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Diffuse Scattering of X-Rays by Conduction Electrons
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A theoretical expression is obtained for the scattering
of x-rays from a completely degenerate free electron gas.
Both the classical and the Compton methods are used.
The modifications introduced by the periodic potential of
the lattice are examined. The scattering by the conduction
electrons is found to decrease with the first power of the

scattering angle. It is shown that the diffuse scattering by
the core electrons decreases as the second power of the
angle of scattering. Hence the scattering by the conduction
electrons will dominate all other diffuse scattering at
sufficiently small angles.

$1.
HE QUANTUM —MECHANICAL theory
of the scattering of x-rays has been thor-

oughly investigated. In practice, however, we
may wish to use classical concepts. Again, for
incoherent scattering, we may find it convenient
t'o think in terms of photons being scattered by
single electrons, as in the Compton effect. In the
first, the classical method, the interference be-
tween two electrons arises from &he addition of
the amplitudes of the scattered x-rays. In the
second, the Compton method, the interference
between two electrons arises through the opera-
tion of, Pauli's exclusion principle. Thus an elec-
tron cannot jump into a state already occupied
by another electron.

The first method gives the correct to/al in-
tensity of scattered x-rays (relativity and reso-
nance effects neglected). The formula developed
by Raman for the ratio S of the actual scattering
to that which would occur if the intensities of the
scattering from each electron were added, is'

5=1+time average of X—' P cos k(s„—s,). (1)

Here X is the total number of electrons, and

k= (4s/)) sin p/2,

where X is the wave-length of the incident x-rays,
and p is the angle of scattering. Wave mechanics
gives the formula3 (relativity and resonance
effects neglected)

S=1+ I fX ' P cos k(s„—s,)P*dv& dv~. (2)

These two expressions for S are identical if we
identify the classical time average with the
average over PP*.

If the probability that one electron were at a
given position did not depend upon the positions
of other electrons, f could be written as a product
of eigenfunctions of single electrons

f= 11$,(r„8,),

where 8, denotes the spin variable. In this. case
(2) reduces to

*The author was aided in part by a grant from the
Rockefeller Foundation to Washington University for
research in science.

See A. H. Compton, Phys. Rev. 4V, 367 (1935) for a
comprehensive review of the literature.

2 C. V. Raman, Ind. J. Phys. 3, 359 (1928), Eq. (3).
' I. %aller and D. R. Hartree, Proc. Roy. Soc. A124, 124

(1929), Eq. (14).
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5=1+% ' Q f „f„
RW n'

Ke shall use the notation

f„.= J'P cos ksP *dv

with the convention that the integral is zero when
n and n' refer to states with opposite spins. The
second term usually represents constructive
interference. Thus two eIectrons bound to the
same atom may move independently of one an-
other, but their mere con6nement to the same
atom gives constructive interference, at least at
small angles.

The probability of one electron being at a
definite position is dependent upon the presence
of the other electrons by virtue of Pauli's exclu-
sion principle. This principle is taken explicitly
into account by writing the wave function in the
form

0= 2(- 1)"&&A(r„h,).

Here P is an operator which permutes the coordi-
nates (including the spin coordinate) of the elec-
trons, and 0.~ is the order of the permutation.
With this wave function (2) becomes'

s=1+& ' Z (f--f- - f'- ) —
. (3.)

nWn'

The last term is intrinsically negative. Its
interpretation depends upon our picture of the
scattering process. According to the Raman
viewpoint, Pauli's exclusion principle lessens the
constructive interference between electrons of
like spin. According to the Compton viewpoint,
Pauli's exclusion principle prohibits those colli-
sions between photons and electrons in which the
recoil electron would find itself in a state already
occupied by another electron of like spin.

The 6rst purpose of this paper is to discuss in
detail the scattering of x-rays in a case where both
methods may be carried out exactly (f2 and (3).
This case is the scattering by a free electron gas.
The second purpose is to examine the scattering
by the conduction electrons of actual metals
(f4). Finally, we investigate the conditions
where this scattering may be observed ()5).

fl2.

From the classical standpoint the scattering of
x-rays from a free electron gas presents the same

where V is the total volume of the electron gas.
Since the medium is isotropic, I' is .a function
only of the distance r between the two volume
elements, i.e., between the two electrons. Eq. (1)
may now be transformed to'

sin kr
5= 1 —n4vr (1 P) r—2dr,

0 kr
(4)

where n is the density of electrons.
If the electrons moved independently of one

another, then P= 1, and the interference would
average out to zero. Actually, Pauli's exclusion
principle tends to keep electrons of like spin
apart. Since the con6gurations favorable to con-
structive interference are thereby reduced, the
average interference will be destructive, at least
for small angle scattering.

The function 1 —I' for a free electron gas is'

f'sin (r/d) —(r/d) cos (r/d) ) '
1-r=(9/2)

~ (r/d)'

Here d =Xo/2v. , where Xo is the wave-length of the
fastest electrons, namely, 2(3n/m. ) 'I'. 1 I' has-
been plotted in Fig. 1a. It has the important
property that

n4vt;"(1. —~)r'dr=1,

i.e. , the integral of the "electron hole" density is
equivalent to one positive electron. Hence scat-
tering in the forward direction will be completely
destroyed by interference.

4 Compton and Ellis, X-Rays in Theory and in Experi-
ment (1935), pp. 177-185.' Reference 4, Eq. (3.80).' E. Kigner and F. Seitz, Phys. Rev. 43, 807 (1933).

problem as the scattering from a monatomic
liquid. In the 6rst problem we must find the
interference between the individual electrons,
while in the second we must 6nd the interference
between the individual atoms. The following
analysis for a free electron gas follows step by
step the well-known analysis4 for a monatomic
liquid.

The probability that a particular electron lies
within the volume element dv at the same time
that another particular electron lies within the
volume element dv„ is

I'(dv / V) (dv / V)
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thus left with —2xi times the residue of the third
term at a= 0. This leads us directly to (6).

)3.
In the case of a free electron gas, Eq. (3) re-

duces to
$=1 N' —Q f„„.'

T z
r/d
(ei)

0.2 0.4 0.6 0.8 I., O

(g/A)sing 0 ~
(b)

Fro. 1. Classical representation of scattering by free
electron gas. The "electron hole" density {a) gives rise
by destructive interference to an S value (b) less than
unity.

with x =kd/2 = (Xo/X) sin (P/2) .
The method of performing the integration in

(4) will be brieHy sketched. We obtain'with ob-

vious transformations

( 3 ) (81I1 s —s cos s)
$=1—

)
& 2~ix) „E s' )

Since the integrand has no poles in the complex

plane, we may choose any path for the integra-
tion, say the path I"& of Fig. 2. Express the inte-

grand as the sum of three terms, containing the
factors exp 2i(x+1)s, exp 2fxs, exp 2i(x 1)z, —
respectively. The integral of the first two terms
vanishes, since no pole lies between the path I'I

and an infinite semicircle in the upper half-

plane, on which the two terms vanish. If x) I,
the third term likewise vanishes. Now the inte-

gral of the third term along 1& is equal to —2~i
times its residue at s'=0, plus its integral taken
along the path I"~. If x &1, this integral along I'2

vanishes, since the integrand is zero along an
infinite semicircle in the lower half-plane. We are

Fic. 2. Paths of integration used in evaluating S.

In order to obtain an explicit expression for 5,
we have merely to substitute (5) into (4). We
obtain (see Fig. 1b)

(1/2) (3x—xs), x &1
5= (6)

x)1,

nHn'

A simple phenomenological interpretation of this

equation is the following.
We regard the scattering of x-rays as the simple

Compton scattering of photons by individual

electrons. The intensity of scattering in any
direction is given by the Thomson formula (apart
from relativity corrections). During the collision

the scattering electron suffers a change of momen-

tum which is calculable from the principles of
conservation of energy and of momentum. Since
the wave properties of the photon are not con-

sidered, constructive and destructive interference
between two electrons does not occur. However,

we must recognize that the electrons obey Pauli's

exclusion principle. We thus exclude those colli-

sions for which the final quantum state of the
electron is already occupied. In the case of a
.(completely degenerate) Fermi gas, the Anal

momentum must thus lie outside the Fermi sur-

face in momentum space.
The scattering factor S may thus be calculated

as follows. W'e calculate the momentum d.p,

~
Ap

~

= (2kv/c) sin (@/2),

which an electron must absorb to scatter a
photon through the angle @. Then $(p) is equal

to that fraction of the volume inside the Fermi

(b) (c)

FiG. 3. Compton representation of scattering by a free
electron gas. The momentum change of a photon (a) during
a collision is accompanied by an opposite change in mo-
mentum of the scattering electron (b). Electrons at such
positions as A in momentum space are effective, while
those in such positions as B are not effective. (c) is a
schematic diagram analogous to (b) for the case of con-
duction electrons. The full lines represent the Fermi
surface. The dotted square represents the boundary of the
{multiply connected) first zone.
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surface for which Ap+p lies outside the Fermi
surface (see Fig. 3). A simple calculation shows
that this fraction is given by Eq. (6).

(4.
In an actual metal the conduction electrons are

not entirely free. A quantum state may no longer
be specified by its momentum. Instead, each
quantum state is specified by a vector k which,
however, has many properties analogous to that
of momentum. ~ In particular, if a photon changes
its momentum byAp in colliding with an electron,
the electron must change its k vector by an
amount Ak = —Ap. Thus only those states k are
effective in this particular type of scattering for
which the state k —Ap is unoccupied.

The only difference between conduction and
free electrons which we need consider is that in
the former the Fermi surface in k space is not
necessarily a sphere. In fact, k space is divided
into an infinite number of zones, each zone being
multiply connected. ' At small angle scattering
only transitions between states in the same zone
are important.

As the angle of scattering is decreased it is
thus evident that S becomes proportional to the
area of the Fermi surface. In divalent metals
there are just enough conduction electrons to fill

the first zone. Hence as the binding in these
metals becomes stronger (case of poor conduc-
tors) the area of the Fermi surface, together with
S, becomes smaller. For extremely tight binding
(case of insulators) the area of this surface
vanishes.

~ An excellent review of the quantum theory of conduc-
tion electrons is given by H. Bethe, IIendbuch der Ehysik
(1933), Vol. 24, No. 2.

For example, see reference 7, Fig, 19.

It remains to investigate the conditions under
which diffuse scattering from conduction elec-
trons may be experimentally observed. It is
necessary of course that the scattering due to the
conduction electrons be comparable to the scat-
tering due to the core electrons.

The diffuse scattering due to each core is given
bye

I=I,I(Z' f2/Z—')+(1—s ~)f I

Here I, is the Thomson scattering of a single
electron, Z' is the number of electrons per core.
The structure factor f is given approximately by

(4~/k) J'OPu(r) sin (kr)rdr,

where u(r) is the density of the core electrons,
and k = (4s./), ) sin (@/2). For our present purpose
we need only know that the temperature de-
pendent Debye-Wailer term 3I contains k' as
a factor.

Inspection shows that a Taylor expansion of I
starts with O'. The expansion of the first term
starts with k' since f(k) is an even function of k,
and f(o) =Z'. That the expansion of the second
term starts with k' is evident from the dependence
of M upon k.

Hence the diffuse scattering from the core
electrons at small angles varies as qP. From Eq.
(6) we see that the diffuse scattering by the con-
duction electrons varies as p. Hence at sufficiently
small angles the latter will become greater than
the former. Calculation shows that for the par-
ticular case of lithium at room temperature the
two types of scattering become equal at scattering
angles such that

(A/X) sin (p/2) = 0.04.
' G. E. M. Jauncey, Phys. Rev. 37, 1193 (1931);Y. H

Koo, Phys. Rev. 38, 6 (1931).


