alkali halides were prepared by heat-
ing the salts in a vacuum by means of a tungsten
spiral and allowing them to condense onto a film
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FIG. 5. {a) ReHection power of a crystal of MgO. (b} Dispersion curve of Mgo calculated by
use of the relation R = (n —1)'/(n+1)'.

of nitrocellulose. It was shown in their paper that
the optical constants of a NaCI 61m prepared in
this Inanner were identical with those of a mas-
sive plate of salt. Hilsch and Pohl" and their co-
workers have also obtained results which showed
that 61ms prepared in this manner were really
single crystals. Further proof that such films are
really crystalline has been obtained by Kirchner, "
using electron diffraction.

Curve (b) in Fig. 4 shows the result of a series
of measurements upon such a thin 61m of ap-
pI oxlmately 1p thickness. It 1S 1IQmedlatcly ob-
vious that the wave-lengths of the 6ne structure
lines agree in almost every detail with those of
the composite curve for the thin cleavage plate
shown above in curve (a).

(c) In order to obtain still another check upon
the existence of this secondary structure the
transIQlssions of scvcI al thin 61IQs of 6nely
powdered MgO were studied. The powders were

prepared by two different methods, namely, by
grinding up pieces of the large single crystals and

by burning a piece of magnesium ribbon and al-

lowing oxide to deposit upon a thin plate of Nacl.
Curve (c) Fig. 4. shows the results of these
IQcasuI'CIQcIlts froIQ which lt ls at once evident
that the secondary structure is the same as that

"R. Hilsch and R. %'. Pohl, Zeits. f. Physik SV, 145
(1929).See later papers."F.Kirchner, Ann. d. Physik 11, 741 (1932); Zeits. f.
Physik 'M, 576 (1932).

found for the thin cleaved plate and the evapo-
rated 61m.

(d) The positions of the source and M& were
now changed and an extra plane reAection put in
at the focus A in order to be able to study the
reAection power of one of the large crystals. At
each wave-length the crystal was interchanged
with the plane silvered mirror and the ratios of
the deHections from the two taken as the percent
reAection power of MgO. These results are shown

by curve (a) of Fig. 5. A double reflection maxi-

mum is seen at 14.8p and 15.3p. From the values
of R for the region below say 8p, the refractive
indices of MgO may be obtained by using the
simple equation R = (n 1)'/(n+—1)'. The disper-
sion curve thus arrived at is shown by curve (b).
The value of n=1.86 at 1p is in fair agreement
with the value np ——1.747 reported by Brice and
Strong.

$3. Discussion of results

(a) Mgo has been the subject of several in-

vestigations. Angstrom in 1889 studied its ab-
sorption, while Coblentz in 1913 reported that
with increasing wave-lengths its reAection power
increased. In the latter investigation measure-
ments were made at only 6 wave-lengths. In
1928, Fraulein S. Tolksdorf" made a study of

12 R. T. Brice and J. Strong, Phys. Rev. 4V, 255 (1935).
"S.Tolksdorf, Zeits. f. physik. Chemic 132, 161 (1928).
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MgO from 2 to 15@by means of a prism spectrom-
eter. Following a method suggested by herself and
Fraulein Laski, ' she studied the transmission of
a thin film of finely powdered MgO held between
two plates of NaC1. A transmission curve was
obtained which ranged from about 40 percent at
2p to 95 percent at 15p, and which showed three
distinct minima, located at 3.85, 7.65 and 14.2p.
These she mistook for 4v, 2v and v, respectively.
In view of the predictions of the classical theories
mentioned in the introduction, she called these
supposed overtones "anharmonic" vibrations.

Comparison of her results with those shown in
Fig. 4, shows that Fraulein Tolksdorf had mis-
taken the 14.2p, secondary maximum for the
fundamental, and had not measured any further
out in the infrared.

In 1931, Strong, " using reststrahlen, showed
that a layer of MgO fumed onto a NaCl plate
showed a very strong absorption in the neighbor-
hood of 23'. A crystal of P-MgO showed 80 per-
cent reflection at this same wave-length. He
offered these results to show that the maximum
found by Tolksdorf at 14.2p, could not be the
fundamental of MgO.

In a short note, two of us reported the pre-
liminary results of this investigation. "At that
time we stated that we had found a strong ab-
sorption around 14p, which we identified with the
fundamental reported by Tolksdorf, the results of
Strong not being known to us. In view, however,
of the absorption band which we later observed
at 15.4p and the work of Strong the identi-
fication of any one absorption band as the funda-
mental is quite uncertain. At present we are not
in a position to say, for example, whether the
reflection maxima of Fig. 5 are due to strong
secondary maxima or to the fundamental. This
question must be decided at a later date. From
our present results one can only say that the
fundamental absorption of MgO is accompanied
by many secondary maxima.

(b) The curves shown in Fig. 4 show very con-
clusively that the infrared spectrum of a solid
may be studied successfully in either of the three
forms, namely, cleavage plates, powder or

"G.Laski and S. Tolksdorf, Naturwiss. 14, 21 (1926).
J. Strong, Phys. Rev. 3'7, 1565 (1931)."R. Bowling Barnes and R. Robert Brattain, Phys. Rev.

47, 416 (1935).

evaporated 61ms. The last two methods require
great care and sometimes lead to spurious results.

Before using the powder method the investi-
gator should be familiar with the authors' paper
and those of Pfund on the infrared of powders. "
In the light of these papers, the increasing trans-
parency of the powdered MgO found by Tolks-
dorf as longer wave-lengths were reached, is
readily understood. In all cases where powders
are used the particle size of the powder must be
smaller than the wave-lengths of the regions being
studied in order to avoid spurious effects, and
shifts in the wave-lengths.

Hirsekorn" measured the transmission of 61ms
of NaCI evaporated at atmospheric pressure, and
found spurious effects due to the particles. These
evaporated 6lms must be prepared in the very
highest vacuum obtainable.

These last-named methods have been used to
advantage by many people, and it is therefore
very gratifying to see that all three methods when
applied to the same substance yield results
strictly comparable in every detail.

(c) In conclusion it must be mentioned that,
since these secondary maxima are probably due
to anharmonic terms in the force equation, they
should be sensitive to changes of temperature, as
will be discussed in Part B.Accordingly, prepara-
tions are under way to repeat these measurements
6rst at liquid air then at liquid hydrogen tem-
peratures. Then and only then could a complete
correlation with theory be expected.

)4. Experiments on other crystals

From time to time the complex structure of the
infrared absorption bands of various crystals,
as evidenced by reflection as well as transmission
measurements has surprised experimenters. As
increasingly higher resolving power has been em-
ployed, it has become more and more evident
that these bands possessed a real 6ne structure
the exact interpretation of which is unknown.

No attempt will be made at this point to give
a complete list of papers bearing upon the above
statements, however it is felt that several in-
vestigations should be cited.

"R. Bowling Barnes, R. Robert Brattain and R. S.
Firestone, Phys. Rev. 4'7, 792A (1935);A. H. Pfund, Phys.
Rev. 36, 71 (1930);J.Opt. Soc.Am. 24, 143 (1934);J. Opt.
Soc. Am. 23, 375 (1933).

H. G. Hirsekorn, Ann. d. Physik 0, 985 (1930).
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In addition to MgO Tolksdorf studied CaO,
BeO, ZnO, CdO and HgO. For the first three she
found the spectra to consist of several distinct
maxima of absorption where only one or two
were expected. For CdO and HgO, she was un-
able to locate the fundamentals because they
were beyond 22', the limit of her spectrometer;
however, she did find in the near infrared, several
weak absorptions which are probably analogous
to the secondary maxima reported above for
MgO. A complete account of this work, and an
attempt to identify these secondary maxima as
harmonics and combinations will be found in the
book of Schaefer and Matossi, Das Ultrarote
SPektrgm.

Silverman" measured, in the neighborhood of
the vp band, the reHection and transmission of
calcite, and found between 6.4p, and 7.4p some
33 lines in each case. This unexpected fine struc-
ture he suggested was possibly due either to the
disturbing effects of imperfections in the crystal,
or to combinations with the far infrared bands of
calcite.

Silverman and Hardy" showed that the 9p,

quartz band also possessed an extremely compli-
cated structure.

Recent papers from the laboratory of Schaefer
and Matossi also point to the presence of compli-
cated structure in the cases of many crystals.

Besides the original work discussed above,
other investigators" have studied the alkali hal-
ides and verified the existence of the secondary
maxima in every case.

Although the absorptions of all types of crys-
tals seem to possess this fine structure, or sec-
ondary structure, the most important thing to be
done right now is undoubtedly to obtain very
accurate measurements on cubic crystals. Ex-
periments performed at low temperatures, with
polarized radiation, or with the radiation travers-
ing the crystal in directions other than normal to
the 100 plane, will yield results which will be of
the greatest theoretical importance with regard
to the study of the solid state.

"S.Silverman, Phys. Rev. 39, 72 (1932).
~0 J. D. Hardy and S. Silverman, Phys. Rev. 3'7, 176

(1931);S. Silverman, Phys. Rev. 45, 158 (1933)."K. Korth, Nachr. d. Ges. d. Kiss. zu Gott. Math-
Phys. Kl. 1932, p. 576; A. Mentzel, Zeits. f. Physik 88, 178
(1934).

PART B. THEQRETIcAL INTERPRETATIQN

)1. Previous developments: a criticism of the
Born approximation

A sketch of the general scheme followed in an
attempt to approach a theoretical interpretation
of the previous results was presented in the intro-
duction, and before proceeding with a detailed
discussion of this, we shall pause to review some
of the previous developments.

In the earliest period of observation of the
reHection spectra of solids, it was found" that
for cubic crystals the spectra could be accounted
for by assuming that they possessed one funda-
mental absorption frequency and that the reHec-
tion properties were related to this by means of
the well-known formulae of optics. In noncubic
crystals, it was necessary to assume the presence
of several absorption maxima. Following this, a
number of dimensional equations relating this
frequency for cubic crystals to other physical
properties were suggested by Einstein, Linde-
mann, Braunbeck and others, and were found to
give rough agreement with the established facts.

On the basis of some remarkably good assump-
tions concerning the arrangements of atoms in the
alkali ha1ides, Madelung" succeeded in relating
the fundamental absorption frequency to the
interaction forces and connected these with the
elastic coefficients. This was followed by a paper
of Born and von Karman'4 in which the ideas be-
hind Madelung's work were placed upon a firmer
basis for analytical treatment. Although the con-'

clusions which they drew from their development
are not strictly correct when viewed in the light
of modern knowledge, their treatment of vibra-
tional waves has continued, to be of service in
many fields. In addition, this work gave an indi-
cation of the weaknesses of the Debye theory of
specific heats in which the crystal was treated as
a continuous solid —a question which has been
the object of considerable qualitative and semi-
quantitative investigation in recent times. "

"A complete sketch of the work discussed in this para-
graph is to be found in Schaeffer and Matossi, Das
Ultrarote Spektrum (Berlin, 1930).

E. Madelung, Nachr. d. Ges. d. Kiss. zu Gott. M. P.
Klasse, March 1909, Jan. 1910; Physik. Zeits. 11, 898
(1910)~

'4 M. Born and Th. von Karman, Physik. Zeits. 13. 297
(1912)."M. Blackrnan, Proc. Roy. Soc. A148, 365, 389 (1935);
A149, 117, 126 (1935).
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During a subsequent period, Born and co-
workers succeeded in developing a theory of
ionic crystals, " based upon the assumption of
central force interaction of ions, by means of
which a number of properties of such crystals
such as dielectric constant and fundamental
frequency could be correlated. Such correlations
are to be regarded as first approximation connec-
tions which are valid when the assumptions made
are correct to within factors that are essentially
refinements. The principal assumption which is
made is that of central force interaction of ions.
For the purpose of many property-correlations,
such as those mentioned previously, considerable
inaccuracy in these assumptions may not lead to
wide discrepancies in results, simply because the
quantities correl@ted are not sensitive to alter-
ations in the fundamental assumptions; that is,
for example, neither the dielectric constant nor
the fundamental frequency of a crystal will be
greatly affected by small deviations of the inter-
action potential from one of the centra1 type. This
is not true of many other properties of crystals,
however, particularly those which are the differ-
ences of relatively insensitive quantities. This
question is of considerable importance when the
problem of determining the positions of the
secondary absorption maxima of crystals relative
to the fundamental is raised, as will be shown in
the following sections, and for this reason it is
important that the extent to which the results of
the assumptions of Born are valid be known. If
they are found to be incorrect to a sufficient
degree, it will be necessary to proceed from an
entirely phenomenological standpoint, as will be
shown to be the case.

One of the principal results of the assumption
of central forces when dealing with arbitrary
crystals is the so-called Cauchy-Poisson rela-
tions'" between the components of the stress-
strain tensor. For cubic crystals, with which we
are principally concerned, these relations are
such that equality is to be expected between the
coefficients c12 and c44 of Voigt, the first of which
connects the transverse stress to the strain along
a given crystallographic axis, while the second

"A thorough review of this work is given by M. Horn
and M. Goeppert-Mayer in the geiger-Scheel IIandbuch der
Physik, Vol. 24b.

'~ W. Voigt, Lehrbuch der Xri sta/Ephysi k (Teubner, 1910),
p. 607,

TABLE& I.

cy y 10-ll
NaC1 Mgo

cig10 &~

NaC1 Mgo
c4410 ~&

NaC1 MgO

273.1
210
150
80
77.4

5.035
5.284
5.508
5.754

28.841
29.128
29.396

29.547

1.277
1.298
1.315
1.332

15.350
15.421
15.472

15.501

1.279 8.705
1.253 8.585
1.127 8.535
1.159

8.462

relates the shearing stress in a plane orthogonal
to one of the principal axes to a shearing strain in
the sarge plane. A number of results concerning
these relations for valence crystals and metals"
revealed that they are not nearly satisfied. Previ-
ous" to some very recent work by Quimby,
Balamuth, Rose and Durand' using oscillating
circuit methods, the only measurements carried
on for the determination of the constants for
ionic crystals dealt with the monovalent alkali
halides and were performed at ordinary tempera-
tures. In these earlier cases the relationships were
found to be valid to within an experimental error
which we judge to be about 5 percent. The room
temperature values are not particularly valuable
for the present discussion, however, since the
elastic coefficients are known to vary consider-
ably with temperature and we are really inter-
ested in the absolute zero values. The work of
reference 7, however, has furnished a good deal of
information for both monovalent (Nacl) and di-
valent ionic crystals (MgO) over a temperature
range extending down to 80 degrees Kelvin with
an accuracy exceeding that previously obtained
by about one power of 10. A sample set of values
of the adiabatic coefficients of both of these
crystals are given in Table I. The isothermal
values may be determined from these by ade-
quate small corrections which are always such. as
to lower c44 and leave c12 unchanged.

From these results it is clear that in the vicinity
of absolute zero the c44 coefficient will be about
15 percent less than c12 for NaCI, while in the
case of MgO the ratio is almost 2 to 1. This
presents conclusive evidence that the Born ap-
proximation is a rather rough one for ionic
crystals.

"A review of the work of Voigt on this subject may be
found in M. Born's Atomtheorie des Jiestensustands
(Teubner, 1923), Chapter I.

29%. Voigt, reference 26, p. 741; P. K. Bridgman, Proc.
Am. Acad. 64, 19 (1929). Ke are indebted to Professor
Bridgman for correspondence concerning details of this
work.
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Kith the discovery of secondary maxima,

Born and Blackman, ' as we have stated in the

introduction, sought an explanation of this phe-

nomena on the basis of anharmonic potential

terms and solved the problem of the diatomic

linear chain, considering such terms to be small

perturbations, as a classical mechanical one. As

is well known, the frequency spectrum for this

problem as a function of the variable 0.=2m-/X,

X being the wave-length, is represented by a curve

of the type shown in Fig. 6 in which the discon-

tinuity occurring for 0.= +~/Xa, where a is the

distance between nearest like atoms, is a charac-

teristic of the diatomic lattice that disappears

when the masses of the particles are equal and 2N

is the total number of atoms. The results of Born

and Blackman show that on the basis of their

classical reasoning one would expect frequencies

v~+v2 and v~ —v2 as well as the fundamental fre-

quency v to be absorbing. These results were then

extended to the three-dimensional case again on a
classical basis, but with neglect of a suitable

analysis of the discontinuous zone structure that
must exist by analogy with the results of the

theory of metals. This last point represents a
serious omission, even if the use of classical

mechanics and the use of central forces were

valid, and will be discussed more thoroughly

in )3.
In view of these facts, the problem will be

handled entirely anew in the following sections

and with a view toward eventually obtaining

correlations between experimental and theoret-

ical results.

FK'. 6. A representative energy-wave number distribu-
tion for the linear chain. In the classical case the energy is
proportional to the square of the frequency, while in the
quantum case it is proportional to it. In the three-dimen-
sional lattice, this is characteristic of the energy spectrum
for one polarization and a line passing through the origin in
0.-space. The discontinuities occur when this line intersects
the zones.

where l, rn and n are integers, ~~, 72, r3 are the
primitive translations of the lattice, and p is a
vector independent of lmn which gives the

position of the ath atom in a unit cell. For a
diatomic face-centered lattice of the cubic type,
~~, v.~, 7.3 may be taken in the form

respectively, ~' while p, may be chosen to be zero

for one atom (type a, say) and

&o)

(3)

for the other (type b), so that a is the closest dis-

tance between unlike atoms. Thus when the
atoms are in their equilibrium positions, the
lattice will be invariant under one of the 230
space groups and we must expect the equilibrium
potential function to be likewise invariant (i.e. ,
to belong to the unit representation of the space
group). When the atoms are displaced from their
equilibrium positions, so that the new position of
an atom of type a, say, in the lmn-th cell relative
to its old is given by the vector of component
x, '(lnzN)(i=1, 2, 3), the potential of the lattice
will be altered, but we shall assume that it may
be expressed as a power series expansion in these
displacement variables in such a manner that all

terms of a given degree are invariant under the
group. As is well known, the constant term in this
expansion need not be considered, while the linear

terms will vanish as the condition of equilibrium.
Ke shall regard the quadratic terms as being of
principal importance and treat the cubic terms
as small perturbations. For this purpose, we shall

"For a presentation of the theory of crystal symmetry in
terms of the notation to be presented here see F. Seitz,
Zeits. f. Krist. 88, 433 (1934), et seq.

(2. The symmetry restrictions induced on a
general potential form

As a basis for a phenomenological discussion of

the interaction potential of atoms, we shall as-

sume that they are regularly arranged in a lattice
at points

l7 q+ ms. 2+n~3+ p,
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begin by neglecting the latter and choose a set
of normal coordinates for which the quadratic is
in normal form, which must be taken to be real
since we will want to quantize the entire system,
We shall consider the crystal to be fixed, so that
the process of choosing normal coordinates is es-
sentially one of resolving all of the x's into
Fourier-like components and treating the ampli-
tude-coefficients as a set of variables. Since one
of these will correspond to pure translations, it is
important that the potential be invariant under
infinitesimal translations, and we must express it
as a function of differences

x '(l'm'n') —X.'(lmn) = $ .'(I'm'n', lmn) (4)

of displacements, which will also allow us to ex-
press the potential change going with a homo-
geneous deformation of the lattice. It is implied
that the coefficients in the power series expansion
are so defined that the entire expression is in-
variant under infinitesimal rotations because we
are dealing with a scalar form, so that we shall be
concerned with all quadratic and cubic forms in
the differences that belong to the unit representa-
tion of the space group. Of these a very large
number may be neglected since they are con-
sidered to be physically unimportant, and we will

actually consider but a very small fraction of the
possible terms.

For simple crystals in which each atom is at a
center of symmetry of the type for which the
corresponding point group is that of the class to
which the space group belongs, the problem of
finding the desired form is comparatively easy.
In this case the translational symmetry may be
handled completely apart from the rotational,
and we need only take the sum of the equivalent
potentials of equivalent cells, these potentials
being determined by mere rotation group con-
siderations (i.e. , screw operations and glide planes
do not play a role).

In the lattice of the NaCI type (Fig. 7) with
which we shall be entirely concerned, each atom
possesses the symmetry 0" for which the ten
irreducible representations have been given by
Bethe."The character system going with these is
listed in Table II, in which F+ and F are written
together with the corresponding signs for the
elements of determinant 1 and —j..

"H. Bethe, Ann. d. Physik 3, 133 (1929).

4
I
I
I
I
I
I

Fro. 7. Face-centered cubic lattice of the NaCI type.

and with cubic terms of the type

(I'm'n', Imn) '$'(I'm'n', Imn) P(l' 'm' nImn) (Sa)

and discard those in which the indices of the

TABLE II. Character system for crystallographic grouP 0 .

E 6'' 8C3 3C2 6C4 I 6Rg 8S4 3Rg 654

Fg 1
rm
r3 2
F4 3
F5 3

1 1 1 1
1 —1 —1 1
2 0 0 —1—1 1 —1 0—1 —1 1 0

~i &1
&1 &1
&2 &2
&3 ~1
&3 ~i

&1 &1 ~i
%1

0 0 ~1
&1 ~1 0
~i &1 0

where: Z is the unit element;
6C~' is the class of 6 two-fold rotations about axes of the (110)

type;
8C3 is the class of 8 three-fold rotations about axes of the (111)

type;3' is the class of 3 two-fold rotations about axes of the (100)
type;

6C4 is the class of 6 four-fold rotations about axes of the (100)
type;I is the inversion;

6Rd is the class of 6 reflection planes orthogonal to axes of (110)
type;

8S6 is the class of 6 six-fold rotary reflections about axes of (111)
type;3' is the class of 3 planes orthogonal to axes of the (100) type;

6S4 is the class of 6 rotary rejections about axes of the (100)
type.

Although the translation group is of the type
I",', it is convenient to designate each atom by the
integers lmn which specify its position vector of
components la, ma, nc, since these lie at all
mesh points of a simple cubic lattice. Of the pos-
sible interaction terms of each atom with its
neighbors, we shall consider only those between a
given one and its twenty-six neighbors. Moreover,
of these we shall be concerned only with quad-
ratic terms of the type

P'(P m' 'n, lmn)P(P 'm' ntmn)
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type l'm'n' in these differ among themselves.
This simplification has the effect of reducing the
total number of terms for the twenty-six neigh-

bors to about a fourth. Of the terms considered,
those which describe the interaction between un-

like atoms are the same regardless of which type
of atom is at the center of neighbors, and need to
be counted but once for each cell, while those
which describe the interaction of like particles
appear with different coefficients depending upon
the type of atom concerned.

The problem of analyzing the character system
of the quadratic and cubic terms will not be gone
into here, and it will suffice to tabulate the
results. Regarding the former, it is found that
there are ten forms to be considered as these
may be classed as follows. In all cases the vari-
ables $, g, 1' will be considered in place of P, P, P,
and because of the restriction (5) we may
write Pg(l'm'n', lmn) in place of $(l'm'n', /mal)

~ q(l'm'm', lmn), etc. The summation indicated will

always imply that two terms in which a cyclic
permutation of the variables that appear are to
be added. The character system of the various
cases is listed in Table III.
I Interaction of given atom with 6 unlike neighbors

1. Z I('(l+ imn)+('(l —1mn) I;
2. 2 Ig (lmn+1)+&'(lmn —1)

+g2(lm+ in)+P(lm —1n) I.
II Interaction of given atom with 12 nearest like neighbors

3 2 I g2(tm+ in+1)+P(lm+ in —1)
+P (lm —in —1)+&'(lm —1n+ 1)I;

4. 2 IP(i+ 1m+ in)+g'(l+ im —1n)
+P(l+ imn+1)+P(l+ imn —1)I;

5. 2 Igq(i+1m +in)+g'(l+imn+1)
—gq(i+ 1m —1n) +Q (l+1mn —1)I;

6, 7 and 8 duplicate 3, 4, 5 for atoms of other type.
III Next nearest unlike neighbors

9. Z I ZP (l+1, m+1, nai);
~l

10. Z I (g+t )((i+1m+in+1) —(g —|)p(i+ 1m —1n+1)
—(~P|.)~(i+1m —1n —1)
+(g+ g)$(l+1m+1n —1);

—(g+g) ](l—1m+1m+1)+(g —g) ((l—im —1n —1)
+(g+t )&(l—1m —1n —1)
—(g —f)((l—1m+ 1n+1) I.

In the following we shall designate the coefficient of
each of the ten quadratic terms by a(1), ~ ~ ~, n(10),
respectively.

Since we shall employ the cubic terms only

TABLE III. Character system for guadratIc terms considered.

TYPE
OF CONDI-

NEIGH- TIONS
80R (5) E 6Cs' 8Cs 3C2 6C4 I 6Rrf 8Ss 3R@ 6S4 No.

0, 0 6 2
0 0 —2 —2
2 0 0 0
2 0 0 0
0 0 0 0
0 0 0 0

I i =j 18 0 2 0 12 0 2
I i' 18 0 2 0 —4 P P
II i =j 36 0 2 0 12 0 2
II i' 36 0 2 0 —4 0 1
III i =j 24 0 4 0 0 0 1
III i Pj 24 0 4 0 0 0 1

+$'f(lmn+1) —P(lmm —1)}.
TABI.E IV. Character system for cubic terms considered.

RELATIONS IN
(Sa) E 6Cs' 8Cs 3Cs 6C4 I 6Rd 8Ss 3Rg 6S4

i=j=ki' =k
igj&k

18 0 0 —2 2 0 2 0 4 0 1
36 0 0 —4 0 0 0 0 8 0 1

6 0 0 2 —2 0 2 0 4 0 0

$3. Normal coordinates: the energy spectrum

The process of reducing the quadratic expres-
sion, corresponding to the sum of the possible
invariant terms introduced in (2, to normal form
is essentially one of reducing a matrix to diagonal
form, and since this matrix is invariant under an
entire space group, we know that the normal
coordinate system will be one in which the space
group is reduced. When the Born-von Karman
boundary conditions are employed, it may be
shown" that for all crystals these coordinates
may be taken to be of the Fourier type

X. exp (~o" r) (6)

where x, is invariant under the primitive trans-
lations of the lattice and cr is a vector such that

"F. Bloch, Zeits. f. Physik 52, 555 (1929); F. Seitz,
On the Reduction of Space Groups to appear in Annals of
Mathematics, January (1936).

insofar as they are able to break down the selec-
tion rules for optical transitions, and we shall as-
sume that they do not affect the energy spectrum
given by the quadratic terms, it will not be neces-
sary to go farther than to write down the set of
terms arising from (5a) when only the six nearest
neighbors are considered for reasons that will

become apparent in )5. The character system is

given in Table IV.
The corresponding cubic forms are

1. QI P(l+1mn) —f'(I 1mn—) I

2. P ( $'q(lm+1n) —$'q(lm —1n)
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0 ' Tg = 2Xnf, .

In this, T; are the three vectors defining the
polyhedron at the surface of which the boundary
conditions are satisfied. For a simple cubic lat-
tice of type I'„ for example, this polyhedron may
be taken to be a cube so that these vectors lie
along each of the three axes. In the case at hand
in which we are dealing with lattice vibrations,
x, will be periodic in the primitive translations
and will be a vector function which takes values
only at the positions of the atoms. In other
words, for a lattice of the type considered here,
the functions (6) will represent waves in which
the atom of type 1 at 1a, ma, na has the dis-
placement

x,(1, 1222n)f&(0, lmn) exp [20"r(l222n)] (8)

Frr. 8. The rhombic dodecahedron at the surface of
which the boundary conditions are satisfied. It possesses
one-fourth of the volume of the enclosing cube.

where y, is the scalar amplitude of the wave, f» is
the unit vector in the direction of displacement
and r(l222n) is the position vector of the atom,
while atoms of type 2 at the other mesh points
will have displacements of scalar amplitude y(2)
and direction f2, both of which will generally
differ from x(1) and fz. For an arbitrary, allow-
able o., the three values of f» and f2 which reduce
the terms of type o- to normal form may be deter-
mined by solving an appropriate secular equation
to be described later.

For a face-centered lattice in which the primi-
tive translations are given by (2), the allowable
form of 0- is

2 ' 222+ 222 —
222)

n»+ n2+ n3

221 222+223)

corresponding to the boundary conditions being
satisfied at the surface of the rhombic dodeca-
hedron of height 2%a (Fig. 8), where n&, 222, 222

and N are integers. The lattice defined by allow-

ing n», n2 and n3 to take on all integer values is
the inverse lattice to the face-centered one and is
seen to be a body-centered one having a unit cell
of volume 42r/N2a2. Not all values of the 22's cor-
respond to independent modes of vibration,
however, and it is readily seen that the only ones
which need to be considered are those contained
in a cube whose corners are at the eight points
corresponding to n&, n2, n2 equal to &Xj2.
W'ithin this there are 2¹unit cells so that when

the three directions of polarization are taken into
account, it corresponds to 6¹degrees of free-
dom, which is in agreement with the fact that
there are 2¹atoms in the rhombic dedocahedron
containing N' unit cells of the crystals, and each
atom possesses three degrees of freedom.

From the standpoint of the energy spectrum,
we may expect three energies going with each
point in the cube described above corresponding
to the generally different energies going with the
three directions of polarization of a wave of given
0.. It is to be expected that these energy functions
E'(o), where 2 ranges over the three polarization
vectors, will generally vary smoothly from point
to point except at the surfaces of definite poly-
hedra, or zones, where they will have discontinui-
ties analogous to those met with" in describing
electron waves in solids. The space between two
zones will generally contain as many points of 0

space as there are unit cells in the polyhedron at
the surface of which the boundary conditions are
to be satisfied —

¹ in this case, so that we may
expect that there will be two zones in the prob-
lem at hand, and, in fact, for the lattice F,',
these correspond to the cube and truncated octa-
hedron shown in Fig. 9. Since we do not consider
regions outside of this cube to be different from
that inside, the energy surfaces will end at the

"L.Brillouin, Qnantenstatistik (Berlin, 1931),Chap. VIII.
The basis for examining the connection between these

zones and crystal symmetry is laid in the second of the
references 32, and will be extended for presentation in this
journal in the near future.
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Frr. . 9. First two zones for a face-centered diatomic
crystal of the NaCI type (translation group F,'). The inner
zone is a truncated octahedron and the second is a cube.
The difference in volume between the first and second is
equal to that of the first. The numbers indicate particular
points to be discussed in the text. {Note no. 2 is the center. )

cube, but may be expected to possess a vanishing
gradient normal to the surface, '4 while at the
surface of the truncated octahedron they will

possess definite discontinuities, being continuous
on each side of the surface, and will have a
vanishing normal gradient there. Fig. 6 represents
the characteristic behavior of E(o) for one direc-
tion of polarization as 0. varies along a line passing
through the origin. The discontinuity occurs
when 0- reaches the truncated octahedron, and
the curve ends at the cube.

It is a general characteristic of this zone struc-
ture that each of the points in one zone may be
viewed as being associated with a definite point
in another zone in the sense that the waves going
with the two have exactly the same symmetry
properties (belong to the same irreducible repre-
sentation), and in the present case these two
points are connected by a vector of the same
length as one of the vectors

(1.0)

joining the origin with a cube corner. These
vectors are the only members of the 2¹con-
sidered (aside from the origin), that possess the
property that their scalar product with each of
the primitive translations is 2x, or 0. It is readily
seen that to each point between the cube and the
truncated octahedron, the vector 0+s' lies either
outside of the cube (and is not to be considered)
or inside of the truncated octahedron, the only
ambiguous cases being those in which 0 lies on
the surface of the latter polyhedron, and this
difficulty, which is never of physical importance,
may be removed by assuming that one of any
two such points that are connected by a vector s
belongs to the inner zone and the other to the
outer. Because of this fact and the fact that
O.~s' possesses the same properties as 0. under the
translation group, we need only consider points
belonging to the truncated octahedron, and it will
turn out that the correct multiplicity of solutions
corresponding to the double-valuedness of each
point inside will automatically follow. These two
solutions are, in fact, the modes of vibrations in
which neighboring atoms are out of phase by
more or less th, an 90 degrees, respectively. Later
on, we shall return to the characterization by use
of all points in the cube, and consider the three
energies going with the wave in which unlike
neighboring atoms are most out of phase to be
outside of the truncated octahedron.

Finally, it must be borne in mind that we want
all waves to be real for the purposes of quantiza-
tion, and for this reason, we shall replace
exp (fo' r) in the preceding by both sin o"r and
cos 0- r, and have for the Fourier resolution of
the displacement vector x'(lmn) of atoms of type
g and b:

(1) Atoms of type 1

X.(o, c)
x'(1mn) = PP f '(o, c) cos o" r(.lrnn)

urn~

X (o, s)
+ f.'(o, s) sin o" r(lrnn)

"A proof of this may be derived from the work of H.
Jones and C. Zener, Proc. Roy. Soc. A144, 101 (1934) by
means of group-theoretical extensions that will be dis-
cussed in this journal in the near future.

where x (o, c) is the amplitude of the cosine wave
polarized in the direction f ' (a = 1, 2, 3), etc. The
allowed vectors f' are to be determined by an
appropriate set of equations.
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tI' (a, s)
+ g'(0, s) sin 0"r(l'm'n')

emu
(11a)

where P and g have the same significance as g
and f in (1) and f accompanies x .

The introduction of the factor 1/Qmj and
1/gm2 has the effect of reducing the kinetic
energy form to one in which x' and P' have the
same coeAicient and it is only necessary to con-
sider the potential form in determining the
normal coordinates.

It may be readily shown that in all cases in
which the atoms occupy points of inversional
symmetry:

(2) Atoms of other type

4-(~, c)
x*'(Pm'I') = QP g. '(o., c) cos 0" r(l'm'n')

gmg

ZZ2 I(i'(~, c)+~~'(~)a'(~ c))

+(j'(, s)+ '( )q'(, s)) I (12)

where it assumed that the gq's are the amplitudes
of the normal variables of given 0- so that the
total energy is the sum over 0. and ) of terms of
the type (12), the former taking on all values
corresponding to the cube. The x&P(0) are the
roots of the secular equation discussed in the last
section. The Schrodinger equation for this prob-
lem is simply

h' O'P(gg(o), N&, (0)) r&), '(o)
g, '(~) 0(g~(~), n~(~))

87r' Bg),'(0.)

-&(~.( ))4(Q.( ), I ( ))=o (13)

for which the energy of the stationary state
P(gz(a), nz(0)) (ez(a) =0, 1, 2, ~ ) is given by

k—(n+ 1/2) ~g(0),
2'

(13a)

the sine and cosine waves separate completely
in all of, the sums that will be taken so that we
need only consider the latter and designate
x(0., c) and P(0, c) by x(o) and P(0) for the
present. In considering the cubic terms, it will

be necessary to return to the previous notation.
From this it is readily seen that for a given o.

the six quantities x (0.), tt &(o.) (n, P = 1, 2, 3) will

give rise to a secular equation of the sixth degree
unless one or more of the polarization pairs is
known beforehand, in which case the secular
determinant may be reduced to a two- and a
four-, or to three two-dimensional ones, depend-
ing upon whether one or two pairs is known. If
they are not known, the solution of the secular
equation will determine these directions in terms
of the set of f and gp that have been assumed at
the start in (11) and (11a). It is clear from the
symmetry of the quadratic form that the f's
will be mutually orthogonal, as will be the g.

~l4. Wave quantization and selection rules

The process of quantizing the waves once the
reduction to normal form has taken place is

simply one of writing the Schrodinger equation
corresponding to the Hamiltonian function

p, (s) = e(s)q, (s)/V'M (14)

where M=m~m~/(m~+m~) and e(s") is the effec-
tive ionic charge to be determined from precise
theoretical considerations. If the ions were rigid
spherical structures, which the evidence of f1
indicates to be only roughly true, this would be
the absolute value of the electronic charge for the
alkali halides and twice this for MgO. In the
present paper, however, we are interested only in
the possibility of absorption and not in the in-
tensity of the absorption lines so that this point

"C. J. Brester, Xristallsyrnmetrie und Reststrahlen, Diss.
(Utrecht, 1923).

az(0.) being the classical oscillator frequency.
The probability of optical transitions from a

state P„ to P will be proportional to the square
of the dipole moment matrix component con-
necting these two states, and this matrix will be
zero for all 0. except o.=s' in which case the three
waves of equal energy corresponding to a normal
mode in which unlike neighbors are 180 degrees
out of phase (i.e. , the mode going with 0 = s' of
the last section which we shall designate simply
by s in the future) possess a nonvanishing ma-
trix."This matrix p, (s) (r = 1, 2, 3) will be of the
form
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is not a critical one. Since p, (s) is proportional to

q, (s) it will have nonvanishing matrix compo-

nents only if n' =n+1, so that only light quanta
of frequency v(s) may be emitted or absorbed in

the quadratic approximation. This is of course

just the classical result as was to be expected.

)S. Alterations induced by the presence of the
cubic terms

As we have stated previously, we shall assume

that the results of the presence of the cubic terms

will be such as to leave the energy spectrum un-

altered, but will affect the wave functions enough

so that the selection rules of (4 are no longer

strictly valid. These cubic terms will be of the
form

where l., l', I,", l"' designate triples lmn, etc. and

the 0."""are- the coef6cients upon which the

proper symmetry restrictions have been placed.
If the values of the x "s are substituted, it is

readily seen that this reduces to the form

2 fl pv(+&+&+3)q-(«)q~(~2)qv(+3), (15a)
age

in which 0-I, f72, o3 in a given term are subject to
the condition

0 ] &0'2&03= S )

where s' is any vector such that

s v'= 2vrs;,

(16)

(16a)

q.= II.. .Q(q. (0), n. (o)) (17)

corresponding to a state in which the coordinate

q (0) is in the n (0)th quantum state. The corre-

sponding perturbed function will be of the form

r; being one of the primitive translations (2) and

n,; an integer. There are rather important restric-
tions upon the P's as we shall see later, but we

shall not be interested in these at the present
time.

If we now add the sum of terms (15) to the

Hamiltonian function, we may obtain the new

stationary states by use of an appropriate pertur-

bation scheme such as that of Schrodinger or
Brillouin-signer. 36 The unperturbed eigenfunc-

tions of the system will be of the form

XP(q~(a, ), m '(o,))g(qp(0. ,), ep'(o, ))P(q„.(o,) n~'(0, )).II'„f(q (o); n '(0)) (18)

in which &r„o2, 03 satisfy the rule (16), II' does

not include the wave functions of the variables

q. (og), qp(rrg), q, (o3) and

n. '(0 g) = m. (o.g) &1,

np'(02) = np(on) &1,

n, '(03) =e, (o.g) &1.
(19)

The coeScients y are proportional to matrix
components of the cubic perturbation term (15),
which we need only assume to be small. The
conditions (19) follow from the harmonic oscilla-

tor nature of the unperturbed problem and it is

to be understood that n' cannot be negative. In
order to find the transition probability two states
of the type (18), it is necessary to examine the
matrix components of p(s) given by (14) since,

as was pointed out there, this represents the

dipole moment for the entire crystal, and from

the remarks made in $4 it follows that v(s) will

still be the principal frequency because +0 is the
prominent term in +. Because of the presence of

the higher order terms in (18), this may possess

nonvanishing dipole moment components with

other states 0" arising from nonvanishing com-

ponents between the first-order term of + and

the second-order terms of +' and vice versa.

There are several prominent cases that we

shall handle separately:
Case I. Let us assume that in + the various

waves of q (0) are in states given by the quantum

numbers n (o). Then among the higher order

terms, which will be a linear combination of
other states, there will be characteristic terms in

which the states corresponding to q (O.r), qp(02),

"The Schrodinger perturbation scheme may be found in

any textbook on quantum mechanics. L. Brillouin, J. de
phys. et rad. (III) 1, 373 (1932); E. P. %'igner Bull. ,

Hung. Acad. (to appear shortly).
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g, (&r3), gq(s) are given by

n (o&) &1, np(o2) &1, n„(o3)&1, nq(s), (20)

h(& v (o ~) + vp(o 2) &v, (o q) &vq(s)), (22)

that is, all energies corresponding to the sum (22)
may be absorbed or emitted, the first case being
that in which the resultant quantity is positive
and the second that in which it is negative. If the
matrix components between the zero-order term
of 0' and the higher order terms of 4" are con-
sidered, it is readily seen that they introduce no
new possibilities, while the terms arising from
interconnection of the higher order term of both
4 and +' will be cast aside as negligible.

Case II. If o~ (or either of the other two o's)
is equal to s, the argument of case I is practically
repeatable, the only difference being that but
three waves gp(o2), g~(o3), gp(s) need be con-
sidered. The energies that may be absorbed or
emitted are now given by.

or
& vp(o'2) &v~(oa)

a vp(op) &v„(os) ~2v(s),

(23)

(23a)

which are just the results one would obtain from
(22) by setting v (oq) =v(s).

Case III. If either of the o-'s were equal to zero,
difficulty would arise from the fact that the cor-
responding states belong to a continuous spec-
trum, and a special treatment would be required,
but we may safely assume that the absorption
involved in any single transition of this type is
negligible and that the cases in which o is Drac-

where o&, o2, o& must satisfy the condition (16).
There will clearly be 2' such states, unless some
of the n's are zero in which case only the positive
sign may appear. These higher order terms wi11

possess important nonvanishing components only
with that state +' in which the zero-order term
has quantum numbers n (o), excluding those
going with g (o~), gp(o2), g„(o3), gp(s) in which
cases the quantum numbers must be

n. (og) Wi, n. (og) ai,
n (og)ai, n, (s)ai, (21)

in which the signs of the first three terms must
agree with those of (20), so that the energy dif-
ference between + and +' is

tically, but not quite zero (see below) are the
really important ones. For these, the discussion
given above is valid, and the frequencies absorbed
or emitted are practically

av (o'2) avp(o'p) av(s). (23b)

The additional cases in which all of the 0.'s

are equal to s or zero do not occur as will be
seen later.

It is perhaps wise to repeat that the negative
signs in (22), (23), (23a) are valid only if the
corresponding states are excited in 4, since this
fact will give rise to much of the temperature
dependent effects; that is, at sufficiently low
temperatures only the . positive signs will be
important.

The absorption (or emission) coefficient for any
given frequency of the allowed type will neces-
sarily be small if the assumptions made here are
essentially correct, and in order to obtain a region
of strong absorption, it is necessary that there be
a large number of allowable combinations of 0. in
the equations of Case I and II for which the
energy absorbed is practically constant and the
relation (16) is maintained. "This implies that
the energy spectrum in the neighborhood of each
of the combining 0.'s must be such that its gradient
is practically zero, which can only occur when
the 0.'s are in the vicinity of those regions of the
zone for which the gradient actually does vanish.
This implies the need for precise knowledge of the
zone structure of each lattice dealt with, and an
examination of the zones described previously
for the face-centered lattice shows that there are
seven values of 0. for which the gradient vanishes.
(o 's which are sent into one another by symmetry
operations are not counted as different). As may
be expected, these points correspond to the inter-
action of the zones with symmetry axes, so that
the polarization direction of the waves may be
determined at once. Thus in the (100) direction,
it is evident that there will be one wave polarized
in this direction (longitudinal wave), and two
waves of equal energy (differing from that of
the longitudinal wave) for which the polarization
directions are orthogonal to this. These, points
are listed below along with the number of differ-
ent energies going with the three direction of

'~ The importance of this was realized by Born and
Blackman in their work.
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polarization. The actual energies in terms of the
parameters o, (1), , a(10) of the potential
energy expression will not be given at this time
since correlations have not yet been obtained.

1. Intercept of the (111) axes with the cube; there are
three equal energies.

2. The origin corresponds to three equal energies.
3. Intercept of (100) axis with cube. The two transverse

waves have equal energies differing from that of the longi-
tudinal wave.

4. Intercept of the (110) type of axis with the cube.
There are two different energies corresponding to a wave
polarized in the (100) direction and two polarized in the
plane orthogonal to this, the latter two being degenerate.

5. The center of the hexagonal faces of the truncated
octahedron. The longitudinal wave is polarized perpen-
dicular to the face, and has a different energy from that
of the two degenerate transverse waves.

6. The center of the edge of a square face of the trun-
cated octahedron (say the (100) face). There are three
waves of different energy, one of which is polarized in a
direction orthogonal to the plane passing through the
(100) axis and the point. The other two polarization
directions lie in the (011) and the (011) directions.

7. The intercept of the (01.1) axis with the truncated
octahedron, bisecting one of the edges of a hexagonal face;
the three waves are of different energies and their polariza-
tion axes lie along this axis and in the two symmetry planes
which intersect it, respectively.

The points corresponding to these cases are
indicated by the appropriate number in Fig. 9.

Of these seven cases, it is to be noted that 1

and 2, 3 and 4, and 6 and 7, respectively, possess
0-'s which diRer by a vector of the type s', so that
of these three pairs, one member may be assumed
to have the three, possibly degenerate, energies
going with the lower part of the discontinuity and
the other the energies going with the upper part.
In case 5, for which 20.=s', the discontinuity is
such that both upper and lower branches have
values at the same point; that is, the discon-
tinuity arises from an actual double-valuedness
of the energy surfaces at this point —a property
that is intimately tied up with the symmetry
properties.

Were the P's in (15) all nonvanishing, it would
be safe to say that the spectrum would possess as
its most prominent secondary lines, those transi-
tions of the type (23), (23a) and (23b) in which ~2

belongs to the lower side of the discontinuity
and 0.3 to the upper, or vice versa, and in which the
signs before both of these are positive. For in
these cases r (a&) +v(0&) would vary very slowly as

02 and 0& take on values permitted by the relation
a2+03 =s' since one of these decreases as the
other increases, and there would be a large accu-
mulation of transitions of nearly constant energy.
It is readily seen that there would be 17 possible
combinations of this type, namely, those listed
below:

3 and 4—four lines (two different polarization energies);
5 and 5—four lines (two different polarization energies);
6 and 7—nine lines (three different polarization energies).

Designating these 17 sums, vs(o 2) +v„(a~), as
multiplet A, the 17 lines corresponding to (23)
would, appear on the large frequency side of the
fundamental, v(s), since they are all found to be
greater than it. Similarly, this same multiplet will

appear at an equal interval on the large frequency
side of 2v(s) and 3v(s) corresponding to (23b) and

(23a), respectively.
The 17 dilference frequencies

~
vp(~&) —v~(o3)I

which we shall designate as multiplet 8, would
also be prominent at high temperatures and,
corresponding to the cases (23), (23b) and (23a)
we should have the cases

B, v(s) +B, 2 v(s) +B

Similarly, if we designate —A by A and —8 bp
8, the cases

—v(s)+A, v(s)+B, 2v(s)+B, 2v(s)+A

would be of importance, and indicate that the
multiplet A would appear between 0 and v(s),
that the inverted multiplet 8 would appear be-

t'Z3)

A
(cab)

--- 8 a

A

(Z3 a) , 8 B

y(s) gy(s)

FIG. 10a. A schematic representation of the disposition
of multiplets A, 8 and their inverses. The dotted lines
represent lines that will disappear at very low tempera-
tures. The three rows correspond to results arising from
the three equations indicated.
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tween 0 and v(s) and v(s) and 2v(s), respectively,
and that the inverted multiplet A would appear
between 0 and v(s) (see Fig. 10a).

The restrictions on the P's, however, do not
allow all of the 6&&17 possible sums and differ-
ences of (23), (23a) and (23b) to appear, and in
fact, the cases excluded are those corresponding
to transitions in which states involving 1, 2, 3
and 4 are excited in any combination. This of

course, excludes the 4&(3 transitions involving 3
and 4 mentioned above and also some others not
yet discussed. This restriction may be brought
out only by a detailed investigation of the type
of trinomial expressions in the g's that may occur,
the argument being essentially as follows.

In terms of the normal coordinates g (o, c)
and gp(a, s) the displacement vector for the atom
of type 1 or 2 situated at $mn is given by

x'(lmn)=pg{g (o, c)f '(o)p (o, lmn) cos o" r(lmn)+g (o, s)f, '(o)p (o, lmn) . sin o. r(lmn)}, (24)
a 0

where g (a) are the final normal coordinates, and o extends throughout the entire cube in a-space,
f, '(o), is the nth polarization vector going with the o.th wave, which will be identical for like atoms,
while p (o, lmn)/ps(a, l'm'n') gives the relative amplitudes of the atoms at lmn and l'm'n', assuming
they have the same phase (this will be 1 if the atoms are identical). For the prominent values of o.

in which we are interested, the polarization directions are identical for unlike atoms, so that we need
not carry the indices lmn in these quantities.

Using (24), the quantity $'(1;m;n;, lmn) is

pp{g (o, c)f '(o)(p(o, 1;mfn;) cos o" r(l,m;n;) —p(o, lmn) cos a" r(lmn))

+g (o, s)f '(o)(p(a, l;m;n;) sin a" r(l;m;m;) p(lm—n) sin o" r(lmn)) } (25)

and if we set r(l;m;n;) =r(lmn)+ p(l;m;n;), this becomes

5*=ZZ{{g-(o c)f-'(a)A(o, l mn;) —g. (a, s)f„'(o)B(o, l mn;)] cos o r(lmn)

+[g (o, )fs, '( )Ao( lo,m;n, )+g (o., s)f, '(o)B(o", l m;n;) j sin o r(i,m;n„)} (26)

where

A(o, l;m;n;) = —(p(o, lmn) —p(o, l;m;n„) cos o" p(l,m„n;))

B(o, l;m;n;) = —p(o, l;m;n;) sin o" p(l„m, n;)
(27)

so that A is invariant under an inversion in lmn, while 8 goes into its negative. If terms of this type
are substituted in one of the invariant forms of $2 and the result is summed over all values of lmn
corresponding to like atoms, the result may be written in the form

P y(l,m;n„) P {a(oi, l;m;n, )a(o2, l;m. ;n„)a(a3, l;m„n;) —a(o.i, l;m;n;)b(ou, l,m;n„)b(a&, l;m;n;)
&among a'1 a2a'3

—b(o.i, l;m;n;)a(o2, l;m;n;)b(o3, l;m;n„) —b(ai, l;m;n;)b(o~, l,m,n;)a(o3, l;m;n;) } (28)

where oi, o2, o.3 must satisfy the relation (16), l;m;n; are summed over the values occurring in a given
form with the proper coefficients y, and

a(o, l,m;n;=) P {g (a, c)f 'A (o, l,m, n, ) —g.(a, s)f 'B(a, l;m, n;) },

b(a, l;m~n„) = P {g (o, s)f 'A(o, I;m;n, )+g, (o., c)f 'B(o, l;m;n;) I.
(29)

Now since $'p'&'(1+X&m+p, n+v) goes into —o'p $'(1 X, m —'p, —n v) under inver—sion in the point
lmn, the expression

$'P$'(l+X, m+p, n+ v) —f'Pf'(l X, m —p, n v)— — (30)
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must occur in each cubic invariant form if the
first term does. As a result of this, it follows at
once that in the result (28), when (29) is substi-
tuted, all terms not containing B(o, l,m. ;n;) an
odd number of times will vanish. Closer inspec-
tion shows quite readily that this fact does not
depend upon the assumption that all three prod-
ucts in a given trinomial possess the same lnzn

and l;m;n;.
Now in the cases 1, 2, 3 and 4 described

previously, sin o p(t,"m„n;) =0 for all values of p

so that all intercombinations of these can give
rise to no secondary maxima since the necessary
combination of g's do not appear in (15).

For the combination of 5 and 1, and 6, 7, and 1,
in the manner described above, this does not oc-
cur and all possible transitions are allowed, so
that there are 13 frequencies vp(0&) +v~(0.3) arising
from these two cases, and the multiplets A and B
as well as their inverses will contain this number
of terms.

From the restriction discussed in the previous
paragraph, it follows that the frequencies 2v(s),
3v(s) and 4v(s) may not occur as a combination
of cases 1 and 2, as far as the cubic terms are con-
cerned; moreover, it is easily seen that the case
in which a&&s cannot lead to anything new if all
restrictions are taken account of properly.

There is one additional possible source of
secondary maxima, namely, those cases in which
02 ———o.3 (and o.

&
——s), so that only transitions in

which waves on the lower side or on the upper
side play a role along with s are concerned. Such
transitions undoubtedly have probabilities com-
parable with those considered above, but will

probably not lead to maxima of the same in-

tensity since the v(a2) &v(03) will not be constant
for as large a range of o.i as in the preceding cases.
It follows as before that only cases 5, 6 and 7

may occur along with 1.
At low temperatures, which means tempera-

tures well below the characteristic temperature
of the crystal, the peaks corresponding to cases
in which negative signs occur in (23), (23a),
(23b) (dotted lines in Figs. 10a and b) will dis-
appear and only those in which all are positive
will remain. The number of lines corresponding
to these is 93 as compared with 260 in the high
temperature case.

PART C. ON THE CORRELATION BETWEEN
EXPERIMENTAL AND THEORETICAL RESULTS

If an attempt is made to find a satisfactory
correlation between the preceding experimental
an'd theoretical results, it is readily seen that the
former is not complete enough either to confirm
or deny the correctness of the latter. In the first
place, it is essential that the fundamental fre-
quency be unmistakably identified, and this is
seen to be impossible at present because of the
limitations on the long wave-length side of the
spectrometer; that is, the absorption peak at
15 3p would be the fundamental if it were
definitely known that there were no additional
high absorption regions beyond this, but that
cannot be definitely stated. If the work of Strong
can be accepted as correct, it would indicate that
another region of absorption exists in the vicinity
of 23p, . This di%culty may be removed by using
another prism, such as one of KC1, or by using a
grating spectrometer.

Second, the resolving power in the short wave-
length region (5 to 10') of the present instrument
is not sufficiently great to guarantee that the
secondary structure has been determined to the
same degree of accuracy as that in the region from
10 to 15@,and, as a result, the position and num-

ber of peaks in the former region is not sufficient

to test the symmetry about v and 2v, assuming
the 15.3p line is the fundamental.

Third, the broadening of all of the lines, be-
cause of the inHuence. of high temperature on the
coupling between waves, makes the precise posi-
tion of the maxima very difficult to determine.
This difficulty could be considerably reduced by
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Fr(.. 10b. The plan is the same as'that of Fig. 10a, the
difference being that the multiplets arising from transitions
involving waves on but one side of a discontinuity are
shown.




