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On the Dirac Electron in a Gravitational Field

O. HALPERN, NevLI York University, University Heights AND G. HELLER, Columbia University

(Received June 6, 1935)

In this paper the behavior of Dirac's electron in gravitational fields is discussed for several
special cases. In paragraph II a general derivation of the red shift in a gravitational field is
given without reference to the special atomic system concerned. Paragraph III contains a
treatment of the gyromagnetic effect.

I. INTRQDUcT IQN

EVERAL authors' have lately given a formu-
~

~

lation of the theory of Dirac's spinning
electron in a gravitational held. To obtain full
covariance it was necessary to remove the
restriction
&kgb PP k

(~l, = generalized momentum vector) (1)

previously imposed on Dirac's matrices which
made them independent of the coordinates x'.
The commutation relations

j'jk+ jk j'=2~'k (2)

now take on the form

y;yq+yqy„= 2g;q (g;I, metrical te——nsor) (3)

and by differentiation of (3) one easily obtains
the fundamental relation

(4)

must be satisfied. (4) can now be brought into the
form

~,r„—r,.~,= (b. ,„b., „,)&, —(4a)

F;&& are the Christoffel symbols, I'k represent an
infinitesimal contact transformation. Naturally,
the conditions of integrability, 8'y;/Bx"Bx'= cP&;/
Bx'Bxk, or more explicitly

C 1,(y; —y,C'I:)——,'(Rk(, ;„—Rl„.( „;—)y&, (Sa)

c« =—BI'&/Bx" —Bl'I/Bx'+I'~I'~ —I'l l"~ (Sb)

(Rk~, ~„= Riemann's curvature tensor)

which is solved by

Fk=-', bk, „py"y"+yk 1, (4b)

where pk is arbitrary.
Dirac's equation written in its general form is

p"(8/Bx' I'g)f—=me&/hr, (6)

where y" and I'~ satisfy (3) and (4). It transforms
covariantly both under point transformations,
x'"= x'~(x') (where it behaves like a scalar), and
also under contact transformations (S transfor-
mations, spin transformations). For if we multi-

ply (6) by S ' matrices (det SWO) from the left
we are led to an equation of the same form (6)
on using the substitutions

P~S—lg ~k~S—I~kS g/gxk~g/gxk

I'I,~S 'I',.S—S-'BS/Bx',

q&s—:4&rI'a~yI —48 log det S/Bx".

(7)

From (6) we infer that the matrix vector I'q/f.

reduces to the covariant vector potential of
Dirac's theory for the case of a Galilean metric,
gg,

——b„&, if the spinframe (as represented by the
p" matrices) is selected independent of the co-
ordinates. * Similarly, it can also be shown that
Eq. (6) and its Hermitian conjugate lead to the
general relativistic extensions of familiar con-
servation theorems.

In this paper we shall consider the application
of the generalized theory to two important
physical phenomena. Paragraph II gives a deri-
vation of Einstein's red shift as a direct conse-
quence of the principles of Dirac's equation. In
paragraph III the equation is applied to the

'The most complete report on the subject is contained in
a paper by W. Pauli, Ann. d. Physik 18, 337 (1933). We
follow in our notation the paper by E. Schrodinger, Berl.
Ber. 105, 1932. Compare also V. Bargmann, Berl. Ber. 345,
1932.

*One always can select "natural" frames of reference in
which the y's depend only on coordinates explicitly ap-
pearing in the g&I, . Examples of this are Eq. (25) and the
ordinary Dirac equation.
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treatment of the Dirac electron in an "artificial"
gravitational fieM; namely, to the gyromagnetic
effect.

II. THE RED SHIFT IN A GRAVITATIONAL FIELD

According to the original line of argument
given by Einstein for the red shift of light
coming from heavy celestial bodies, the mecha-
nism of this process has to be understood in the
following way: The emitting atom sets up a train
of waves of definite frequency which transport
this frequency with them to the observer. This
statement is correct only if the system of
coordinates is a so-called "static" system as
given by the Schwarzschild metric. The shift in

frequency in this system of coordinates is due to
the slowing down of the atomic vibrations in the
source which shares this retardation with any
type of "clock." Since the theory did not possess
a model of an atomic clock, this statement had to
be taken, according to Einstein, as a postulate
which would have to be supplanted by proofs
showing that the atoms actually satisfy the
condition imposed by the general theory. '

Quantitatively the red shift in the approxi-
mation always used is given by the relation

&= &pg44 &

in which vp stands for the frequency at zero
gravitational potential. It is remarkable that the
red shift is determined by one component g44 of
the metrical tensor only. It was, of course, a tacit
assumption in the derivation of (8) that the
gravitational field should have no other effect on
the atomic clock apart from slowing it down.

From the point of view of the generalized
Dirac theory the question presents itself in the
following form: Since the frequencies of the
emitted light are determined by the eigenvalues
of the Dirac equation, it is necessary, in order to
obtain conformity with (8), that all eigenvalues
in a static gravitational field shall be connected
with those at a zero gravitational potential by
the relation

8=Epg44:.

electromagnetic fields of force in which the
electron is moving, and only to the approxima-
tion mentioned above, that is, to the first order in
the gravitational potentials. That this is actually
the case shall be proved in what follows.

The Schwarzschild metric for a static gravi-
tational field with the origin of the system of
coordinates in the center of the heavy mass is
given by the expression

in which the actual value of

g44= 1 —2m/((x')'+ (x')'+ (x')') ' (10a)

need not concern us. If we neglect the change of the

gravitational field over atomic dimensions, and put
the center of the system of coordinates into the
nucleus around which the electron is moving,
(10) takes on the form

ds' = (1 &g'44) [(dx')'+ (dx')'+ (dx')'] —g', 4(dx')'

in which g44' is now a constant depending on the
distance of the nucleus from the center of the
heavy mass, i.e. , on the average position of the
electron. To the same approximation we are
justified in neglecting the nondiagonal terms of
the I'~ and the F;f,&. The y~ also become constants
on account of (3),

~4 —~4(g&44)-,'7k —~l/(g&44)$ (12)

The Dirac equation therefore takes on the form
(omitting the primes):

In (13) the quantities 8/Bx" are connected with
their respective values in the zero gravitational
field by the tensor transformations

ds'= (1/g«) [(dx') '+ (dx') '+ (dx') ']
—g44(dx')', (10)

This relation should hold true independent of the

'Cf. W. Pauli, Relativ~tatstheorie, )53, b.

8/M" = (Bx'/BP) (8/Bx')

I'p ——(Bx'/Bx') I';.

(14a)

(14b)



436 O. HAL PER N AND G. H ELLE R

But here, on account of the constancy of the g;&

in the neighborhood of the nucleus, (14) becomes
equivalent to

41/Bx'= (1/(g44)~)(B/Bx') (k=1, 2, 3), (15a)

r,= (g")~r., r.= (1/(g4'):)r„. (15b)

Correspondingly we have the relation

The gyromagnetic effect, as is well known,
consists in the magnetization of substances con-
taining spinning electrons and is due to a rotation
of the matter in bulk. The Coriolis force set up
by the rotation acts on the electrons like a
magnetic field. The frequency of the rotation is
connected with the intensity of the equivalent
magnetic field by the relation

8/Bx4= Z (15c) (u/H = e/mc. (19)

-mc . ~ ( 4l

&'&(g")'&= —+~'P —»'I —.—P
~

& (16)
i &aX~ ) u/II = e/2mc. (20)

E in (15c) stands for the new energy of the In (19) we have written down the relation for the
electron in the gravitational field. With these case of interaction between spin and rotation.
simplifications 13 reduces to For orbital motion and rotation the ratio is given

~ ~ ~

by

&i%. (17)

The factor of j4P on the left side of (16) de-
termines the eigenvalue for the system which

must be equal to the value B in the absence of a
gravitational field. We therefore have the
relation

g(g44) k= g (18)

or correspondingly

In (16) the right side obviously is the same as it
was in the absence of the gravitational field,

namely

x'= x' cos ~t+x' sin ~t,

x'= —x' sin ~t+x' cos ~t,

X X

(21)

The difference between (19) and (20) is known as
the gyromagnetic anomaly of the spinning elec-
tron. The experiment leads to a factor which,
though slightly smaller, lies close to (19).

The theoretical treatment of this problem is

straightforward on the basis of the general theory
of the Dirac electron. We introduce a frame of
reference given by the relations:

&=&(g44) ' (g44 = 1/g"). (9)
X4=—iCt= X4,

(9) constitutes the expression for the red shift as
derived from the Dirac equation for the electron
in a gravitational field. (8) and (9) are, of course,
in agreement. This concludes the proof that the
Dirac electron constitutes an atomic clock in the
sense used by Einstein.

III. THE GYROMAGNETIC EFFECT

While in the derivation of the red shift a non-

Euclidean metric was essential for the result
obtained, we shall here treat a problem of
rotating axes for which, obviously, the metric
remains Euclidean though the g;~ differ from their
Galilean values.

from which we obtain for the g;I, the following
scheme:

0 0

1 0

0 1

ZG)'X2

Zco X

01 —(g'2L(x i)2+ (x~) 2j
~ (44' = (u/c). (22)

Limiting ourselves to a first approximation, i.e. ,

taking the quantity ~ as small compared with all

atomic frequencies, we can, with the help of (3)
and (22) easily determine the quantities

'Cf. the comprehensive report by L. T. Barnett, Rev.
Mod. Phys. '7, 129 (1935).

Pi —Yi+Zhl X P4,

P2 72 ~& X P4y P4 P4 ~

(23)
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With the help of (22), (23) and (4) we can then and that
calculate the explicit expressions for I';j,t' and Fl, .
The matrix terms in F& are given by

Hpo, —o.,Hp =0 (30)

except for terms of relativistic order of magni-
tude, we can form a second order equation out of

ri= (&~'/4) (v'v'- v'v') = —~'~./2

rp= (&~'/4) (v'v'- y'v') = ~'~*/2

F3=0,

r, = —(p~'/4)(vi~&-~&yi) =~'„/2,

25
(24)

iip'P 2m'—(L,+ ,'Ao, )$-=0. (31)

Here L, stands for the s component of the orbital
angular momentum. L,+-2Ao, is an integral of
the equations of motion. In the case of a magnetic
field given by the vector-potentia, l (27) the
equation analogous to (31) would take the form

and we arrive at the new form of the Dirac
equation, which is accurate to the first power in

II&—:I Iipg+a)'(n y —npx) 7rt+ pItcp o]P='0 (25) Iip'P 2m~(L—.+ho, )/= 0. . (32)
IIp stands for the Hamiltonian in a nonrotating (31) and (32) ermit us to verif (19) and (20)

tern of coo d ate, II= + ' +m tl ~'o L =0
The other symbols have their conventional 32. ~

meaning. H differs from IIp by the terms

(~/c) (n,y n„x)~,+—(It~/2c) ~, (26)
while for L,&&ko., one obtains

If the electron moved in a homogeneous
magnetic field given by the vector potential

A.=-',Hy, A„= ——,'-II@, (27) Intermediate stages are given by the formula
analogous to Lande's:

and in a system of coordinates with a Galilean
metric, the terms due to the vector potential
would be equal to

(~/c) (n,y —u„x)mc, (pp = eii/2mc). (28)

Comparing (26) and (28) we notice that the
magnetic field which would produce the same
additional terms as the rotating system of
coordinates depends on the state of the electron.
In other words, there does not exist a universal
gyromagnetic relation between frequencies of
rotation and intensity of the magnetic field.

It is justified in our approximation to write in

(26)

m~=mc,

pi/pp = (L.+Sp.)/(L„+-', Ap, ). (33)

ct/Bt= it/Bt+ ppyrt/Bx pixB/By—, etc. , (34)

one arrives at the following (exact) Dirac
equation

Ii@=L
—~i pi'L, +u pr—+mcP]4'=0, (35)

where

An alternative way of treating the problem4
goes as follows: Starting from the original form of
Dirac's equation and transforming the mo-
mentum operators to rotating coordinates with
the help of the relations

because the difference between ~& and mc is of
relativistic order of magnitude and can therefore
be omitted in the small correction term. Noting
furthermore, that

n, =n, cos ~t+ n„sin cot,

ri.„=—n, sin ~t+O.„cos cut,

ag = O.'g.

(36)

H~] —m-]H= 0,
This equation permits of an interpretation similar

i.e., sr&= const. =8, 40. Halpern, Phys. Rev. 3'7, 1719 (1931).
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to tha. t which we have given to (25) except for
the ambiguity in (35). ~& is no longer an integral

of tke equation of motion since it does not commute
with H. This constitutes a special case illustrating
a general feature of the covariant form of
Dirac's equation. It is due to the fact that the
n's and y's are now functions of the coordinates.
Two equations which are equivalent to each

other are not interpretable with equa1 ease
because, as a result of the special choice of y', one
does not admit the same integrals as the other
one. Since (35) and (25) are equivalent, there
must exist, of course, a spin transformation which
connects the two equations with each other.
The transformation is given by the matrices
(accurate to first order terms in cv)

Cut COt &d ( (dt (Vti G& ( Mt OPt)S=cos —1 i s—in —o.——
) y cos —+x sin —

) a,+—
i

x cos ——y sin —
i
a.„,

2 2 2E 2 2j 2E 2 2)
ddt (dt M ( Ã3 c01) M ( 4lk 0)f)S-'= cos —1+i sin —o.+—

i y cos —+x sin —
i
a.——

i
x cos ——y»n —

i Q.
2 2 2( 2 2) 2E 2 2)

(37)

The Hamiltonians are connected by the relation FI=S 'HS (7aj

and the eigenfunctions by P= S—'%. (7b)
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The Efficiency of the Tube Counter
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The efficiency of counting ionizing particles by the tube
counter is investigated, taking account of the electrical
behavior of the counter and the random nature of the
arrival of the particles. Expressions are obtained for the
efficiency of counting, average recovery time, average
voltage impulse delivered to the amplifier, and the average
number of particles counted per unit time, N, in terms of
the number of particles arriving per unit time, No, the

time constant of the counter, and one other parameter, d,
which is constant for a given counter. Methods for meas-
uring d (which for most counters will lie between 1.3 and
five) are indicated. The efficiency of counting decreases
with an increase of No, rapidly at first, then more slowly,
so as to have the asymptotic value 1/d. The determination
of

¹
from N, and the general question of counter efficiency

are discussed.

HE behavior of Geiger-Muller and similar
types of counters has been studied experi-

mentally by various investigators. ' As the nega-

' (The first two references give a good bibliography of the
previous work. ) Burger Scheidlin, Ann. d. Physik 12, 283
(1932); Schulze, Zeits. f. Physik 78, 92 (1932); Medicus,
Zeits. f. Physik 74, 350 (1932); Curtis, Bur. Standards J.
Research 10, 229 (1933); Brunetti and Ollano, Nuovo
Cimento 10, 92 (1933); Greiner, Zeits. f. Physik 81, 543
(1933); Hummel, Zeits. f. Physik 76, 483 (1932); Physik.
Zeits. 34, 331 (1933); Kuhn, Zeits. f. Instrumentenk. 54,
415 (1934); Danforth, Phys, Rev. 46, 1026 (1934); J.
Frank. Inst. 219, 108 (1935); Wernow, Trav. de l'Inst.
d' Etat de Radium 2, 30 (1933) (abstracted in Physik.
Berichte 15, 1448 (1934)); H. Teichmann, Physik. Zeits.
35, 637 (1934); Bosch, Ann. d. Physik 19, 65 (1934);
Janossy, Zeits. f. Physik 88, 372 (1934); Henning and
Schade, Zeits. f. Physik 90, 597 (1934); A relevant article

tive potential on the tube, Vz, is increased from
zero, the average number of counts per unit
time, the source being constant, behaves as in
Fig. 1. Counting begins at the "threshold volt-
age,

"
V~, rises rapidly to a value N, and remains

nearly constant for a range of voltage which
depends on the individual counter. In a well-built
counter, the flat region of the curve extends over
a considerable range of voltage. The counter is
operated in this region, since any slight variation
of supply voltage will then have negligible effect
on the rate of counting. At higher voltages, the

on photon. counters is Werner, Zeits. f. Physik 90, 384
(1934); 92, 705 (1934).


