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to tha. t which we have given to (25) except for
the ambiguity in (35). ~& is no longer an integral

of tke equation of motion since it does not commute
with H. This constitutes a special case illustrating
a general feature of the covariant form of
Dirac's equation. It is due to the fact that the
n's and y's are now functions of the coordinates.
Two equations which are equivalent to each

other are not interpretable with equa1 ease
because, as a result of the special choice of y', one
does not admit the same integrals as the other
one. Since (35) and (25) are equivalent, there
must exist, of course, a spin transformation which
connects the two equations with each other.
The transformation is given by the matrices
(accurate to first order terms in cv)

Cut COt &d ( (dt (Vti G& ( Mt OPt)S=cos —1 i s—in —o.——
) y cos —+x sin —

) a,+—
i

x cos ——y sin —
i
a.„,

2 2 2E 2 2j 2E 2 2)
ddt (dt M ( Ã3 c01) M ( 4lk 0)f)S-'= cos —1+i sin —o.+—

i y cos —+x sin —
i
a.——

i
x cos ——y»n —

i Q.
2 2 2( 2 2) 2E 2 2)

(37)

The Hamiltonians are connected by the relation FI=S 'HS (7aj

and the eigenfunctions by P= S—'%. (7b)
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The efficiency of counting ionizing particles by the tube
counter is investigated, taking account of the electrical
behavior of the counter and the random nature of the
arrival of the particles. Expressions are obtained for the
efficiency of counting, average recovery time, average
voltage impulse delivered to the amplifier, and the average
number of particles counted per unit time, N, in terms of
the number of particles arriving per unit time, No, the

time constant of the counter, and one other parameter, d,
which is constant for a given counter. Methods for meas-
uring d (which for most counters will lie between 1.3 and
five) are indicated. The efficiency of counting decreases
with an increase of No, rapidly at first, then more slowly,
so as to have the asymptotic value 1/d. The determination
of

¹
from N, and the general question of counter efficiency

are discussed.

HE behavior of Geiger-Muller and similar
types of counters has been studied experi-

mentally by various investigators. ' As the nega-

' (The first two references give a good bibliography of the
previous work. ) Burger Scheidlin, Ann. d. Physik 12, 283
(1932); Schulze, Zeits. f. Physik 78, 92 (1932); Medicus,
Zeits. f. Physik 74, 350 (1932); Curtis, Bur. Standards J.
Research 10, 229 (1933); Brunetti and Ollano, Nuovo
Cimento 10, 92 (1933); Greiner, Zeits. f. Physik 81, 543
(1933); Hummel, Zeits. f. Physik 76, 483 (1932); Physik.
Zeits. 34, 331 (1933); Kuhn, Zeits. f. Instrumentenk. 54,
415 (1934); Danforth, Phys, Rev. 46, 1026 (1934); J.
Frank. Inst. 219, 108 (1935); Wernow, Trav. de l'Inst.
d' Etat de Radium 2, 30 (1933) (abstracted in Physik.
Berichte 15, 1448 (1934)); H. Teichmann, Physik. Zeits.
35, 637 (1934); Bosch, Ann. d. Physik 19, 65 (1934);
Janossy, Zeits. f. Physik 88, 372 (1934); Henning and
Schade, Zeits. f. Physik 90, 597 (1934); A relevant article

tive potential on the tube, Vz, is increased from
zero, the average number of counts per unit
time, the source being constant, behaves as in
Fig. 1. Counting begins at the "threshold volt-
age,

"
V~, rises rapidly to a value N, and remains

nearly constant for a range of voltage which
depends on the individual counter. In a well-built
counter, the flat region of the curve extends over
a considerable range of voltage. The counter is
operated in this region, since any slight variation
of supply voltage will then have negligible effect
on the rate of counting. At higher voltages, the

on photon. counters is Werner, Zeits. f. Physik 90, 384
(1934); 92, 705 (1934).
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FrG. i. Sensitivity curve for a tube counter.

curve begins to rise steeply, the conditions for
breakdown are rapidly reached, and conditions
are no longer suitable for counting.

When an ionizing particle passes through the
counter, held at a potential in the region Ug~ Up,

the ions formed cause a discharge during which a
certain amount of charge is transferred to the
wire. In general, three types of behavior have
been found. In the first, there is a small change in
the wire potential, considerably less than that
required to reduce the potential across the tube to
V~. The voltage impulse given the amplifier in
this case is small compared to that in the other
two, which we shall call types I and II. Fig. 2

shows the general behavior of these types of
discharge, whose characteristics are beautifully
shown in the photographs of Danforth. ' The
negative potential of the wire, v, is plotted
against time. When v= V~ —Vq, the potential
across the counter is the threshold potential.
Thus, if v) Uz —Vq, no discharge is possible. In
type I, there will then be no further discharge
until v has fallen to Uz —U&. The recovery time,
7., is the time necessary for this to take place.
~ depends on the discharge which preceded it.
The greater v is at the moment the discharge
occurs, the less will be the initial potential of the
wire, vp, and the smaller will be the recovery time
following the discharge. In type II, the counter
will register no further particle until after the
time T corresponding to the straight portion of
the curve, Fig. 2b. The value of T can also depend
on the value of v at the moment the last discharge
occurred. In either case, there is a statistical
distribution of 7.'s, but not a completely random
distribution. The problem is a particular case of
chain statistics. The efficiency of counting parti-

7im e.

FrG. 2. Recovery time of counters.

cles under such circumstances will be investigated
below. The question has been considered under
the assumption of a constant ~.' For a counter in
actual operation, r is not constant; the statistical
distribution of v's will be different in the two
cases, type I and type II, hence they will be
treated separately.

Consider a situation in which, on the average,
Xp ionizing particles arrive per unit time. The
chance of arrival of the particles is the same
at any moment, i.e., the arrivals are distributed
at random. The probability that the interval
between the arrival of two particles lies between
t~ and tq+dtz is Xp exp (—XpIi) dt~. The
probability that tj is more than any definite
tp is J X~ppexp (—Apts) dt& = exp (—Np/p). Let
&o(T)dT be the probability that after a count the
recovery time of the counter lies between r and
~+de- when counting such a distribution of
particles. Any particular 7.p depends both on the
recovery time for the previous discharge, and on
the interval which elapsed after the last dis-
charge, before the next particle arrived. If t& +7-p,

the particle was not counted. Thus, in a great
many discharges for which T=Tp, the fraction of
the next particles to arrive which will be counted
will be exp (—Xprp). Those which arrive after an
interval t~)rp, thus being counted, cause a new
discharge, whose recovery time T —T (Tp', t~). The
relation T' = T'(Tp, t~) may be determined from the
mechanism of the discharge. The probability that

' Johnson and Street, J. Frank. Inst. 215, 239 (1933);
Locher, J. Frank. Inst. 210, 553 (1933); Volz, Zeits.
f. Physik 93, 539 (1935). If the counter be regarded
as a mechanism which is not affected at all by any par-
ticle traversing it during its recovery time, its efficiency
for constant r is (1+Nor) ', which is equivalent to the ex-
pression given in the first reference. The expression in the
second reference gives too high an efficiency for particles ar-
riving at random. The expression used by Volz allows for the
ionization produced by the particle traversing the counter
during its recovery time, and has the advantage of being
mathematically tractable.
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the new recovery time will lie between r' and
r'+dr', is then: the product of the probability of
the occurrence of a r, by the probability the
succeeding interval before the arrival of the next
particle counted is such that r'= r'(r; ti), or
ti t, (r——', r') summed over all r. Since for a
particular r only the fraction exp ( —Npr) are
counted, the latter probability is

Np exp ( —Npti) dti

exp ( Npr—)
tq&&r', 0, tl (r.

Therefore,

N p exp (—N, t,) dti
pi(r')dr'= ip(r)dr

' all v exp ( Npr)—

kg~&7.

¹ exp ( —Npti) (Btg)
pi(r')dr' = pi(r)d r

all r exp ( Npr) (.itr—'l

tl~& r.

The range dt& must be that range, which, for any
definite r, corresponds to the range dr'.

Evidently
~

~

~max,

pi(r)dr =1.
0

II= 1, and co(r) =f(r). (6)

The total number of counts that occur when N0
particles per unit time arrive at the counter, is
the number whose intervals equal or exceed the
(variable) recovery time.

max.

N= pi(r)Np exp (—Npr) ~ dr
0

(7)

and the fraction of incident particles counted is
then

~max .
N/Np —— f(r) exp (—Npr) ~ dr

0

The average and mean square recovery times are

nl ax ~ ~max,

r= r r dr, r'= r' r dr. 9
0 0

The average voltage impulse delivered to the
amplifier, namely, the average rise of voltage of
the wire during a discharge, is

The existence of a probability distribution of the
r's requires pp(r') to be the same function of r',
which pp(r) is of r. (2) is an homogeneous integral
equation for pi(r), with the kernel

(v p' vi)f(r)dr—

The quantities "v" are defined below.

DIscHARGEs OF TYPE I

(10)

Np exp ( ¹ti)Bti-
Z(r', r) =

exp ( —Npr) Br'

=IIf(r') (itII/it r
' =0). (4')

Substituting (4') in (4), we see that a necessary
condition for the existence of a solution, is

~max,

1= f(r')dr '

0

in which t& is a function depending on the type of
discharge. In both of the cases to be considered
X(r', r) is of the form f(r') Therefor. e,

The maximum potential to which the wire
rises during a discharge is v0. The decay through
the system, R and C, ' takes place according to
the usual relation

v=vp exp ( t/RC). —

When v —Uz —U~, a new discharge may occur.
That is,

Vz —Us = vp exp (—r/RC). (12)

The statistical variation of the v0's conditions
that of the r's. If every discharge were to result in
the raising of the wire to the same potential v0,

the r's would have a value (constant so long as
Np were constant) r = RC In (v,/L Vz —Ve])
(where, in general, vp, and therefore r, depend on
the value of Np), and

' R and C will mean the total resistance and capacity from
When (5) is true, (4') is the solution of (4) wire to ground, respectively.
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Danforth' has found in discharges of type I, the
following:4 Vr —Vs = vo exp ( —r/RC)

N/No =exp ( ¹—r) = Lvo/( Vr —Us) ]—s' c. (13) impulse. Let the recovery times of the two
discharges be T' and 7, respectively; then

vo' —(Vr —Vs) increases with Ur.,
for the same V~, vo' decreases with increase of

C; (from the examples given, vo' —(Ur
—Us) ~1/C);

vo' is smaller if the discharge occurs before v

from the previous discharge has become
zero.

To these considerations, we add the fact that
below the threshold voltage, the yield of new ions
to continue the discharge decreases greatly.
Thus, when the previous v has become zero, the
relation will be

v, ' —(V —.Vs) = (A/C)(Vr —Vs),

(Vr —Vs) exp (r'/RC)

=(Ur —Us) exp L(r —tq)/RC]

+ (C~/C) ( Vr —Vs) {1—exp L(r —&&)/RC] I

gr'/Rc
g
—t1/RC —g

—r/RC d = Ci/C) 1.
d —1

(16)

Since d )1, the maximum T' occurs when v1= 0,
i.e. , t&= ~. In that case (14) holds, and com-
parison with (15) shows

=vo' exp (—r'/RC) (1. 5)

By (15), (11'), and (14'), the relation between
T T and t1, is

A =A(Ur)
(14) d=exp (r,„./RC) (17)

vo'= ((A+C)/C)(Vr —Vs)

= (Cg/Cj(Vr —Vs), Cg) C.
and therefore, (16) incorporates in itself the fact
that t1&~ T.

If C& be considered as the effective capacity of the
system during discharge, this would correspond
to a discharge which ceases when U= Vg, the
quantity g= C&(Ur —Vs) being the amount
carried over to the wire. This charge would be
stored on C (which includes the capacity of the
wire) and in the space between the wire and the
tube. When the discharge ceases, the ions in the
latter region are driven across by the remaining
field, leaving only the small sheath about the
wire, raising v from V~ —V~ to vo, and decreasing
C1 to. C. The actual relations during discharge, of
course, may be quite different, and the relation
above still hold.

If the discharge occurs at a time t1 after the
last pulse, when the previous v= v~/0, the
voltage across the tube would be Uz —v1, and the
expression for vo' would be

E(r, r) =No exp L
—Not&(r r )+Nor]'BE /Br'

=No exp (Nor)

(d —g" /Rc) -NpRc- gT /Rc

~
—r/RC

i
=f(r'),

gr'/RC- b- gr'/RC

f(r') =¹
er'/Rc

Lb =NoRC]. (18)

d —exp (r'/RC')
(19)

The condition (5) is satisfied, as may be seen by
the substitution

where

vo'=vi+g/C=vi+(Ci/C)[(Ur —vi) —Us], (14') in the integrand. By this same substitution, and
the substitution

vg ——vo exp tg RC . —

vo is the maximum voltage on the wire in the last
we have,

x=[exp ( —r'/RC)] w,

4 Primed quantities refer to the following discharge, un-
primed to the preceding one. N/No —J' ~bxa idx/(1y(d —1)x), (20)
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Fig. 3 shows the behavior of the function
N/No as b is increased, for different values of the
parameter d. Fig. 5 is a plot of NRC (=bN/No)
against b, showing the variation in the number of
particles counted, with the number arriving, for
different values of d. For the larger values of b,
the curves are practically linear due to the
approximate constancy of N/No in this region.
As the number of ionizing particles to be counted
increases from zero, the efficiency of counting
decreases steadily. In the limit, for a very large
number of particles arriving per unit time, the
ratio approaches the value 1/d.

1 ~ (1 p/b)' '—dv

1+(d —1)x d 0 1 —((d —1)/d) v/b

g&—'id'

f'Nq 1
Lim

f

—f=—
ENOI d

8 dv= —.

' Eq. (13) referred to the case where r is assumed con-
stant, the particles arriving at random. In the case of
particles coming at equal intervals, it is not permissible to
assume the expression exp (—Nor).

In Fig. 3, the asymptotes are indicated by
short lines directly under the curves. If, by some
curious chance, the particles should arrive at
equal intervals, the recovery time would be the
same for each discharge. ' However, it may easily
be seen by Eq. (16), that r would be constant
only so long as the number of particles arriving
per unit time remained the same. An increase of
No (the particles still coming at equal intervals)
would decrease r. Thus N/No would not decrease
exponentially to zero, as predicted by the as-
sumption of a constant 7.

For a given system, RC ln d is equal to r,„.,
i.e., the value 7. takes when the potential of the
wire drops to zero before the arrival of the next
particle. Therefore d does not vary with the rate
of arrival of the particles. Both b and d are of
dimensions zero. Any change in the unit of time
used is immaterial, as it should be.

The trend of N/No has experimental signifi-
cance, but the limit is not closely approached in
practice, since b will not usually take large
values. (A possible exception occurs in the case of
showers, where, for a short time, b may become
large. ) As the number of incident particles per
second (and hence b) increases, the amount of

charge available in each discharge, and the
maximum potential of the wire, decrease to the
point where the amplifier does not supply the
mechanical recorder with sufficient impulse to
register the counts. For example, the voltage
impulse delivered to the amplifier decreases to
one-fifth of the value for slow rates of counting,
when NORC has become equal to four. The values
of b for which the mechanical recorder fails to
respond, in general, will correspond to values of
No of such order that the tube counter is not the
logical detector for the incident particles. With a
counter of the usual construction, RC will be of
the order of 0.1 to 0.001 sec. A value of b=5
would mean the arrival of at least fifty ionizing
particles per second. For the detection of such a
stream, an electrometer or electroscope would
profitably be used. For this reason, values of b

greater than b= 5 are not included in the figures.

DIscHARGEs QF TYPE II

The discharge in this case is of the form in Fig.
2. This takes place at higher tube voltages, and
with larger C. The charge involved raises the
wire to Vz —Ug, and keeps it there for a time T,
after which v falls exponentially to zero. ~ is
given by T. During the time T, a current I
= (Vr —Vs)/R is passing through the tube. The
mechanism is less certain. The fact that the
process occurs at higher voltages suggests a
temporarily self-sustaining discharge. The treat-
ment below will be quite general, however. The
following assumptions will be made:

1. There exists a maximum potential to which
the wire can rise, 8. For the present the only
assumption that will be made in regard to 8

is that 8~& Vz —V~. This is logical, since if 8

were less than VT —V~, the next incident
particle would be registered even if it were
to arrive immediately afterwards. ~' would
be zero, which, of course, is not true.

2. The total quantity of electricity which
passes in the discharge is of the form
g= Cq(Vr —Vs —vq). Cq depends on Vr, R
and C, but not on vi. C~ must be greater
than C in order to have the straight line
portion of the discharge occur. The de-
pendence of C& on R may be expected since
R affects the value of the current through
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the tube in the steady state. If the counter
is operated on the flat portion of its
sensitivity curve, the variation of C& with V
will be negligible. Thus, for a given counter,
C~ will have a definite value. We define
A= Cg —C.

The relation between t~, ~ and r', is obtained
as follows: The particle arrives when v= v~. Since
it is not registered if t~ ('1, the value of v~ will be
less than 8. In raising the wire to 8, an amount of
electricity C(v —vz) is used. During the rest of
the discharge, an amount gz= Cz(Ur Vs —v—z)
—C(v —vz) will pass. This will flow to ground
through R as a current I= v/R, and in time?' an
amount (8/R) T flows to ground. This is equal to
q~, since the exponential decrease of wire po-
tential is due to the loss of the charge on the
wire and condenser, which has held them at 8.

x=8/(Vr V—s).

The kernel of the integral equation for co(r) is
then,

Np
RCt(ln x) —1I+(RCz/x) r'—"'

R(Cz —C)/x

R(Cz —C)/x g g
, (26)

the two equations being a definition of e and g.
For the existence of a solution, by (5),

~max. b g —7' 5 1

dr=1,
p

where r, . is the r corresponding to an infinite
tz,'by (25), r,„=e.T. he condition becomes

gz Vr Vs» (
(23)I 8 E. 8)

' e —v-' —'d7.—= [u'],'«=1

$(x) =ln x+1/x=1; (x=8/(Uz —Us)). (27)

The recovery time is z = T+rz, where r& so that for a solution to exist, e/g must be equal
=RC In (8/(Vz —Us)) is the time required for v to one, which reduces to the equation
to decay to V& —Vh. The potential of the wire
when t) T, is

v= v exp [—(t T)/RC]—
and we have

Vr Us —v exp [—rz/RC]

so that

v= (Uz' Us) exp [(r,+T t)/RC]. —

The new recovery time is then, by (23)

r'= rz'+?'=RC In [8/(Vr Us)]-
—((Uz —Vs)/8)R(Cz —C) exp [(z—tz)/RC]

8= Vz —Vg. (28)

This is exactly what is found by Schulze, and by
Danforth.

When 8= V~ —V~,'

rz=0; r=T, e=g=R(Cz C). —

Qtith these values of the constants,

The function p(x) has a minimum for x=1, at
which its value is one. For all other values of x
more than zero, the value of the function is more
than one. The condition (27) therefore requires
that

+CzR((Vr Vs)/v) —CR (—24)

(25)

where

so that the relation between r', v-, and t j is

exp ( tz/RC) = [exp—( —r/RC)]

RC(ln x)+(RC,/x) —RC —z'

R(Cz —C)/x

p'b

e e.
exp ( —Nor) dr

1

b 1 —u '-'exp —g, dg
0

f=b(d 1), -
where b and d are the same as before.

(29)
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The average voltage impulse app
'

lied to the grid
of the amplifier is obtained as follows:

v, ' —v~ ——8L1 —exp ((T—I~)/RC) j
0

o"00 ..o
o~

50

= (V, —V,)[1—(1-.'/. ) ~,

» = (i'~ —1'.)/(b+1)
= (vo),„./(XORC+1) as before.

The behavior of the function N and the

the integral for X/Xo is not a standard form, and

ing the exponential, the express&on below is
obtained:

(—y)- r(b)r(n+1)
=b P—

n! r(n+b+1)

(-1)"b"(&-1)"

(b+n) (b+n —1) ~ ~ (b+1)

This series converges rapi y,
'

l and is in con-
venient form. The values of X/No lie lower than

that the excess charge, gi takes lo gs ion er to leak off
through R due to the lower potential of the wireI

the ~'s are longer, resulting in moore lost counts.
B a limiting process exactly ana ogouous to that
used in the previous case, it may bebe shown that

lue i d as a limitN/%0 again approaches the value
when b becomes large.

The average recovery time, o cocourse, decreases
with increase of Np. Its behavior with regard to
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C and R depends upon how A varies with C and
R. If A varies according to some such relation as
A=KC/R where K varies very slowly with
change of C or R, the expression becomes

=KC. /(N pRC+ 1).
Such a relation would be in accord with the
experimental results in this type of discharge,
namely, that 7 increases with decrease of R, or
increase of C. A general behavior of this nature
would be expected if the straight line portion of
Fig. 2b is regarded as a temporarily self-sus-
taining discharge, which ceases when the po-
tential applied to the tube of the counter happens
to fall below the value Uz due to natural
fluctuations in the source of supply, or some
similar accident. A knowledge of the exact
mechanism is not necessary, though, as in actual
practice, for a given counter, C and R are
constant, and the variation of A .with Uz is
negligible.

THE DETERMINATION OF THE NUMBER OF

INCIDENT IONIZING PARTICLES

In order to determine Np from the registered
value N, the values of d and of the product RC
must be obtained for the particular counter.
Using the product of RC and the registered
number of particles per unit time as ordinate,
the value of b may be read from the curve with
the correct value of d, in Fig. 6. Division by RC
then gives the true value, Np. If the unit of time
is taken to be RC, N gives Np directly.

If it is possible to obtain a trace of some actual
discharges, as, for example, by a Braun tube,
both constants may be obtained directly from
the trace. RC is of course obtained from the rate
of decay, and the parameter d may be obtained
from either of the relations

d =exp (r,„,„,/RC )= [vp/(V. z
—Vs)']„, -p.

If a trace is not obtainable, R and C may be
measured directly. In that case, d can be obtained
as follows A source of ionizing particles is
brought to different distances from the counter,

The use of an electrometer to determine the average
charge passing per count suggests itself. Then d=CI/C,
where C is measured, and C1 =q/(VT —Vp). If this is done,
care must be taken that the number of counts per second is
small, as q depends on the number of discharges per second,
and the formula for C1 is only valid when a long interval oc-
curs between discharges.

and values of N obtained. If the radiation at
any one position is continued long enough, the
inverse square law may be assumed to hold for
the number of incident particles per unit time.
This will give the ratio of the true number of
incident particles, and the measured values will
give the ratio of the N's. Knowing RC and the
approximate number of incident particles, the
value of d which gives a curve with the correct
ratio of the N's for the chosen value of the ratio
of the No's may be determined. (If desired, the
more accurate value of one Np may be obtained
from this curve, and the determination of d
repeated, to increase accuracy. )

Np 1/N d(1/¹)
so that Np7 should actually have the limiting
value which it does.

DIscvssIoN

The efficiency of counting depends only on b

and d. A change in the potential which the
experimenter applies to the counter affects only
the quantity A and therefore d. From the
sensitivity curve of the counter, Fig. 1, it is
evident that a counter operated on the flat
portion of its sensitivity curve will show no
variation of efficiency with change of applied
voltage. Therefore d is to be regarded as constant
for a given counter.

The value of N/No decreases rapidly at first,
and then more slowly, approaching asymptoti-
cally the value 1/d in both cases above. Thus the
number counted always increases with the num-
ber arriving. This behavior would be expected
physically, since the potential of the wire varies
between narrower and narrower limits as Np
increases, and therefore the recovery time be-
comes smaller and smaller. In the limit the ratio
of v to the average period between the arrival of
particles, namely (1/No), approaches the value
(d- —1) for both cases. Now, for a large number of
particles, the ratio of 7 to 1/N (that is, the ratio
of the average recovery period to the average
period between counts) should be equal to the
number of lost counts divided by the total
number to be counted. Since, in the limit,
N/No = 1/d,

d —1 Np —N
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In the actual counter, the registered number of
counts will sometimes decrease as No is increased.
This is due to the smallness of the charge
involved in each discharge, when No becomes
large. Thus the effect is to be traced to amplifier
and mechanical registering device performance.
For example, with a telephone message counter,
five or six counts per second is very near the
maximum obtainable, and .a relatively large
amount of charge must pass through it on each
impulse to cause it to register. Commercial
counters are on the market which will give
somewhat over a hundred counts per second.
Various laboratories have designed and are using
counters using cheap watch mechanisms, capable
of counting up to fifty or sixty evenly spaced
impulses per second, accurately and conve-
niently. One such, designed in this laboratory,
resolves impulses less than 0.01 sec. apart, and is
accurate over the whole range up to its maximum
count. This more than covers any experimental
region which would be desired, and reduces the
question of efficiency to amplifier and tube
coun ter performance. '

In any counter there are a certain number of
background counts (natural, cosmic, and radio-
active contamination in the laboratory). With
proper design and care, these may be reduced to
as low as from one to five per minute. The
correction in the case of a small number of

7 For a good discussion of this, see the article by Locher,
reference 2.

background counts would consist, to sufficient
accuracy, in the subtraction of this number from
the number of registered counts. If much radio-
active contamination is present in the laboratory,
or, for any reason, the background radiation N'
is of the same order as N, a better procedure
would be to determine the true N's for the
background, and the count separately, and then
subtract. If the background becomes of the same
order as the count, the usefulness of the counter
decreases greatly. '

Throughout the above, the term, "ionizing
particle" has been used. The number of particles
which actually produce ionization in the counter
is determined both by the actual number of
particles, and by the ionization efficiency. The
latter quantity will vary with the nature and
velocity of the particles. ' For the theoretical
explanation of natural phenomena, however, the
value of N, and the nature of the source are
important. Corrections are then possible. If only
the registered number is known, the true num-
ber of incident particles cannot, in general, be
determined, since the counter of each investigator
will have a different efficiency, and a different
variation of efficiency with the rate of counting.
Only for high rates of counting will the efficiency
be sensibly constant, as may be seen from the
curves given.

' The useful sensitivity is given by the expression
(N —N')/(N+N')'. Evans and Mugele, Phys. Rev. 47',
427 (1935).' In this connection, see Chase, Phys. Rev. 36, 984 (1930).


