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the electrons has been attempted, since no data are
available for such a computation. Furthermore it
is not known to what extent these metastable
atoms are produced locally by recombination and
to what extent they are swept down by the
vapor from the region of the arc. Webb and
Wang' found that both factors are important.
They further showed that if into a moving
plasma similar to that studied here, they intro-
duced sodium vapor, a marked drop in electron
temperature immediately resulted; in the case
cited from 2300' to 800'K. The most important
action of the sodium on the flowing vapor was to
eliminate the metastable atoms by excitation of
the sodium, and the most probable explanation
of the temperature drop is that the elimination of
the metastable atoms removed a source of elec-
tron energy, resulting in lowered electron
temperature.

Webb and Sinclair' found that the rate of
recombination depended to a large extent on the
electron temperature, and came to the conclusion
that a somewhat complex interaction between
ions and fast and slow electrons was involved in
the recombination process. Furthermore, a study

of the intensity distribution in the afterglow
spectrum leads to the conclusion that consider-
able kinetic energy may be freed by the process.
It therefore seems probable that the recombi-
nation process is largely responsible for the
energy supply which tends to hold up the electron
temperature, either through some process in-

volving many-body collisions, or by the meta-
stable atoms which constitute a large part of the
atoms formed by recombination. It may be noted
that the recombination has been found by Webb
and Sinclair and by Mohler and Boeckner' to
increase with the pressure, which corresponds to
the increase in the final electron temperature
level with increase in pressure found here. On the
other hand, for a given rate of production, the
concentration of metastable atoms also tends to
increase with increased pressure, as under these
conditions the life of these atoms is practically
determined by the diffusion to the wall.

The authors wish to express their appreciation
to Mr. T. C. Hardy for his assistance in the
taking of the measurements.

"Mohler and Boeckner, Bur. Standards J. Research 2,
489 (1929).
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In order to put Zwaan's scheme for deriving the Kramers
connection formulas on a rigorous basis, differential equa-
tions are set up governing the variation in the coefficients
used to fit a linear combination of the B. W. K. type ap-
proximation functions to an exact solution of Schrodinger's
equation in one dimension. Approximate solutions of the
differential equations are worked out which lend them-
selves to the setting up of the connection formulas and

give definite upper bounds to the errors involved in their
use. The method is also used to set up the Sommerfeld
phase integral quantum condition independently of the
connection formulas. An upper limit to the error in the
energy is worked out. A similar treatment of the problem
of the transmission of matter waves through rounded po-
tential barriers is formulated.

1. INTRODUCTION

Zwaan's' scheme for deriving the Kramers
connection formulas' used in the Brillouin-
Wentzel-Kramers (B. W. K.) method is simple
and illuminating, but not entirely rigorous. In

' A. Zwaan, Intensitaten im Ca-Funkenspektrnm, Dis-
sertation, Utrecht, 1929.

2 H. A. Kramers, Zeits. f. Physik 39, 828 (1926); H. A.
Kramers and G. P. Ittman, Zeits. f. Physik 58, 217 (1929).

the attempt to put Zwaan's argument on a
rigorous basis the author has developed a new
way of studying the relation of the Stokes
phenomenon to the B.W. K. method whose value
extends beyond the scope of the connection
formulas themselves.

Consider a one-dimensional problem in wave
mechanics with the potential energy V(s) and the

. classical local momentum
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P(s, E) = I»LE —V(s)) I '.

The Schrodinger equation takes the form

P"+x'p'P= 0

with X set equal to 2~/h. The basic approximation
functions of the B. W. K. method are

f'(s E)=P(s E) 'e"'* )

f.(s, E) =P(s, E) :e "-("-); (2)

g

~(, &) ~f (((&)&(,
iQ

(3)

Here a denotes ~ —1. The point so can be chosen
at pleasure but is ordinarily placed on the axis of
reals. f, and f, are readily shown to be solutions
of the differential equation

f"+L~'o' —Qlf = o (4)

where Q denotes the function

U"3pP'q' p" 1 Sp V'

I+ . (»
4E pJ 2p 4 4(E VJ E V— —

Wherever ~Q~ &&X'p', Eq. (4) is very nearly the
same as (1) and f, , f„may be said to be good
approximate solutions of (1).

Let s' denote a simple real zero point of the
function E—U(s) (primes and double primes
denote differentiation except when applied to the
symbol s itself). For definiteness, we assume that
E—U is negative to the left of s' and positive to
the right (cf. Fig. 1). At s', f,, f„and Q all
become infinite. Hence f;, f„have no value as
approximate solutions of (1) in the neighborhood
of s'. We shall suppose, however, that there exist
regions I and II to the left and right of s',
respectively, where

~ Q~ &&X2p2 and where the f's
are good approximate solutions. Then if P(z) is an
exact solution of (1), we may reasonably assume
that in any not too large portion of I, P(s) is
approximately equal to some suitable linear
combiriation of f; and f„.Thus, if o(; and n„are
suitably chosen constants,

3 R. E. Langer, Trans. Am. Math. Soc. 33, 23 (1931);34,
447 (1932); Bull. Am. Math. Soc. 40, 545 (1934).

4 Sir George Gabriel Stokes, Math. and Phys. Papers,
Vol. 4, pp. 77—109 and 283—298.' Let us assume that V(z) —E is a polynomial of degree
n, or can be accurately represented by such a polynomial
in the interval between I and II. Then, if zI, denotes the

n
kth oot, E—V=CII (z —z-). It follo s th t

k=1

1
(E—V)'/(E —V) = &

2=1 Z zIe

S
(E—V) "/(E —V) =

E—V g —1 (z —zI„.)2~'f'+ ~.f.=4 (s) in region I.

values of the coeAicients is called the Stokes
phenomenon and the problem is to determine the
magnitude of this shift in terms of the values on
one side of s', say in I.

Kramers method of attack is based on the
assumption that V(s) is sensibly linear in the
interval between I and II. Under these circum-
stances P(s) can be approximated by a suitable
Bessel's function over the interval in question
and this function constitutes a bridge between
the B.W. K. approximations in I and II. Langer'
has introduced a different type of approximation
function involving a Bessel's function of the
argument w(x) defined in Eq. (3). The Langer
apprpximation function degenerates into the
B. W K. type in I and II, but does not go to
pieces near s'. This method is very powerful, but
has some disadvantages with respect to that
developed in the present article.

Zwaan's derivation of the connection formulas
follows closely a line of thought previously
developed by Stokes. 4 It is based on the intro-
duction of complex values of the independent
variable and the existence of a path I' joining I
and I I, but passing around s' in the complex
pla, ne so that the inequality ~Q~ &&X'p' is good
along its entire length. If U(s) is analytic on the
axis of reals between I and II, and if its analytic
extension into the upper half plane yields no
roots of U(s) Enear s', we m—ay assume that
such a path can be found. '

The essential feature of the situation to which
Zwaan calls attention is that along a portion of
any such path I' the approximation f; becomes

Similarly
P;f;+P„f„=f(s) in region II.

Hence

It is well known that the coefficients P;, P„are
not equal to n;, n„respectively. The shift in the

P' 8pCIIg(z —zI,) 4 g 1z—zI, g (z —zI,)'

Inspection of this expression for Q/p' proves the above
statement for the case that n is small.
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very small, while f„becomes very large. Hence f„
and f; are said to be dominant and subdominant,
respectively, in the region in question. Where this
is true changes in the subdominant coefficient can
take pla.ce even when

~

Q~((l~'P'. On the other
hand the coefficient of the dominant approxi-
mation function cannot change much, since a
small change in this coefficient makes a very
large difference in the function. Zwaan assumes
that the latter coefficient is constant.

2. THE DIFFERENTIAL EQUAT IoNs FQR

THE COEFFICIENTS

Granted that the changes do take place, we
propose here to investigate them by setting up
explicit differential equations for the variation in
the coefficients. The formulation of these equa-
tions, which forms the essential contribution of
the present paper, is reminiscent of a method of
attack on one-dimensional problems in quantum
mechanics due to Hill. '

Let It (z) be an exact solution of (1). Let
u= a;f;+a„f„bea linear combination of f; and f„
which is fitted to P at the arbitrary point z=zi.
The best fit will evidently be obtained if u and
du/dz are made equal to It and df/dz, respec-
tively, at the point s&. In that case

da; i iQ
Qf.P = ——La, +e-' -a„7.

ds 2X 2) p
(9)

Similarly

3. THE APPROXIMATE INTEGRATION OF EQS. (9)
AND (10)

Introducing a fixed point g, let us make the
transformation

where

b;(z, $) =a;(z)e 'r&" I&;

b. (z, t) =a.(z)'+"'* "
z

F(z, $) =— —dz.
2) ~ p

(11a)

c Q
Q—fA—= ———La.+e""a 7 (»)

2X 2) p

These differential equations are exact. Their
integration is equivalent to the integration of Eq.
(1), although they blow up at the zeros of
p(z, B). If an exact integration were possible, it
would be a simple matter to work out the exact
eigenfunctions and eigenvalues of (1). The pri-
mary usefulness of Eqs. (9) and (10), however,
lies in the possibility of deriving useful approxi-
mations from them.

a'f'(z ~) +a.f.(zi) =0(»)
a'f''(z )+a f'(z ) =4'(z )

This change of variables leads to the following
6

(7) simpler system of differential equations:

As the Wronskian determinant f,:f„' f„f,' doe, s-
not vanish (it has the constant value —4 .

/she

= —2lii) it is possible to choose a; and a„so as to
satisfy these equations at an arbitrary point sI
where f„and f„are uniquely defined. The
coefficients so obtained will then vary continu-
ously as sI moves around the path I', reducing to
u; and o., where F meets the axis of reals in I and
to P;, P„where l" meets the axis of reals in II.

Dropping the subscript 1 in Eqs. (6) and (7),
solving for u;, and differentiating with respect to
s, we obtain

db; c

~
—2t(F+III) b ~

ds 2X p

dbms c
g2 t(F+III)b

Clearly b; and b„will be sensibly equal to a; and
a„, respectively, at any point s which can be
connected with $ by a path along which

~ Q/p ~

is
small enough. It is convenient to define an index
of quality p& for a path A in the complex plane by
the equation

dpi = (i/2&) (f.'4 f.4")—
d

1 Q 1 Q

) g p )2gp2
(13)

On reduction with the aid of Eqs. (1) and (4)

' E. L. Hill, Phys. Rev. 38, 1258 (1931).

We shall hereafter refer to a path as good, provided
that its index of cluality is much less than unity.
Any short path which gives a wide berth to the
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zeros of p(s, F) can ordinarily be assumed to be
"good" in this sense. Since

1 —ds ~& pg,

it follows that
I F(s, () I

~& ,'/is if-s and g are any
two points on A. b; and b, are thus sensibly equal
to e; and a„at any point s which can be con-
nected with g by a good path.

It will simplify the discussion of the integration
of Eqs. (12) if we assume at f&rst a definite path of
integration A, of total length /, leading from an
initial point Zo to a final point Z~, and having the
property that the imaginary part of' m is a
monotonically decreasing function of the path
length s measured from Zo. In other words, we

db /ds=Z(s)y(s)e ""+)b

db„/ds = —Z(s) «(s)e'&'+")b;.

(15)

(16)

Under favorable circumstances b; can be com-
puted approximately for points on A by replacing
b„ in. (15) by its initial value b, =b.(Z—o) Let.
b;(s) denote the corresponding approximation for
b, (s) Then.

assume that Ie'
I

increases monotonically as we
move from Zo to Z~ along A. With these re-
strictions we introduce the real variable of
integration s and the notation

u/(s) = &0(s), &Q(s)/2'hp(s) =Z(s),

ds/ds= q(s), F(s, &) =8(s, &).

Eqs. (12) take the form

b (s) =b'+b 'fo'Z(si) e(si)e ""'"+"'i'&dsi.

This approximation can be tested by computing an upper bound on
I b;(Zi) b;(Zi) —

I
. We have

b;(Z, ) —b, (Z,) =f0'Lb„(s) b„']Z—(s) p(s)e "'+"'ds

But from (16)
bg ($) b,'= —Jj) 'b, (s—i)Z(si) e (si)e"&'&'"+""&dsi.

Hence

b;(Zi) —b, (Zi) = —f() 'ds I Z(s) e (s)e-"&'&')+~&') &f b;0(8s,)Z(s )e (is&)e "&"'»+"&'»&dsi}

= —JJrb; (si)Z(si) Z(s) (p(si) (/)(s) e-'&'&')-'&'»+" &') "&'» &dsids,

(17)

where T is a triangle in the s, si plane def&ned by the inequalities 0&~si&&s; 0&& sk i. Since le'"I
increases monotonically along A, Ie "& &') "&"&

I
&~1 at every point in T. e(s) is of unit absolute

value and

[() ( )&I —Ie
—(/)J. ,'&&&(')/ (')&Ã(') 'I(e A

Introducing the symbol M; for the maximum value of
I
b;

I
on A, we readily derive the inequality

I b'(Zi) —b*(Zi) I
&~'e» fJ~ I ~(») I I &(s) I

d»ds. (21)

The function
I Z(s) I I &(si) I

being symmetrical with respect to its arguments, the above integral over
T is half the corresponding integral over the complete square 0&& s && 1; 0&& s~&& 1. Thus

lb'(Zi) —b*(Zi) I
& 2m'e"s /fo'I Z(s) I

ds }'=/., e»(M /8). (22)

We conclude that in the case of a good path leading uphill with respect to Ie'
I

the approximation (17)
will lead to an error which is small in comparison with the maximum value of

I
b;

I
on the path.

Let mo denote the value of m at the point Zo. The maximum absolute value of the factor e '"('» of
the integrand of Eq. (17) is Ie '" OI. Furthermore on the path AIe "I ~&e"' &e»+» where &io denotes
the index of quality of the best path leading from $ to Zo. We assume that &io is a small quantity of the
order of /is. Eq. (17) yields

I
b (Zi) —b'I & 2/ ""'+""

I
b' I I

e '"'I.
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Combining this inequality with (22), we obtain

I
b*(z~) I

&
I
b*'I+ z~""'+"'Ib.'I

I
z '"'I +~~""'(~~/g). (23)

Let Z denote the point on A where b;(z) becomes equal to 3II,, and let pz' denote the quantity
1/XJz, z

I Q/plds, where the integration is carried out along A.. Then pz' &~ pz. Clearly an equation
similar to (23) applies to the point Z . Thus

~'&
I
b"

I +(~'/2) e"-'+""'Ib. 'I
I
z '"'I+~~"z"'(~'/8).

Transposing and neglecting terms of higher power in the small quantities po, «&z, we obtain M; &
I
b,

I

+—',pal b,
I I

e 2' 'I. It follows that in this approximation

Ib;(z&) —b
I

& Ib, (z&) —b;(z&) I+ lb;(z&) b
I

—&-',pzlb„'I le ""'I+—'yz'Ib I. (24)

Consider next the change in a;. We have

I
a (Z,) —a

I
=

I

e'~&z' "
I lb (Z,)e'&'"J'&c&n) u* b 0

I

where

1
I F(zo, $) I

& geo and — —dz &-',pp.
2) pP

Hence, neglecting small quantities of higher order,

ln'(Z~) —n"
I
«""(""'Ib'(Z~) —b" I+ lb" I ( ./2) I & 2~. I lb*'I+ I

b.'I
l
z '"'I].

Finally, it follows from (11) that to this same approximation
I
b,'I —

I
a„'I & la, o

I
(po/2). Consequently

n, (z,) —n,'I & l~.L In" I+ ln (25)

We conclude that the variation in a; is small in comparison with the larger of the two quantities

In applying the above result two special cases
are to be considered. The 6rst is that of a good
uphill path restricted by the additional require-
ment that Ie'

I
&~1 along its entire length. (It

will be convenient to refer to regions in which
e"" )1 as mountains, and to regions in which
e'" &1 as valleys. Clearly f, is dominant and f„

subdominant on the upper levels of the moun-
tains. These roles are reversed for the lower levels
of the valleys. ) In this case le 2'"'I &1 and

I
a„(Z~) —a

I
is small compared with the average

of the quantities la I
and la„'I. Under these

circumstances we shall say that a; is sensibly
constant along the path, although if

I
a

I
«

I

a„' I,
it may vary by a large percentage of its initial
absolute value.

In order to deal with the variation in a; along
a good path leading from Zo clear over a moun-
tain to Z&, but not entering the adjacent valleys,

n;(z, (26)

and can say that a„(z) is sensibly constant along
the good path A. Evidently a„(z) will also be
sensibly constant along a good path A extending

it is convenient to think of the path as made up
of two parts leading to the crest from opposite
sides. Applying the above argument to each part
of the path we come to the conclusion that a; is
sensiMy constant over the entire path in com-
parison with the largest of the four quantities
l~;oI, ln„ I, ln, (z,) I, Ia.(z,) I.

A second important case of the application of
Eq. (25) is that of a good path leading uphill, but
beginning in a valley, where le'

I
&1 and f„ is

dominant. If the valley is deep le " 'I is a very
large number, but if Ia„'I Ie

—" 'I &~ Ia,'I, we have
the inequality
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across a valley from one mountain to another,
provided that Ia„(s)

I I
e '"'*'I (~la;(s) I

at the
lowest point of the path.

Turning to a„(s), we readily derive formulas
parallel to those for a;(s) provided that we
perform the integrations in the opposite direction
on A, i.e. , downhill with respect to

I

e'"I. Thus, if
we take a,' and a„' as the values of a; and a, at the.
upper end of the path, we obtain instead of (25)
the inequality

Ia.(Z ) —a.'1(l~~f la.'I+ la"
I
I""'I l (27)

In general the coefficient of the dominant
approximation f, or f„ is sensibly constant over a
good path A on which

I

e'
I

—1 does not change
sign. The coefficient of the subdominant term is
also sensibly constant over such a path provided
that the absolute value of the dominant term at
the point of maximum dominance is zero, or
smaller than the product (evaluated at the same
point) of the absolute value of the coef6cient of
the subdominant term multiplied by the smaller
of the two quantities le "Ml. However, ince we
have defined the phrase "sensibly constant"
somewhat loosely, it is perhaps best to base all

rigorous arguments directly on the inequalities
(25) and (27).

4. DERIVATION OF THE CONNECTION FORMULAS

We assume that the potential function in the
neighborhood of the classical turning point s' has
the form indicated in Fig. 1. Introducing polar
coordinates r, 0 with the origin at s', we write P' in
the form

p' =2@(E V) =re'p(s)—
where p(s) is assumed to be bounded from zero
in a wide region of the complex plane about s'.
We further assume the existence of a path
passing around s' in the upper half plane (cf.
Fig. 3) enclosing no complex zeros of p' and good
in the technical sense that p~(&1. Let Pj and

0

FrG. 2.

P2 denote the end points of A located in regions I
and II, respectively.

To avoid ambiguity due to the multiple-
valued character of p, p', and m, we restrict the
angle 0 to the range 0 ~& 0 &&2x and define p and p"
by the equations

p=
I pl: p'="'I pl':

w= —i) J;*'Ipldf.

In the region II to the right of s'

(2fl)

p'= Ipl': ~=&J'** Ipl«(29)
A cut extending from s' to the right along the
axis of reals insures that we have a single
branch of ie(s) to deal with.

In order to visualize the problem it is con-
venient to map the level lines of le' I. Eqs. (28)
and (29) show directly that the axis of reals
passes through a mountain to the left of s', but
that the portion of the axis of reals to the right of
s' is a level line with

I

e'
I

= 1. Writing s= x+ iy;
p=

I
pie'", the differential equation for the level

lines is seen to be

P —Zs&«/2&-'. . P,
-'. Z-,'Z«i4&-,

p' can be treated as single-valued. Let the point
so LEq. (3)j be identified with s'. T'hen in the
region I we have

(p p*)—
dy/dx=i = tan I, —

(p+p*)
(3o)

I ic. 1.
where p* is the complex conjugate of P. Treating
y in first approximation as constant over the
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upper half plane. Then av will be sensibly
constant between D and P2 because f. is domi-
nant over this portion of A. It will also be
constant over P&D if ai vanishes, or is very small,
at P&. It follows that if n; —=u, (P&) =0, n. =P..
This fact, together with the reality condition
gives the first connection formula.

Let us cast the argument in rigorous form.
Denoting the point on A where

I

e'
I

has its
minimum value by B and the corresponding
values of a; and av by pi and y„, respectively, we

apply Eq. (27) first to the arc PqE and then to
P2B. Let pI and p2 be the values of p for these two
sections of the path A. Then

FrG. 3. Level lines of ~e&"
~

for linear potential function.
~

e&"
~

is unity along cut and dotted lines radiating from Z'.
Arrows indicate the uphill direction.

neighborhood of s' we obtain the equation dy/dx
= —tan -,'0 for the neighborhood in question.
'Fig. 3 shows the approximate form of the level
lines derived from the above differential equa-
tion. Three lines radiate from the branch point
s' and from every other simple zero point of
Z —U(s). The exact forms of the contour lines
will, of course, depend on p(s), but the distor-
tion produced by p is sure to be small if q is
smooth in the neighborhood of s'.

We identify the point $ of Eqs. (11) with P&,
thus insuring that the a's and b's are sensibly
equal on A. Let D denote the point where A

crosses the line
I

e'
I

= 1 which extends into the

Consider the application of these equations to a
solution of Eq. (1) which is real on the axis of
reals and which is of the f, type at P& From the.
reality condition it follows that P;= P„* and

I
P;

I

=
I
P„

I
. If the function is to be off„type at P&

we may assume that IQ.;I Ie" ' '~
I

&~In„l. Hence

We can accordingly identify n„and p, in first
approximation.

It follows from (28) that if n„ is given the value
e' I' the product n„f„ is real in I and describes a
real P function. Then P„=P;*=e' ~'. Thus the
connection formula

Y

Region I

z 7r
e' "f„=lpl *e "J*—I&~" r+2p *cos X pdf

~ z' 4
V

Region II

(32)

is established.
In this formula, following Langer, we draw the

arrow from left to right to indicate that the
approximate validity of the left-hand member
implies that of the right, but that the converse
statement is not true. In order to make clear the
justification of this one-way street sign and to
prepare the way for the derivation of the second
connection formula, we observe that in virtue of
the homogeneous linear character of Eqs. (9) and

(10), the functions a;(s), a„(s) must be homo-

Pi= giiOfi+ giv&v) pv= gvt', ~i+gvvv (33)

Our approximate solution of Eqs. (9) and (10)
for the special case that o,i=0 shows that

(34)

geneous linear in the constants of integration n;,
n„. Hence P, and P„must be homogeneous linear
functions of cx; and n, . Thus a complete exact
solution of the whole connection problem would
involve a complete and exact determination of
the matrix Ilgll of the equations
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where 8 is a small quantity of the order of magni-
tude of pq which we have neglected in (32).

Additional information regarding the matrix

IIgII isobtainablefrom thefact that the Wronskian
of any two exact solutions of the Schrodinger
equation, say P and P, is constant along the axis
of reals. 7 Thus if

4'= nvfi+nvfv l

in I, it follows that in I
.P= n; f;+n„f.

BP Bf
WQ, P]=f —P —=—2~X—(n„n; —n, n„)= constant.

Bs Bs

The Wronskian of the same pair of solutions in II
takes the form

W[P, P]= 2~X(n„n, n,n—„)(g„„g;;—g;„g„;).

Equating these two expressions for the Wron-
skian, we see that the determinant of IIgII ~s unity.
Hence the inverse equations to (33) are

'= g-p' g'.p. ,- n.= g-P'+—g*'P' (35)

It follows from the reality condition that if
p, = p,*, the quantities n;e' '4 and n„e' '4 are real.
Hence

gvi= &gts (36)

Combining the last relation with the requirement
that

I g I
be equal to unity, we obtain the

following relation between g;; and 6:

g"(I+~)+g"*(I+~*)= 1 (37)

If we neglect small quantities of the order of p+ in
comparison with unity, we may conclude that the
real part of g;; is —,'. The imaginary part of g,;
cannot be determined even approximately with-
out an explicit evaluation of an integral of the
form given in Eq. (17) over a path on which the
exponential factor is very large. However, if we

apply the inequalities (31) to the evalua, tion of

I p„I when n„=0 we can derive the upper bound

Ig;, I =Ig„I( q~eu""& '&I= quexp 2X
, z'

If Idi

7 The writer is indebted to Dr. Eugene Feenberg for the
observation that the second connection formula can be
derived from the first by means of the properties of the
Wronskian.

It does not seem necessary to include the details
of this simple proof here.

Let us now consider the validity of the inverse
of Eq. (32). If the relation in question were
exact, we could, of course, invert it; but it is
actually only approximate. We know from the
derivation that if the left-hand member fits the
function P(s) exactly at I'

&, the right-hand mem-
ber fits the same function approximately at P2
and along the neighboring portion of the axis of
reals. The inverse relation would be the statement
that if the right-hand member fits P(s) exactly at
P&, the left-hand member is approximately
correct at P~. Kith the aid of our partial determi-
nation of the matrix IIgII we can test the validity
of this statement. We accordingly assume as in
the right-hand member of (32) that P,= ~P„=e' ~ .
It follows that the corresponding values of n, and
n; are not e'v" and 0, but e'v"I 1 —6*+g;;(8*—8) 7
and (8 P)e ' ".—Although the correction to the
value of n; is small, its product by the dominant
approximation function f; is not necessarily
small. Hence the left-hand member of (32) may
be entirely incorrect if the right-hand member is
exact.

The second connection formula is a direct
consequence of (35) and our information regard-
ing IIgII. Consider an exact solution of (1) which
has the form

P(x) = 2p i cos (to+ad) = e'&f;+e '&f,

in the neighborhood of P&. By (35) the corre-
sponding values of n; and o,„are, if we neglect
small quantities of the order of p+,

n;=2e' "cos
I 7 ——I:

4)

( & . (
4) E 4)

Here we have introduced the symbol x, for the
unknown, but finite, imaginary part of g;;. If p
is not too close to the critical value —s/4 (cf. the
first connection formula) so that

I
cos (y —7r/4)

I

is not muck smaller than Isin (7—s./4) I, the
product n„f„ is small compared with n„f; Hence.
we have the connection formula
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cos
I y ——

I Ipl le+~J**'z("rz—p 'cos X pdf+y .
4) z'

V V'

Region I Region II
(38)

This is usually specialized by writing p= s./4, but
the possibility of a generalization has been
indicated by Langer (last reference, Note 3).

In addition to the restriction on p, the only
condition for the validity of (32) and (38) is that
there shall exist a path A in the upper half plane
connecting PI with P2, enclosing no complex
zeros of p' and having the property that pz((1.

Both connection formulas in the form given
above presuppose that the slope of the real curve
y= V(s) is negative at s'. In order to obtain the
connection formulas for the case in which V(z)
has a positive slope at the classical turning point
s' it is only necessary to make the transformation
s—+ —s in (32) and (38) and to interchange the
roles of the regions I and II.

5. LIMITING CAsE WIiERE ONE oF THE CQN-

NECTED POINTS IS AT INFINITY

C
PI

n; = Qf„)fzds—
2X

(39)

So far we have assumed that the points P j and
P2 are located at finite distances from s' and can
be connected by a good path A of finite length. In
applying the B. K. K. method to energy level
problems, however, we frequently wish to assume
that P(s) vanishes at s= &~. In this case it
becomes necessary to discuss the changes in the
coefficients a;, a, which occur in a path which
extends to infinity along the axis of reals.
Consider, for example, a case in which p(s) is
imaginary and bounded from zero for all real
values of s to the left of the turning point s' of
Fig. 1. Let it be required to find the values of P;,
P„appropriate to P2 when a; is known to vanish
at s= —~. The required transformation of the
a's can be thought of as made in two steps, of
which the first gives the values at PI in terms of
those at —~ and the second is the one already
studied giving the values at P~ in terms of those
at Py.

Consider first the value of a; at PI, which as
before we shall call n;. It follows from Eq. (9)
that

As both f, and P approach zero exponentially for
large negative values of s, In;I is clearly very
small. We compute an upper limit. Let
denote the value of s at I ( Eq. (39.) is equivalent
to

W( Zl)

o.'i =
2g" w( co)

4W

Pdw.
p'

Hence

n'E w(—co)

l~'I &—I)f(s() IJ e l"ldlwl
2 w(zi)

m
I P(s ) I

e
—lzz(za) I

2

L la'I+ I
~. I e """"lj

2IP(s()'I
(39a)

If m/ p(s))'*I is much less than unity,
((

I
~ e—2(zz(zz)l

By analogy with the corresponding problem
for a finite path one expects that a„ is sensibly
equal to the limiting value of a„(s) as s moves out
to —~. It is not necessary, however, to in-

vestigate this point in order to deal with the
eigenvalue-eigenf unction problem.

Consider the application of Eqs. (33) to the
determination of P; and P, when a;(s) vanishes at
the negative end of the axis of reals. In view of
the upper bounds on

I
n;

I
and

I g„„l

lg" 'I &,).I .g-l.
2 I P (s)) *

I

Thus, by Eqs. (33), if P) is connected w'ith P2

zo( zZ) Q
In;I &-,' e-l "l Iyl ldwl.

(--) &'P'*

Let m denote the maximum value of
I
Q/Vpl

I
in

the range of integration. This we may assume to
be small. Since

I P(s) I
decreases monotonically as

we pass f'rom sI out to —~ along the axis of
reals,
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by a good path, and if IQ(s)/X'p(s)&p(s&)'*I is
sma11 between P& and —ao, P„has sensibly the
same value as if o; were zero, i.e., P„ is sensibly
equal to cx, . We conclude that the connection
formula (32) remains valid when the point P' is

moved out to infinity along the negative axis of
reals, provided that m/IP(s&)lI&(1.

6. EvALUATIoN QF THE Low ENERGY LEVELs QF

A ONE-DIMENSIONAL OSCILLATOR

The usual wave mechanics derivation of the
Sommerfeld "phase integral" quantum condition
(with half-integral quantum numbers) is based
on the use of the connection formulas and loses
its validity when applied to the lower energy
levels. Thus in the case of the Planck ideal linear
oscillator,

'

where V(s) =-,'-kx', we have

Q=k(E+6U)/(F- V)'. — (40)

The minimum value of
I
Q/X-'p'I consistent with

the reality of P occurs at the origin and is
k/(8X'pE'). In the case of the lowest energy level
the value is -', and the corresponding minimum
value of ) 'J'I Q/pIds for any path joining the
region of classical vibration with any point
outside this region is —,-. As this is of the order of
unity, appreciable departures from the con-
nection formulas are to be expected for this
lowest energy level, and it is surprising to note
that the value of E given by the phase integral
formula is in exact agreement with the rigorous
value obtained by other methods. Thus one is

led to inquire whether there is not some way of
validating the Sommerfeld formula without
assuming the existence of good paths joining the
region of classical vibration with the regions of
imaginary momentum on the axis of reals.

Birkhoff' has recently sketched a proof of the
phase integral formula applicable to the lower

energy levels. Partly, however, due to the fact
that Birkhoff's technique is unfamiliar to
physicists, and partly because his proof rests on a
plausible, but as yet unverified assumption, it
seems worth while to give an independent
derivation here.

Let the problem under discussion be that of
finding the discrete energy levels of a one-
dimensional osci11ator with the fundamental
interval —~ (s(+~ and a single potential
valley in which the classical local momentum

P(s, Z) takes on real values. We shall assume at
first that V(s) has the special parabolic form
V=-';ks' and consider later on the modification of
the argument for an anharmonic oscillator.

Let the complex s plane have a cut extending
from the lef t-hand classical turning point s'

through the right-hand turning point s" to + Oo

along the axis of reals. The functions p, pl and m

are uniquely defined over the cut plane by the
requirement that they conform to Eqs. (28) for
all negative real values of z —s'. They will then
conform to Eqs. (29) on the upper lip of the cut
between s' and s". For positive real values of
s —s" we have

~pp« l'p: f'= —'III P'=e "'If"
I

zrr z

IPIdf '" IPIdi-
z' z/r

zrr z

Lower lip: p= —~IpI; p'*= e"'If'*I; ~—= —& IpI'I —"& Ipldf
zr zrr

(41)

We designate by III that portion of the region of
imaginary momentum on the axis of reals to
the right of s" where

I
Q/)'p'I(&1 (cf. Fig. 4). It

follows from Eqs. (41) that Ie'
I

is very large in

both of the regions I and III. The level lines of
Ie'

I
are r adily sketched in and show that any

path connecting I with II I and avoiding the
classical portion of the axis of reals must cross a
single valley between the ridges on which it

terminates. This is true whether the path lies in

the upper or lower half plane.
Let s& and s3 be any two points on the axis of

reals in I and III, respectively. It follows from

(40) that in the case of the parabolic potential
function under consideration it is always possible
to join s& and s3 by a path A for which p~((i. In
more general cases such a path will exist provided

' G. D. BirkhoE, Bull. AITI. Math. Soc. 39, 696 (1933).
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Fro. 4. Level lines of
I
e'"~ for harmonic oscillator.

gpds = (n+ —,') h. (42)

The accuracy of the result is limited only by the
quality of the path A. But in the case of the ideal
linear oscillator it is possible to reduce the value
of p+ below any assignable quantity by choosing
the path A as a semicircle of sufhciently large
radius with the origin as its center. Hence the
above equation is exact for the case under
discussion.

there are no complex zeros of V—I' near to s' and
fl

Let us now assume that v e have to do with an
eigenvalue of the energy A=A„and a corre-
sponding eigenfunction f„(s). Then f„vani shes
at both ends of the axis of reals. Since f;(s)
becomes infinite at both ends of this axis, a;
must vanish there. It follows from our previous
analysis that u; is very small at both of the points
si and s3. Let B denote the point where the path
A crosses the bottom of the valley, i.e. , the point
on A where Is'

I
takes on its minimum value.

Integration from s~ to E shows that a„ is sensibly
constant along the corresponding portion of A.
Similarly integration from s3 to B shows that it is
constant along the rest of A. If we reHect the path
A in the axis of reals we get a second path
connecting s~ with s'3 along which a, is constant
neglecting small quantities of the order of pea, (st) .
The existence of these two paths shows that a,
takes on the same values on the upper and lower
edges of the cut at s~. P is, of course, single-valued
along the entire axis of reals. Hence f„(s) must
have the same value on the upper and lower
edges of the cut at s3. Equating the two values of
f, in quest. ion and using the corresponding values
of pl and w given in Eqs. (4i), we obtain

exp flJ'* *"IPldfI = —exp f
—1 J'* *"IPI&f'I.

or the familiar equation

Turning now to the problem of the anharmonic
oscillator, we observe that in order to secure
single-valued functions f;, f„ it is necessary to
introduce cuts extending from the complex roots
of E—V to inhnity. The argument then goes
through exactly as in the ease of the harmonic
oscillator except that the path A. must lie inside
all the roots above mentioned in order to avoid
crossing the cuts. Consequently it is not possible
to reduce the value of pq below a certain mini-
mum determined by the location of the roots of
Z —V. The formula (42) is essentially inexact for
anharmonic oscillators.

The uncertainty 0B in the energy due to the
fact that pg and m do not actually vanish is
readily calculated if we retain terms of the 6rst
order in these two infinitesimals. Let a;(sa) and
a, (s3) denote the values of a;(s) and a„(s) on the
lower edge of the cut at s3. Equating the approxi-
mate expressions for P on the two edges of the
cut at s3 in terms of f;, f, we obtain

a (s )+s2x Js" 'l&!&ra.(s )
gt(n+X J)

a (s )+s2x Jg *
ipi d3ra. (s )

f.et e. and e. denote the small quantities a, (s3)
—a„(s,), a.(s3) —a„(s,), respectively. To a first
approximation

t(e-+XJ) =

e„e.+pa (—s~) a(s)i—]e'"& "i"r"
log, j.+

a„(si)

Introducing appropriate upper bounds for e., i„,
Ia'(s3) I Ia'(») I

from the inequalities (27) and
(39a), we obtain

l~+» —2~&l &~a+m/Ip(si)-:I u=o, 1, 2, ",
where m is the maximum value of IQ/lt'p&l
between s3 and + ~. Let AB denote the quantity
&BE/8Jwhich measures the approximate spacing
of the energy levels given by the Sommerfeld
formula. Then

m=—
I ia+

lp(s, )~li

The writer has carried through a calculation of
iraq and m/ I p(s3) l

I
for the Morse curve potential

function corresponding to the normal state of the
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I72 molecule. For simplicity of computation the
energy E was so chosen as to bring the classical
turning points s' and s" together. A was taken
to be a semicircle with radius equal to half the
distance from s' to the nearest complex root of
p2(E, s). Under these circumstances &2&( is ap-
proximately 0.015 and n2/~p(s2)lj is 7.5X10 '.
The corresponding value of 8E/AF is 0.0025,
showing that the B.W. K. approximation should
give the energy correct to at least two or three
tenths of a percent of the spacing of adjacent
levels. Of course the actual error involved should
be appreciably less than this upper limit.

7. HIGHER ORDER APPROXIMATIONS

jy &"&ds=n212, n2=0, 1, 2, (43)

is even more accurate than (42) for small values
of n greater than 2.

9 Cf. J. L. Dunham, Phys. Rev. 41, 713 (1932). Dun-
ham's derivation of (43) is fundamentally sound, though
no more rigorous than Zwaan's proof of the connection
formulas.

It is well known that our functions f;, f„can be
obtained from (1) by making the transformation
p=e'"J""', expanding y formally in powers of 72,

or 1/lj, and taking only the first two terms of t.he
series. By taking n terms of the series, one obtains
functions f„&"&, f„&"& having properties similar to
those of f„and f„The ser.ies are semiconvergent
and hence the f&")'s, regarded as approximate
solutions of (1), at first improve in quality as n
increases, and then grow worse. They obey
equations of the form

d2f(n)
+L$2p2 Q(n) jf(n) —0

ds2

where Q&"&(s, E) is a polynomial in 1/X beginning
with a term of degree n —2. If Q—=Q"& is small at
any point of the complex plane,

~

Q'"'~ will be
smaller than

~ Q provided that n) 2, but not too
large. Thus if Q/p2~ is small along a path A

joining s, and s2, ~Q(")/p2~ will be still smaller.
We infer that the argument used to prove that,
in the. case of an anharmonic oscillator and an
eigenvalue of E, the function f„has sensibly the
same values on the upper and lower edges of the
cut in the region III, is applicable with a higher
degree of precision to f„'"'. It follows at once that
the energy level condition'

8. MoDII IcATIoN oF TINE B.W. K. METHoD I oR
THE RADIAL EQUATION IN THE

Txvo-BQDY PRQBLEM

In applying the B. W. K. method to the radial
equation of the two-particle problem one meets
with an apparent difficulty in that the B. W. K.
approximations do not have the right character
to fit the exact solutions of the differential
equation at the left-hand boundary point r=0.
As Kramers has pointed out, however, it is
possible to fit the boundary conditions at both
ends of the fundamental region if we modify the
approximation formulas by the addition of the
term 722/322r2pr2 tO the patential energy. The
added term is negligible except in the immediate
neighborhood of the origin, and it is ordinarily
possible to find a good path A leading from the
origin around the classical turning points (there
is only one when the angular momentum is zero)
in the complex plane to a point on the axis of
reals outside the region of classical motion where
the approximation function is good. In this
manner it is possible to apply to the two-particle
problem essentially the same reasoning as we
have used above for the anharmonic oscillator in
the interval —~ (s(+~. One obtains the
energy level formula (42) with P(r, 8) modified

by the substitution of (3+22)2 for l(l+1) in the
term which gives the contribution of centrifugal
force to the effective potential energy of the
radial vibration. Further details regarding this
application of our technique will be published
elsewhere. "
9. THE TRANSMISSION OF PROGRESSIVE MATTER

WAVES THROUGH A POTENTIAL BARRIER

The transmission of matter waves through
potential barriers has been the subject of much
discussion, "but so far as the writer has been able
to discover there has been no application of the
B.W. K. method to this problem that is properly
applicable to cases in which the energy of the
incident particles is not very different from the
maximum potential energy of the barrier.

Let us assume a rounded potential hill of
approximately parabolic form, Consider first the

' In a book on the general principles of quantum me-
chanics now in preparation.

"Cf., e.g. , N. H. Frank and L. A. Young, Phys. Rev.
38, 80 (1931).
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only the modulus of c. This is done by using the
constancy of the current density

F

Fr.r.. 5.

case in which the top of the hill projects above
the energy level of the incident particles. We
divide the axis of reals of the complex s plane into
three parts F, G, II, separated by the classical
turning points s~, s~ as indicated in Fig. 5.
Single-valued functions f;, f„are obtained by
introducing a cut along the axis of reals from s~

to +~ and by choosing those branches of p
and p' which are negative real and negative
imaginary, respectively, in F.p, p:, and m are to be
analytic over the cut plane. p is then real and
positive in H and positive imaginary in G. On
both sides of the hill the function

2' f,

f;e ' 's""=p 1 exp — pdl Et-
h

describes an outgoing wave, while f„e '~'s't"

describes an incoming wave. The level lines of
~e'

~
for a parabolic potential function are shown

in the figure. f„ is dominant in most of the first
and third quadrants, while f; is dominant in most
of the second and fourth quadrants.

Let us assume that progressive waves are
incident on the potential hill from the left side
only. There will then be reflected as well as
incident waves in F, but only transmitted waves
in IZ. We accordingly assume that a„vanishes in
the first quadrant where f„ is dominant. Let the
regions F and II be connected by a good path A.
Then a; will be sensibly constant along this path.
Thus we have a connection formula of the type

(44)

where c is a constant whose value has yet to be
determined. As a matter of fact we can evaluate

on the axis of reals. Choosing s~ as the origin of
the integral m, we give e"" the absolute value 1 in
the region F and the absolute value e ~ in II
where K denotes the integral (2'/k) J;,*'

~ P ~
dl .

The right-hand member of (40) now represents a
current of density e '~ in the direction of the
positive s axis, while the left-hand member
represents a current with the density cc*—i in
the same direction. Equating these two currents,
we find that cc*=1+e '~. The corresponding
transmission coeAicient is

T= e 'x/cc* = 1/(1+e'x)

T=1/(1+e '"'). (46)

The reader will observe that the formulas (45)
and (46) join continuously in the limiting case
where el ——s2 ——0, giving the common value
for T.

The writer is greatly indebted to Dr. Eugene
Feenberg, Professor G. D. BirkhoR and Professor
J. H. Van Vleck for helpful suggestions.

This formula is free from all restrictions depend-
ing on the height of the hill provided that
E U,„,.-(0.—Like Eq. (42) it is easily seen to
hold for any analytic potential hill which yields
no zeros of B—V near s~ and s~ and hence permits
a good path A joining the regions F and II.

If the maximum potential energy is less than
the energy of the incident particles, a parabolic
potential function yields two imaginary roots of
E—U(s), s= &iI2(E—U, )/k}', where k denotes
the negative of V". Denoting these roots by s&

and s2 and the integral (2~/k) J;,*'
~ P ~ ~

df'
~

by X',
it is not dificult to prove that the transmission
coe%cient is


