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Expressions, accurate to the first order in €2, are obtained for the charge and current densities
which, according to positron theory, are induced in vacuum by an electromagnetic field. Be-
cause the corresponding correction terms in the Maxwell field equations involve integral
operators, it does not seem possible to treat the modified field equations by Hamiltonian

methods.

HE theory of the positron introduces certain

modifications in the classical electromag-
netic field equations of Maxwell, which result in
the equations of the field being no longer equiva-
lent to a system of linear second order differential
equations. These modifications arise from the
interaction of the electromagnetic field with the
continuous distribution of electrons in negative
energy states envisaged by the theory. The
interaction is treated by expanding the inter-
action terms in the Hamiltonian function in
powers of the electronic charge; in the following
we shall consider only effects in €% In this order
the linearity of the equations is still preserved
and the effect of the interaction can conveniently
be expressed as the induction of a charge and
current density in vacuum by the electromag-
netic field.

StaTic FIELDS

We shall first investigate, using the methods
recently formulated by Dirac! and Heisenberg,?
the charge and current densities induced by a
static field. The equations take their simplest
form when written in terms of the

amplitudes of the quantities involved; the

Fourier -

Fourier amplitude of a function f(r) correspond-
ing to a propagation vector k will be written
simply f.

The Fourier amplitude of the charge induced
by an electrostatic field which is everywhere
small compared to the critical field F.=m?2c/eh
can be written?

8jo=—(a/4r°) x(k)Ao= — (a/7*k*) x (k) jo, (1)

where jy(r) is the charge density, Ao(r) is the

scalar potential, £ is the magnitude of the
propagation vector k, and
e/ — (g2 +1—%k?)
x (k)= f —eiPdq,  (2)
e’ (e+¢€)

e=[1+(q+3k)*], ¢=[1+(q—3k)*]"

The second form of (1) is obtained from the
first by means of the equation A4,(r) = —4mjo(r).
From the integral (2) certain singular terms and
normalization terms are still to be subtracted,
after which the “off diagonal distance,” R, is to
be put equal to zero. Explicit expressions for
these subtractitive terms are given in Heisen-
berg’s paper. Introducing the abbreviations
a?=1+1k2, v=q-k/(¢*+a?), we can write

x(B)=1 [ (@07t {(10) = (1)1 (1)1~ (1) e¥o-Pdg

+ 1k f (@ +a) o1 {(1—0)~d — (1 +0)~} e Pdq. (3)

On expanding the integrand of the first integral in (3) in powers of v we obtain, for this integral,

the expression*

* National Research Fellow.

1 P, A. M. Dirac, Proc. Camb. Phil. Soc. 30, 150 (1934).

2 W. Heisenberg, Zeits. f. Physik 90, 209 (1934).

3 See reference 2. It should be noted that we employ
rational units, measuring length in terms of the Compton
wavelength #/mc, time in terms of %/mc?, and mass in
terms of the electronic mass m.

49

4+ The Bessel function K,(z) which appears in (4) is
that defined by Whittaker and Watson, Modern Analysis,
§17.71. The integration formula used in obtaining (4) is
given by Watson, Theory of Bessel Functions, §13.6.
Watson’s definition of K,(z) differs from that of Modern
Analysis by a factor (—1)~.
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o (=1)"4n)! 2n eila B
- (k-grad;&“f———————‘ dq

n=124[(2n) |]? 2n+1 (g2 +a?)2ntt

© (___ 1)”271 k d \ 2n—1
= & ey A KR 8

If one now examines the ascending series for TR? » 1 ko 22 ©)

Rev1K,, — (——-) . 6
2n_1(aR) one sees that there are terms of 2 1) (2nt3) \2a

two types: (a) an infinite series, whose leading
term is of the form R**2%(log 2aR+const.);
(b) a polynomial in R of degree 4(z—1). Hence,
when the operator (k-gradg)?* is applied to terms
of type (a), and R is permitted to approach zero,
one obtains the result zero when #>1. From
the terms of type (b) one obtains a contribution
only from the term of degree 2n. This contribu-
tion is

(=)t (n—-2)!

al (k-gradz)?"R*" ] p—o
4 n!

(=11 (n—2)!12n)!
ak?
4

n!

The terms after the first in (3) thus give

Th? o 1 ko 272,
(2a>

— 3 -
2 n=0 (n+1)2n+35)
The second integral in (3) can be handled in
the same way ; the terms after the first are found
to be

)

63 (a/wtk?) [ ([ + (@41 = 19 Ti=20(a- )+ (k- )} [ (e )T te 0 Pdg

The third term in the bracket vanishes in virtue
of the condition divj(r)=0, i.e., k-j=0. The
remaining terms can be handled by the method
used to evaluate (2). The only new point of
interest arises in connection with the second
term in the bracket, which apparently gives a
dependence of the ith component of the induced
current on the jth component of the inducing
current. From this term, in the series analogous
to (4) one obtains terms of the form

[gradr(j-gradz)(k-gradg)*"R*" "% ] ko
= (2n+2)(2n) [k2j+2nk (k- j)k2»2].

Again using k-j=0, we see that the contribution

Adding (5) and (6) and performing the
summation, one obtains the result

2rk? log a
1
—%Wkﬁf (1 —x?) log [143k2(1 ) Jdx.  (7)
0

The first term in (4) and in the analogous
series for the second integral in (3) are readily
shown to give just the singular and normalization
terms which, according to the theory, must be
deleted, and in addition a term, —%wk?log a,
which cancels the first term in (7). Hence

x (k)=

w2
—%wk2f cos® ¢ log [1+ k2 cos? ¢y ldy. (8)
0 ,

The calculation of the current density induced
by a magnetostatic field is very similar. This
current is given by

&)

of j; to &7, in fact vanishes. One readily finds
8j= —(a/m°k*) x(k)j, (10)

with x(k) as given by (8). The equality of the
quite different looking integrals which appear in
(1) and (9) might have been easily foretold by
considerations, similar to those given in the
following section, of the transformation proper-
ties of charge and current under a Lorentz
transformation. The origin of the different
representation of the function x(k) in the two
cases is to be found in the different meanings
attached to canonical momentum in the presence
and absence of a vector potential.
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On recombining the Fourier components, we
find for the charge and current densities induced
by a static field®

bin(x) = f U@ AR, (=0,1,2,3), (1)

where r=r1"—r",

/2
Ur)y=— (a/lé-zr“)f cos?® ¢d¢fe“’°"> log (1+ k2 cos? ¢)k~%dk
0

w2 00
= — (a/47r3r)f cos? ll/dv,bf sin k7 log (14 k2% cos® Y)k~dk
0 0

27/ 2

= (a/47%) / cos® YyEi1(—2r sec ¢)dy.
0

The exponential-integral function is obtained by
deforming the path of the % integration to the
imaginary axis, Jo® =3[ foiH0+ fo—iot0],

VARYING FIELDS

The expressions (1) and (10) for the charge
and current densities induced by a static field
can readily be generalized to the case of an
arbitrarily varying field. Let us consider a single
Fourier component of the charge and current,
JaeilEnN=kd \=0, 1, 2, 3. If k2>k® we can make
a Lorentz transformation to a system moving
with velocity v=~kok/k?; in this system the
Fourier component becomes 7,’e?® "), where the
length of the vector K is K= |k2—ky?|?. This
however can be regarded as a Fourier component
of a static field, which induces a charge and
current given by (1) and (10). Upon trans-
forming back to the original coordinate system
we thus have

o= — (a/m*K?) x(K) jx. (12)

This equation has been established only when
k?>ky?, i.e., only for spacelike K. In order to
establish this result also for timelike K, we have
only to note that, for time varying potentials,
the modification in the expression for the induced

T/2
5jr(8) = (a/327%) f cos® ydy f AGs, )OI (")ds”,

where the four-vector s=s'—s', s=|r2—|},
and

Als, ¥)= f ei% log (1:£a?K2)K—4dK. (14)

5 A discussion of this formula and some of its applications
is given in the following paper by E. A. Uehling. The

charge and current consists in replacing the
factor 1/(e+¢) in (2) by (e+¢€)/[(e+€)2—ke?].
Since this is true irrespective of whether K is
spacelike or timelike, it can immediately be
concluded that (12) holds in either case. It
should be noted however, that in consequence
of our definition of K as K= |k2—kg?|}, K? must
be replaced by —K? throughout (12) if K is
timelike. The only difficulty which can arise
comes from the possible vanishing of the de-
nominator (e+e€)?—ke%.. Since the minimum
value of (e+¢€')? is 44k2, this cannot occur if K
is spacelike, or if K is timelike and K <2. That
is to say, only the Fourier components of the
field for which K is timelike and K>2 are
capable of producing pairs, since only under
these conditions can both energy and momentum
be conserved. In performing integrations over
such components the pair-production singularity
must be avoided by deforming the path of the
K integration into the complex plane.

Heisenberg’s results (40) and (44) may readily
be obtained from (12) by writing jo=7o(k)d(ko
—ky'), and retaining only the first term in the
expansion of x(K) in powers of K2.

We can now write the induced charge and
current as an integral over four-space,

(13)

Here a=1% cos ¢ and the plus or minus sign is
to be taken in (14) according as K is spacelike
or timelike.

We now introduce hyperbolic coordinates:
expression for the induced charge was briginally obtained

by Dr. Uehling by a somewhat different method of calcu-
lation.
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The three space components of K are expressed
in terms of the usual polar coordinates &, 6, ®;
while

ko= %K cosh ¢, k=K sinh ¢,
dK=K?sinh? ¢ sin 6dKd ¢d0d®,

SERBER

0<¢< 0, when K is timelike ; and
ko=K sinh ¢, k=K cosh ¢,
dK=K? cosh? ¢ sin 0dKd ¢d0d®,

— o <p< o, when K is spacelike. We then
have,® for timelike s,

A(s, ¢)=47rf log (l+a2K2)K”1dKf e"K sinh ¢ cosh? od o
0 —00

+8 f log (1—a?K?)K-1dK

0

f cos (sK cosh ¢) sinh? ¢d ¢
0

=8r[s‘1f K,(sK) log (1+a2K2)K“2dK+%7rs‘f Y1(sK) log (1~a2K2)K‘2dK], (15)
0 0

and for spacelike s,

AGs, ¥)=2r f log (1-+a2K?)K-'dK j cosh? ede
0 —

. f log (1 —a?K?)K-1dK f sinh
0 0

The singularities which arise from the possibility
of pair production make their appearance in the
second integrals in (15) and in (16), which
represent the contribution of timelike K, when
K=1/a. In these integrals one is to suppose a
cut made in the K plane from 1/a to infinity,
and the symbol ;™ is to be understood as
meaning 3[ /o>t 4+ /> ?7. The term in 1/sK in
the ascending series for K (sK) and for Yi(sK)
does not converge at the lower limit of integra-
tion ; however this singularity is only apparent,
disappearing if the lower limit in both the K,
and Y, integrals is put equal to ¢ and e is
allowed to approach zero. The integrals are also
singular when s=0; this singularity we must
investigate in detail.

When s3#0, the contour of the second integral
in (16) may be deformed to the imaginary axis,

[ )

l

—871—[%”—1 f Yi(sK) log (1+aK2)K-
0

m™
f eisK cosh ¢ cos 6 sin 0d0

0

’rpdrpf
0

2dK+s—1f K, (sK) log (1—a2K2)K‘2dK]. (16)
0

m

cos (sK sinh ¢ cos 0) sin 6d6

we then obtain just the negative of the first
integral in (16). Hence A(s, y) vanishes, as it
obviously must, when s is outside the light cone;
no effects are propagated with a velocity greater
than that of light.

The first integral in (15) can be treated in a
similar manner provided s70; making the
deformation

1

A

we obtain the negative of the second integral in
(15), and in addition another term,

(72/25)Sva"T 1 (sK)K~*dK,

which results from the difference in the values

6 The integral representations of the Bessel functions
which are used in the derivation of (15) and (16), and,
later, in the Appendix, can be obtained, by use of the re-
currence formulae, from the representation of Yy(x) given
in Modern Analysis, Chap. XVII, Example 26, and from
the representations of Ko(x) given in Example 40.
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of log (1—a?K?) on the two sides of the cut.
We can thus write

A(s, )= f(r, )8 (t+7)
0, s spacelike.

17)
473as~! f1°T1(sK/a)K~%dK, s timelike.

The coefficient of the delta function can be most
readily evaluated by noting that the integral
over time of the second term in (17) vanishes.
This integral is”

8% f K-*dK f Ty(sK /) (s*+7?)~¥ds
/1 0

= 81r3af I,(rK/2a)K,(rK/2a)K~%dK =0,
1

since K;(z)=0. Hence f(r, ¥) = S~ A(s, ¥)dt.

The evaluation of this integral, using the
expressions (15) and (16) for A(s, ¢), is given in
the Appendix; we find

f(r, ¢)=87r27’_1f sin K7 log (14+a*K*)K—3dK
' (18)
= —87r302r—‘f e~ %rle K%K,
Y1

the second expression being obtained from the
first by deforming the path of integration to
the imaginary axis.

Eq. (13) can now be written

5in(s) = f M) (")
+ f As(s)CIIin(s™)ds"”,  (19)

where {{J]j\(s"")} is the retarded value of

DDJ.)\(S”):
a /2 o
Ai(7)=— f cos® wdx//f e 2Krsec y K34 K
167!'27 0 1
o /2 00
Ax(s)= . cos* z/xdx//f J1(2Ks sec ) K—%dK.
T80 1

The second integral in (19) is to be extended
only over the interior of the light cone, and only

" Watson, Theory of Bessel Functions, §13.6.

over past values of the time. Our formalism of
course, has made no distinction between past
and future; this distinction first arises when we
introduce boundary conditions to validate our
neglect of surface integrals. A similar choice is
involved in the first integral of (19), namely,
in the use of the retarded, rather than the
advanced value of [ ]j\(s").

The second term in (19) represents an effect
which is propagated with a velocity less than
that of light. This can be pictured as due to the
propagation of the electromagnetic pulse from
an element of charge and current at (r”, ¢'’) to
within a few Compton wavelengths of r’, and
here the production (real or virtual) of a pair;
one particle of this pair then reaches the point r’,
at a later time of course than the electromagnetic
pulse.

It has already been shown that when j\(s'’)
is independent of time the second term in (19)
vanishes. On transferring, by partial integration,
one Laplacian from j\(s'") to Ai(?), one again
obtains the formula (11). Another interesting
case is that of a charge and current j\(s")
=jeilkn—ktl [f K is spacelike one can trans-
form to a Lorentz frame in which ky=0; in this
frame the entire contribution is again from the
first term in (19). However if K is timelike one
finds that in the Lorentz frame in which k'=0
the entire contribution comes from the second
term in (19). In either case, of course, one
obtains just (12).

The linear corrections introduced by positron
theory in the equations of the electromagnetic
field can be represented by replacing the field
equation div E(s") =4mjy(s’) by

.div E(s’) ——fA(s)[][]div E(s')ds"”

=4mjo(s’), (20)

where A(s) = (a/327%) /4" 2A(s, ¥) cos® ¥dy, and
by a similar modification in the field equations
involving j. If E(s’) is expanded in powers of 2,
the first correction term is equivalent to (19),
while the higher terms represent the effect of the
charge induced by the induced charge, and so
forth. These latter effects, of course, fitst appear
when the interaction of the electron distribution
with itself is taken into account. To the order in
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which we have been working, the correction
terms vanish in the absence of a charge or
current. This, however, will no longer be true
in the next approximation, wherein the terms of
order e, cubic in the fields and their derivatives,
are taken into account. In consequence of the
occurrence of integral operators in (20), it does
not appear to be possible to treat the modified
field equations by Hamiltonian methods. The
situation here is analogous to that encountered
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in - classical electrodynamics, where, when one
attempts to eliminate the electromagnetic field
from the equations of motion for the charge,
one is also led to integral operators.

I have discussed this subject many times with
Professor J. R. Oppenheimer and 1 wish to
thank him for his generous advice. I am indebted
also to Dr. E. A. Uehling for his kindness in
placing at my disposal his earlier calculation of
the induced charge.

" APPENDIX

Evaluation of the integral f(7, ¥) = /- A(s, ¢)dt.
The time integral of the first terms in (15) and (16)
is

odK
161rj; X log (1+a2K?)

o K,(sK) Yi(sK)
X [‘/; (sz_}_,z)%ds— f (rz_sz):d‘{l
The expression in brackets can be written
[1=S"K (K7 sinh 6)d6— 4w f3™/2 Y, (K7 sin 6)do,

or, introducing integral representations of the Bessel
functions,’

[] = _‘/6°° cosh ldt[_/(;we_KT cosh ¢ sinh 0d0
— 30" sin (K7 cosh ¢ sin 6)d8]
=1r /i Yo(Kr cosh ¢) cosh tdt
=—1/ 0" S cos (Kr cosh ¢t cosh s) cosh tdids.

If we now set ¢ =u-+v, s=u—wv, and use the addition formu-
lae for the circular and hyberbolic functions, we find that
the variables separate, and we are finally left with only
integrals of the form

S cos (Kry?)dy and

S 7 sin (Kry?)dy.

One easily obtains the result
[]=4%x sin Kr/Kr

and hence (18). ,
It remains to show that the second terms in (15) and
(16) contribute nothing. The time integral of these terms is

wdK
167rf0 3 log (1—aK?)

o V(K Ki(K;
[f (K7s) | fl 1( H)ws] (21)
™" =
Again making use of an integral representation of ¥i, we
write

°°Y1(Krs) osin (Krs cosh t)
(1+32)’ —-ﬁ cosh tdtf (1st)} — g —ds.

If the sine is now expressed in terms of exponentials, and

the paths of the resulting integrals over s are deformed to
the imaginary axis, we find that (22) is equal to

1 ds —Krs cosh ¢ lKl(Kf'S)
—j; (1_32)%f [ cosh tdt —f Sz)zds

this just cancels the second term in (21).

(22)




