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Some of the consequences of the positron theory for the
special case of impressed electrostatic fieldsare investigated.
By imposing a restriction only on the maximum value of the
field intensity, which must always be assumed much smaller
than a certain critical value, but with no restrictions on the
variation of this intensity, a formula for the charge induced
by a charge distribution is obtained. The existence of an

induced charge corresponds to a polarization of the vacuum,
and as a consequence, to deviations from Coulomb's law
for the mutual potential energy of point charges. Conse-
quences of these deviations which are investigated are the
departures from the Coulombian scattering law for heavy
particles and the displacement in the energy levels for
atomic electrons moving in the field of the nucleus.

INTRODUCTION

CCORDING to Dirac’s theory of the posi-
tron an electromagnetic field will, in
general, induce a charge and current distribution
due to the creation and annihilation of electron-
positron pairs. The induced fields produced by
the electron-positron distribution may be re-
garded phenomenologically as corresponding to
supplementary terms in Maxwell equations.
Since one must demand the validity of these
equations in sufficiently weak and slowly varying
fields, i.e., the vanishing of the susceptibility of
vacuum, these terms must depend upon higher
powers of the field intensities and their deriva-
tives. Both linear and nonlinear terms will be
present. The latter correspond to a failure in
the superposition principle for electromagnetic
waves, and correspond, therefore, to the scatter-
ing of light by light, and of light by an electro-
static field, i.e., to the interaction in general of
electromagnetic fields. The linear terms, on the
other hand, correspond to a nonvanishing suscep-
tibility of the vacuum. These terms are of impor-
tance whenever the fields vary appreciably in a
distance of the order of 7#/mc, under which
circumstances an appreciable polarization of the
electron-positron distribution can exist. It is this
effect which we wish to investigate. In order to do
so our considerations will be confined to the
simplest possible circumstances, namely, those
attendant upon an impressed rapidly varying
external electrostatic field.!
Since the critical field strength of the theory is
F.=m?c%/efi, our considerations will be wvalid
only insofar as |§| may be supposed <F.. The

* National Research Fellow.

1 The generalization of these results to rapidly varying
electromagnetic fields is to be found in a paper of Serber
appearing in this issue.

critical length of the theory is No=%/mc; no
restrictions on the variations of the field in dis-
tances of this order will be imposed. In the impact
of two point charges (protons for example)
rapidly varying fields occur, and one may expect
therefore, as has been pointed out by Furry and
Oppenheimer,? deviations from the Coulomb law
of force between them. Similar deviations will
occur, also, for atomic electrons moving in the
field of a nucleus, and these deviations will give
rise to displacements in the position of the
atomic energy levels.

The non-Maxwellian terms given by the
theory of the positron do not in any way account
for the stability of the elementary electrical
particle. On the contrary, these terms correspond
to an increase in its electromagnetic proper
energy. The supplementary terms given by the
positron theory are not, therefore, completely
correct. However, terms of the same general
character are capable of giving a stable electron,
and it is of interest to determine in how far such
terms lead to experimentally detectable results.

The formulism of the theory developed by
Heisenberg will be used in our treatment of the
problem.? For the case of electrostatic fields, these
methods are fully equivalent to those of Furry
and Oppenheimer,? since apart from the am-
biguities introduced by gauge and Lorentz trans-
formations, the infinite constant polarization of
vacuum which appeared in their work can be
simply ignored, and the finite deviations can be
given an unambiguous meaning. It is more con-
venient, however, to work with expressions which
are unconditionally convergent. Heisenberg, fol-
lowing a suggestion of Dirac,* was able to obtain

2 Furry and Oppenheimer, Phys. Rev. 45, 245 (1934).
3 Heisenberg, Zeits. f. Physik 90, 209 (1934).
4 Dirac, Proc. Camb. Phil. Soc. 30, 150 (1934).
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such convergent expressions for the expectation
values of physical quantities in the theory of the
positron. This convergence is achieved by con-
sideration of the density matrix in nondiagonal
form, and subtraction from it of all singular
contributions to the expectation values of electro-
magnetic and dynamical quantities. We shall not
be concerned here with the arguments according
to which the density matrix is defined, nor with
the question of the uniqueness of the result. The
definition is, of course, consistent with the van-
ishing of the susceptibility of vacuum in weak
and slowly varying fields.

I. Tue INDUCED CHARGE DENSITY

A general formula for the induced charge,
arising from the existence of static external
charges, and valid in those regions of space in
which the external field intensity is small com-
pared with the critical field, will be obtained. One
considers the field to be adiabatically increased
from zero to some constant value corresponding
to the presence of the existing external charges,
and determines the modified wave functions for
the electrons by a first-order perturbation
method. In accordance with the method of Dirac
and Heisenberg a density matrix Rs is then de-
fined such that Rg=R—1Rp, where R is the
density matrix corresponding to the Dirac hole
theory and Ry the density matrix for the distri-
bution in which every energy level is occupied.
All of these matrices are defined in nondiagonal

form in the coordinates, the time, and the spin
variables, and the result for the matrix Rs has
been obtained by Heisenberg.’ The first term of
this expression is identified immediately with the
highest singularity on the light cone. Heisenberg
then finds the remaining singularities by develop-
ing the integrand in powers of g(g=p’—p’’ where
p’ and p”’ are the momenta corresponding to the
electron and positron) valid for slowly varying
fields. The result of the integration then shows
that the remaining singularities correspond to the
terms in the lowest power of g, and these terms
are in consequence to be subtracted from the
matrix Rg to form the matrix » which is to be
identified with the physically significant portion
of the density matrix representing only the devia-
tions from that distribution in which all negative
energy states are occupied and all positive states
unoccupied. In the process of this identification,
according to which just those terms correspond-
ing to the lowest power g are taken to represent
the remaining singularities, and arbitrary con-
stant appearing in the formulation of these
singular terms is fixed so that the induced charge
over all space vanishes and the polarization in
slowly varying fields is zero.

We now use Heisenberg’s result to form the
matrix 7 valid for rapidly varying fields. Sub-
tracting the terms corresponding to the singulari-
ties and defining (x,=x,"—x,”, x/=x%, x/=
—a¥=ct',x,'+x,”" =2y, p'=k+g/2,p"=k—g/2)
one obtains the result

1
(" |r|x"k")= ———fdr’fdgdegAO(r’) {expi(r'-g—u-g—K-x)}
2560?15 ¢

X (K@) [+ K 1K -g) (1+ K+ 1g*+ K ) = (1+ K — 3K ) (1 +K*+ 1g'— K-g) "]
— 12 (1+K?) 7P+ 1 (K@) (1K) conj, (1)

where No=17/mc, k' and k"’ are the spin variables, all lengths are expressed in units of Ao, and all
momenta in units of mc. Since all infinities are now removed, one can go to the diagonal of the
matrix 7 before performing the integrations. Integrating over the azimuthal angle of K, going to the
diagonal (x,=0, #”'=k’), adding the conjugate, and simplifying, one obtains

1 ag e
(uk' |7 yk’)=—————fdr’f———deK~A° ') {expig-(r'—wu)
7] oo . cA(r") {exp ig v

Ldu

X | — (4K +3Kgu)(1+ K2+ g+ Kgu) 2 — §Kgu(g(1+ K2 — K*gu(1+K) =)}, (2)

-1 U

® Heisenberg, reference 3, Eq. (33).
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where u=cos ¢ is a new integration variable (¢ is the polar angle between the vectors K and g). When
the integral over K is performed it is found that the subtractive terms are just sufficient to remove the
divergences of the principal term. The result of this integration gives

(uk'|7|uk’)=
wklrle 25675\t

f ar f dgA40(r) fexp ig- (¥ —w) f (1—u) log (14192 +bgu)du

)

By introducing now the potential in terms of a continuous charge distribution

p(r”

A0(r) = — Ao(r)) = N2 f

| /

——7* on(r’) exp i’ -gldr'=—— fp(l") exp ir’-gldr’,

where p(r’) is the charge density per unit volume measured in ordinary units, introducing the Lapla-

cian, and summing over the spin variables %’

(”Mv)_m,,

where a=

f fp<r )dr'A {exp ig- (r—w;f (1—u2) log {1+ 1g*(1 —u) }du,

(4)

e*/hc. The Laplacian considered as an operator on {exp 4g-r'} may be introduced as an

operator on p(r’) by partial integration. Integrating over the angle variables of g, one then obtains

© dbsin {2b|1' —u| (1 —u?)~Y2}

wlrl=—"- f Ap(')dr’

0

1
It~y f(l—uz) log (14+b%du. (5)

Integrating now over b, and expressing all lengths again in ordinary units, one obtains an expression

for the matter density given by

(ulr|w)= (a/dne) f U(|r' —u])Ap()dr’,

where

li(ev)= f | tf““
og @

The induced charge is then
sow)= (a/det) [ U(Ir —uas(ehar’. ®)

The function U(R) has an essential singularity at
R=0, and falls rapidly to zero for values of R
different from zero. Its behavior for small values
of the argument can be found from the develop-
ment of the logarithmic function

-1
li(e™v)=y+log y+2 S——)l—

8
n=1 ’ﬂ(?’l« ') ( a)

Thus for small values of R
U(R)~(2/3R)[v+log R/\o+(5/6)+0(R)], (9)

where y=0.5772 is Euler’s constant. One can

U(R)————f (I—u®li{exp —(2R/No)(1 —u?)~V2}du,

(6)
(7)

dsz

—=&i(y).

2

show also that for large values of R

7r1/2 x 3/2
~ —2 R/ -1
U(R) i R5/2e [14+0(RH]. (10)

The contribution to the induced charge exists
therefore in those regions of space where the
Laplacian of the inducing charge has a finite
value and in a narrow fringe of space of the order
of the Compton wavelength bordering on those
regions. Since U(R) is negative for all values of
R, the sign of the induced charge is the same as
that of the inducing charge in those regions of
space where the Laplacian of the latter is nega-
tive. One may now obtain an approximate ex-
pression for the induced charge by developing
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Ap(r’) about the point r'=y. If the field is
slowly varying, only the first term in this de-
velopment need be retained, and since the
integral over all space of U(R) is —4w\¢?/15, one
obtains the approximate result

p(w)= —(a/15m)\e*Ap(u).

This result agrees with Heisenberg's determina-
tion (reference 3, Eq. 40) obtained from the
matrix Rg as a result of retaining only one term
in the development in powers of g beyond those
which represent the singularities.

As a consequence of the existence of an induced
charge in the immediate neighborhood of space
varying external charges, and the fact that this
induced charge is polarized in the manner shown
by Eq. (8), the mutual potential energy of ex-
ternal charges must deviate from Coulomb’s law
when the charges approach one another within
a distance of the order of the Compton wave-
length. Between like charges, for example, the
deviation from the Coulomb potential will be
given by the interaction energy of the external
charges with that portion of the induced charge
due to the neighboring charge which lies within a
sphere of which the line connecting the external
charges is a radius. Since the induced charge
outside of this sphere is of opposite sign to that
of the inducing charges this deviation from
Coulomb’s law must be such as to increase the
mutual forces acting between the charges. For
charge distributions this deviation could be cal-
culated directly from Eq. (8). For point charges
this deviation is most easily determined from the
matrix representing the interaction energy. This
determination will be made in the next section.

II. DEviATION FROM THE COULOMB POTENTIAL

Consider two fixed point charges Z’e and Z"e

Ot)\o
12875

E=

(1)~

separated by a distance R. In the mutual field of
these charges electrons and positrons are created
and annihilated, and the equilibrium value of the
electron density is obtained from the formulae of
the preceding section in which A4,(r’) represents
the electrostatic potential of an electron at the
point r’ in this electrostatic field. The energy
represented by the electron-positron distribution
is given by

E=Spur (x'F'|Hr|x"k"), (12)

where H represents the matrix of the Hamil-
tonian function, and 7 is Heisenberg's density
matrix after subtraction of the singularities. The
evaluation of the Spur in Eq. (12) yields two
terms, one of which represents the electromag-
netic energy of the electron-positron distribution,
namely,

E=don [audo@alrl, (12)
where u as in the preceding section is in units of
Mo, and the other of which represents the kinetic
energy of the distribution. These terms are of
opposite sign, and the latter has a magnitude
equal to 1/2 the former. Consequently, we may
obtain the total energy of the distribution by the
introduction of the density matrix as given by
Eq. (3) into Eq. (12a) and dividing the result by
a factor 2. One would, of course, obtain the same
result for the total energy by using the perturba-
tion matrix V,, for transitions between negative
and positive energy states, and calculation of the
total energy from the expression

E= —sz[ Vrp[2/(Er'—'Ep)y

where 7 and p index respectively the positive and
negative energy states. Using the former pro-
cedure one obtains

f dpAo(y) f dr’ f ¢*dgAdo(r') {exp ig- (' —u) ] f (1—u2) log {(1+1g?) " +3guldu.  (13)

The potentials may now be introduced. With all quantities in natural units one has

4me
[awdra texp —ig-u) == (2 {exp ~3R-g) +2" fexp IR-g} ,

2*No

4re
fdr’A"(r’){exp igr'}=—-1I/
g"\o

Z'lexp 3R-g}+Z2" {exp —jR-g}}.

Thus, the energy as represented by Eq. (13) has terms dependent on Z”* and on Z'"* alone and on the
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product Z’Z". The former represent the contribution to the proper energy of the charges, and like the
proper energy due to its own field the proper energy of the electron-positron distribution due to the
point charges is infinite.® The interaction energy represented by the terms containing the product
Z'Z'" is, however, finite for finite distances of separation. One obtains

Z'Z"ae* [ dg , , '
Bun= = [ = {exp iR-g) + lexp —iR-g}}- [ (1—u) log {(1+1¢")"*+ Lgu}du
87!'3)\0 g2 -1
Z'Z"ae* psin Rgdg !
= f [ (1—u?log {14+ %1g2(1 —u?) }du. (14)
WZA()R g L)

By integrating over g and introducing ordinary units for R
Em.=—(a/m)Z'Z"eU(R), (15)

where U(R) is defined as in Eq. (7). Since U(R) is always negative the interaction energy is always
positive for like charges, as it should be according to the discussion of the previous section. As-
ymptotic values for Eing, are easily obtained from Egs. (9) and (10) for both large and small val-
ues of R. The values are:

Etne. 2— (2/37)(Z'Z"¢2/R)[y+log R/\o+5/6+0(R)] R small (16)
2(aN2/4\/7)(Z'Z" 2/ R52)e 2 B[ 14 0(R1) ] R large. an
A power series development for Er,. valid for all values of R, which is useful in particular for small

and intermediate values, may be obtained from Eq. (14). By adding and subtracting a term in log
(141g%» to the integrand of this equation, it may be written

Emg.=

Z'Z" ae? f sin Rgdg
T)\QR g
where a= (14 1g%)V?, b=1g. Since

{(4/3) log a—fdu[% log a — (1 —u?) log (a+bu)]}, (18)

“ sin Rgdg .
[ = tog (1+-1g) = = lite
) g
the first term of Eq. (18) is
2aZ'Z"e* 2aZ'Z' e "
li(e?F)=— —
31 AR 3r AR (2R)V2

where W_y/2,0 (2R) is the confluent hypergeometric function.” The integrand of the second term of
Eq. (18) may be developed in powers of b/a valid for all values of g. Integrating first over % and
then making the development one obtains

W_12, 0 (2R),

sin Rgdg ! :
f ——— | du{%loga—(1—u?) log (a+bu)}
g —1

sin Rgdg(16 2a* 4 at a 2 a® a 2
e a+(———-~) log <a+b>—(~~—+-) log (@=b)|
g 9 3p 3 3 b 3 3% b 3

2 » sin Rgdg /1 3 1 b\
SELT )0
3 n=1 g n 2n+1 2n+43/ \a

This integral may be evaluated by complex methods to give a power series in R. Combining the
results for the first and second terms of Eq. (18) and returning to ordinary units one obtains finally

¢ The contribution to the electrostatic proper energy of a  the proper energy of an electron, giving, in fact, integrals
point charge may be obtained by letting R—0 in Eq. (15);  of the form « f®(dg/g) log (1/g).
it is positive and has a slightly worse singularity than the ” Whittaker and Watson, Modern Analysis, 4th ed.,
classical term, since U—(log R)/R. These polarization p. 339.
terms also lead to divergent positive terms of order « in
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for the interaction energy

200 2'7" e
Int, = —

™

3 o
lili(e_m/”) H—e 2B Y 2n
2

n=1

n—1 n—o—1

(=2)¥=T(n+%)

(n+o—1)!

; &) o
=0 w=0 n(2n+1)2n+3)TE) n+uto)!(n—p—c—1)!lolu!\ N

The power series development of the logarithmic
function valid for all finite values of the argument
is given by Eq. (8a); therefore, one has in Eq.
(19) a power series development of Ep:. valid
for all finite values of R. One can show that

(=2)-° _ r'(z)
=0 (n+o)(n—o—1)lc! 2"T(n+%)

n—1

and

©

El n(2n+1) 2n+3)

=3(5/6—log 2)

as a consequence of which the second term of the
bracket in Eq. (19) approaches the value
(5/6 —log 2) as R approaches zero. Combining with
the first few terms of the series development for
1i (e72E/™) one observes that Eq. (19) gives again
Eq. (16) for E:, valid for small values of R. It is
of interest to note that this result agrees in form
with that of Furry and Oppenheimer® in which
the divergences of the previous method are con-
tained in the constant K of their equations.

As has already been mentioned, the results of
the theory are valid only insofar as the field in-
tensities can be assumed to be much smaller than
the critical field F.. Thus the results obtained
for the deviation from Coulomb potential given
above by Eq. (15) can be expected to hold for
protons only for distances of separation such
that R>N(a)t.

II1. SCATTERING OF HEAVY PARTICLES

The deviations from Coulomb potential con-
sidered in the last section become important
when the distance of separation of the particles is

of the order of the Compton wavelength. These

deviations are in principle observable, and may

8 Furry and Oppenheimer, Phys. Rev. 45, 245 (1934),
Eq. (4.8). A typographical error has put the factor = in
the numerator instead of the denominator in two terms of
this expression. Also Ao here is 27 times the Ao used in the
expressions given above.

be_detected in the scattering of high energy
particles. For the case of protons the classical
distance of closest approach in units of the Comp-
ton wavelength is of the order « for incident
particles having energies of the order of one
million electron volts. For energies of this order
of magnitude one is already beyond the range of
validity of the theory, yet, for incident particles
of this and somewhat lower energies, deviations
from the law of scattering valid for the strict
Coulomb potential should be found.

The scattering law for the new potential is
easily obtained. Since the deviations from
Rutherford scattering will be important only for
incident particles of high energy the Born ap-
proximation may be used. The perturbation
parameter *V(r)/hv~Z'Z"'e*/ hv, the smallness of
which determines the wvalidity of the Born
method, is for the case of incident protons having
kinetic energies of the order of one million elec-
tron volts equal approximately to 20a. For this
and higher energies the Born approximation will
be fairly accurate.

The scattered amplitude according to the Born
formula for unit incident flux scattered by a fixed
scattering center is

1) ZMf‘” sin KrV( v
)= —— r)ridr,
h? 0 Kr

(20)

where K= (2/\) sin (8/2), \=#/mv, M is the
mass of the incident particle, v its initial velocity,
and 6 the angle with respect to the direction of the
incident beam at which the scattering is observed.
Let Z'e and Z'’e denote the charge of the incident
and scattering particles, respectively. Then from
Eq. (15) the mutual potential energy (Coulomb
potential plus the deviation from Coulomb po-
tential) is
V(iry=(Z'Z"e*/r)[1—(a/m)rU(r)]. (21)

All of the integrations can be performed strictly
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with the result that one obtains for f(6)

jo=222 20[1+QF<k>] (22)
= csc? | — ,
2 Mv? 2L 3r
where

.4 5 2 4\ V2
ro-t S (-2 (1)

k* 3 k? k?
(1 382) 2+ 3k

0 ,
HTESTORT
k=2(Mv/mc) sin (8/2).

m is the electron mass, and the negative sign of
f(0) is dropped since only its absolute value is
important. The first term of Eq. (22) gives the
ordinary Rutherford scattering; the second term
gives the deviation from this scattering law. For
small values of &, F(k)~1k?, and, therefore, the
deviation from the Rutherford scattering is
finite for all values of 0. For large values of %

F(k)~2log k—(5/3).

The form of the function F(k) shows that the
deviations from the usual scattering law for
particles of a given incident velocity rises rapidly
with increasing 6 in the neighborhood of 6=0,
and then remains practically constant through-
out the greater portion of the angular range in-
creasing with 6 only as the logarithm of sin (6/2).
The practical constancy of the deviation together
with its small magnitude precludes the possibility
of any easy experimental verification of the new
potential.®

The intensity of scattering into a given solid
angle is given by the square of the scattered
amplitude f(#). For the case of proton scattering
by protons (the scattering of protons by hydrogen
nuclei) the scattered amplitude in relative co-
ordinates is given by Eq. (22) with M equal to
one-half the proton mass. Considering the
hydrogen nuclei as initially stationary compared
with the high energy incident protons, the in-
tensity of scattering into a solid angle d%Q
measured with respect to the direction of the

% Some recent experimental evidence on the scattering of
high energy protons in hydrogen (M. G. White, Phys. Rev.
47, 573 (1935)) indicates the possible existence of rather
large deviations, which in their dependence on energy and
angular distribution as well as in the magnitude of the

effect bear little resemblance to the predictions given
here.

incident beam is

I(0)dQ=4]£(26) |2 cos 6d9. (23)

Exchange may be taken into account in the usual
manner by introducing |f(20)+f(x—26)|? for
f(20)]2.

IV. DisPLACEMENT OF AToMIC ENERGY LEVELS

§1. Secular terms

Because of the failure of the potential energy
between electron and nucleus to be strictly
Coulombian, the energy levels for the electron
are slightly displaced. This displacement may be
calculated with the deviation from the Coulom-
bian potential as a small perturbation, or by
using the expression for the induced charge to
calculate the potential between the nucleus and
the induced charge of the electron and the poten-
tial between the electron and the induced charge
of the nucleus. With the former procedure the
displacement in the energy levels is given by

sE= [V [ Wanroe) 2ar, (20
where V(r) represents the deviation from
Coulomb potential, and ¥,;, the electron wave
function. From Egs. (15) and (7). V() for the

interaction of an electron with the nucleus is
given by

V(r)=Z::2 fo (1 — )i f 1

[

2rz dz
{exp —-——(1 —u2)—”2}—. (25)
2

0

For the 1s level
Wio(r0o)= —[1/2(27)V27](2/a)¥%e~"'e, (26)

where a= #*/ue’Z, u=mM/(m~+ M). The integra-
tion can be performed strictly to the lowest
power in No/a=ZMa/(M+m) with the result

that

$E1, =—8Z%R/15T, (27)

where R=pe*Z%/2h* is the Rydberg constant.
Similarly for the 2s level

1 1\ 32 /2r
Wago(rbe) = e»r/?a(_) (—_4) (28)
8(2m)v/2 a a
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and 0Eq =2—Z%3R/15. (29)

For p levels the calculation shows that the dis-
placement is of higher order in «, being, in fact,
of order of. Of the secular terms, therefore, the
important ones are the s-terms.!?

§2. Nonsecular terms

A Fourier resolution of the inducing charge
p(rt) yields after a Lorentz transformation and
substitution into Eq. (8) an expression for a
single component of the induced charge given by!!

0p(K)= X (K)p(K), (30)

where

o w2
= —— 3
X(@)= = f cos” ydy
‘log (14+31K2%cos?y) (31)

and the propagation vector K is in units of Xy~
For small values of K

X(K)=—aK?/157 (32)

and accordingly, when only small values of K
are important in p(rt) Eq. (30) yields the result

dp(rt) = (a/15m)N*[]p(rt) (33)

an expression which represents the sum of Eg.
(11) for slowly varying space components and
Heisenberg’s result for pure but slowly varying
time components.'? The order of magnitude of
the contribution of transitions within the discrete
spectrum to the displacement of the 1s electron

10 These calculations have been made also by E. Brunner
to whom we are indebted for having told us of the results.

1t The derivation of this result is given in the paper of
R. Serber appearing in this issue.

12 Heisenberg, reference 3, Eq. (44).

e
dp(Lr)=—

level may be determined then with the help of
Eq. (33), yielding a result which is small of order
Z%5, and, therefore, negligible in comparison with
the secular term. We will, accordingly, consider
in more detail only the contribution given by
transitions to the continuous spectrum.

Confining our considerations as before to the
1s level, the displacement is given by

0E = —fdkl Vik|2/ by, (34)

where (35)

V1k=Zef[6p(r)/r]dr

and 6p(7) is the induced charge due to the charge
representing the transition 1s to k. Using plane
waves to represent the states of the continuous
spectrum, a procedure justified in what follows
since little contribution comes from the small
values of %, and Eq. (33) for the induced charge,
one obtains

0, =2—

6da EL(1+k2)V2—17dk
f [(1+k2) ] R (36)

225737 (1+a2k?)2

Thus, the integral over k diverges for large %
like dk/k, the effect of large components falling
off too slowly on account of the k? from the
d’Alembertian. Aside from the divergence the
order of magnitude of the result is Z3a5. The
divergence is, of course, spurious. Convergence
may be expected when the true expression for
X (K) from Eq. (31) is used. Using again plane
waves to represent the states of the continuous
spectrum, and Egs. (30) and (31) for the induced
charge, one obtains for the Lth component

(Za)3/2)\03l2

X (L) {exp iK-1/\o} (37)

8r4 [1-+a?|[K+k|2]?

with K and % in units of A7, a= (aZ) Y (m+M)/M, k The space vector of the plane wave, and

L?=K?— (ko—E1/ﬁC)2,

where FEj, is the energy for the 1s electron, and kg is the time component of the propagation vector
of the plane wave. The coefficient of X (L) in Eq. (37) in the limit for large ¢ behaves like §(K+Kk).
Since large values of k are important, one can neglect the binding of the electron which is equivalent
then in Eq. (37) to replacing K by —k in X (L). Therefore, in this approximation using the definition
of X from Eq. (31) and substituting —k for K in L
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ae (20)3/2\3/2

167 [14a?|K+k|2

dp(Lr)=

T2
{exp iK-r/)\o}fo cos® Ydy log [1+ 1 {k*— (ko— E1/%c)?} cos? ‘//938)

Integrating over all values of L and introducing 8p(r) into Eq. (35) one obtains for the dominant

term of Vi
4Zce? (2a)V12\,12

1+a2k?

Vlk ~ =

1572

For large values of % this expression behaves like
(log k)/k? instead of like 1/k as obtained using
the d’Alembertian. The integral for 6FE,; will,
therefore, converge, and the result for the non-
secular terms is that 8E; is of the order Z%a5.
As a consequence of these calculations one
finds that the energy levels are depressed, the
displacement corresponding to a quantum defect
A=n—n* which is positive. It is not possible,
therefore to ascribe any part of the observed dis-
crepancy in the doublet separations of hydrogen
to the new potential, since the experimentally
observed values of the doublet separations in the
Balmer series are always less than those predicted
by the relativistic fine-structure theory, whereas,
the displacement in the energy levels correspond-
ing to the new potential correspond to an in-

log {1+3[(1+k)M2—17).

(39)

creased separation of the doublet components.
Furthermore, the percentage change in the
doublet separations would be smaller than the
experimentally observed discrepancy of about 3
percent by a factor of at least 10. The nature of
the potential necessary to explain the observed
results has been considered by Kemble and
Present.®® It needs to be emphasized here, only
that the potential to which the electron-positron
theory gives rise is not of the requisite character.

The author wishes to express his gratitude for
frequent suggestions and help given by Professor
J. R. Oppenheimer throughout the course of this
investigation and to Dr. R. Serber and Mr. A.
Nordsieck for many helpful discussions of the
problem.

13 Kemble and Present, Phys. Rev. 44, 1031 (1933).
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The Raman Spectrum of Heavy Chloroform
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The Raman spectrum of chloroform made from deuterium has been photographed and the
line shifts measured. The three types of isotope effects observed in the spectrum of heavy
chloroform have been discussed. By treating different groups of atoms in the molecule as
entities satisfactory agreement between calculated and observed values for the isotope dis-
placements can be secured. Some idea of the nature of the role played by the chlorines in the C-H
“bending” and “‘stretching’ vibrations is obtained.

HE heavy chloroform, made from deuterium
by Dr. F. W. Breuer of the Chemistry
Department of Pennsylvania State College, was
placed at our disposal for the study of its Raman
spectrum. It was contained in a sealed glass tube
6 mm in diameter and 30 cm long, wrapped in
black insulation tape with the exception of the
lower 5 cm adjacent to the flat Pyrex glass win-
dow, the portion occupied by the fluid.
The arrangement of apparatus for irradiating
the tube was essentially the same as that de-

scribed by one of us! except that the high poten-
tial quartz mercury tube was replaced with the
220-volt Hanovia quartz mercury arc in its metal
housing turned to the vertical position. As was
shown in the previous paper this disposition
prevents a temperature gradient across the diam-
eter of the irradiation tube, with its attendant
troublesome refraction, obviating as well the
necessity of an air blast. The light from the arc

1R, W. Wood, Raman Spectra of Heavy Water, Phys.
Rev. 45, 392 (1934).



