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Velocity Distributions for Elastically Colliding Electrons
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The form of the function giving the distribution in

velocity of electrons in a gas is determined by a pair of
equations which correspond to the detailed balancing of
energy and momentum, and take into account the varia-
tion of collision cross section with velocity. The kinetic
energy e of the electrons is supposed to be larger than that

- of the gas atoms, yet small enough so that the majority
of the energy lost is by elastic collisions with the atoms.
The equations are solved in detail for two cases. One case
is that of electrons in a uniform electric field, where the
distribution is independent of position. The distribution
function is found to be proportional to exp( —~~/a2),

instead of to exp( —e/a), as is the case for the Maxwell
distribution, when the electrons are in temperature equi-

librium with the gas atoms. The average energy of the
electrons, the drift current, etc. , are computed as a function
of the field strength. The other case considered is that of
a homogeneous beam of electrons of energy ep, shot into
a field free space, where they lose energy to the gas atoms
by collisions. The distribution function depends on z, the
distance along the beam in mean free paths, and on t,
the average number of collisions the electron has had
before its energy decreases from Ep to e. This distribution
is also not Maxwellian, but depends on a solution of an
equation in z and t having the form of the heat flow

equation. The solution has been tested experimentally,
and a quantitative check is obtained.

INTRODUCTION

N all problems involving the motions of free
- - electrons among the atoms of a gas, it has
been customary to make one of two simplifying
assumptions: either that the electrons lose no
energy on collision with the atoms, so that at any
point all the electrons have the same energy; or
that the electronic velocities have a Maxwellian
distribution whose density and temperature can
vary from point to point in the gas. These two
assumptions represent, in a sense, two opposite
limiting conditions, and neither assumption is
valid for intermediate cases.

The first assumption is only valid when the
mean free path of the electrons is longer than the
dimensions of the apparatus, for the electrons
lose energy, even in an elastic collision, due to the
recoil of the atom. This loss is small per collision,
but unless the mean free path is very long, there
will be enough impacts to give a noticeable
"spread" to the energy distribution of the
electrons.

The Maxwellian distribution, on. the other
hand, is only valid when the electrons are in

temperature equilibrium with the gas, or when
there is available some mechanism for trans-
ferring energy directly from electron to electron.
These requirements are not fulfilled when there is
an applied electric field, or when high energy
electrons are shot into the gas from outside;
unless, possibly, when the electron density is
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quite large. W'hen the gas pressure is relatively
large and the electronic density relatively low,
one must expect a velocity distribution which is
neither as "sharp" as the first assumption would
demand, nor as "spread" as the second assump-
tion would require.

It is possible to derive this intermediate
distribution by balancing the electron's gain of
energy, due to the applied field and to diffusion,
with its loss, due to collisions with the gas atoms.
In this paper only "elastically controlled" distri-
butions will be studied, i.e. those cases where the
average electronic energy is small enough so that,
on the average, more energy is lost by elastic
collisions than by inelastic ones. The method
outlined below can be extended to cases where
the inelastic collisions are more important, but
the elastically controlled case is the simplest, and
must be studied first.

ELASTIC COLLIS IONS

The probability that an electron of velocity v

will collide elastically with an atom and be
scattered at an angle 0 to its primary direction is
determined by the angle scattering function o.(v, 0).
The resultant probability of elastic collision for
any direction of scattering can be expressed in
terms of the elastic collision cross section

q(v) = 27rJoo (~r, 8) s'in OdB.

If it is desired to find the loss of momentum of
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the electron in the collision, the momentum f(x, v, p&) = fp(x, v)+&i(cos & )fl(x v)
transfer cross section is needed, '

Q(v) =2irfo o(v, 8)(1—cos 8) sin ede. (2) =f, (x, v)+(&/v)fi(x, v)+ (4)

The two cross sections differ appreciably only if
the angle scattering curve has a pronounced
excess in the forward or backward direction.
Both cross sections vary markedly with the
electronic velocity, in most cases.

When an electron of mass nz and energy
e= -', mv' collides elastically with an atom of mass
3EI and is scattered at an angle 0, it loses a
certain fraction of its energy to the recoiling
atom. We shall be interested in electrons whose
energy although lower than the atomic excitation
potentials is considerably higher than the thermal
energy of the atoms, so that the atoms can be
considered as being at rest. With this approxi-
mation, and neglecting the squares of the small
quantity (m/M), the fraction of energy lost per
collision is

(6&/p) = (2hv/v) =2(m/M)(1 —cos 8). (3)

It can be seen that the expression for the average
loss of energy per collision will involve the cross
section Q.

DETAILED BALANCING

Let the number of electrons in the volume
element d~=dxdyds, whose velocities fall in the
range dy=d/drtdi =v' sin ipdvd&pdip be f(x, y, z;
$, v, i)drdy This defines .the distribution function
f For rea.sons of simplicity we shall usually
discuss distributions which are homogeneous and.
isotropic in the yz plane so that f is a function
only of x, v and f (or x, v and pi). It is possible to
generalize the argument to three dimensional
cases, however.

The distribution function f will be determined
by a method similar to that given by Lorentz, '
but extended to include the variation of the cross
section with the velocity and the loss of energy at
collisions. With Lorentz we assume that f can be
expanded in a series of Legendre functions of
cos pp= (&/v),

' Houston, Zeits. f. Physik 48, 449 (1928).
'Lorentz, Theory of Electrons (Stechert), p. 267.

The function fp determines the random distri-
bution in velocity, and fi determines the electron
drift. The higher terms in the series are nearly
always very small and do not correspond to any
simple physical property of the distribution, but
serve simply to improve the form of the distri-
bution function. Consequently, we shall neglect
all except the first two terms of series (4), and
expect that the result will give very nearly correct
values for the random and drift velocities, even
though the function f thus calcula, ted does, in
some cases, actually become negative for certain
values of the parameters.

The fundamental formula determining f is
obtained by fixing the attention on an element
d7dy of phase space. The number of electrons
leaving this element due to the applied field 8
and to diffusion is

t eE Bf itfy
cdrd

Em a( ax&

When the first two terms of series (4) are substi-
tuted in this expression, two terms in (' appear.
Since we are neglecting spherica1 harmonics of
order higher than the first, &' must be replaced by
its average value (v'/3). To this approximation,
then,

eE Bfp eE 1 8(v'f&)
cdvdy = —cos cu—+-

m Bv m 3v' Bv

Bfp v elf i
+v cos &p +— drdy. (5)

Bx 3 Bx

The number leaving the element of phase space
due to collisions is

adrdq=Nv f2~fo sin ededrdq=Nqvfdrdq, (6)

where X is the number of gas atoms per cc.
So far, all is in accord with Lorentz;. the

difference comes in the discussion of the number
scattered into the element drd7. These electrons
had, before the collision, velocities in velocity
element dy (Fig. 1) . Their initial velocity
v'= v+(mv/M) (1 —cos 8) is larger than the final
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velocity as is seen from Eq. (3), and it can be
shown from the same equation that the size of
dy' is given by dy'= (v'/v)Pdy. Hence, the total
number of electrons scattered into the element

day per second is

bdrdy=Nv fp 2rrf(v', pi')a(v', B)

Xsin BdB(v'/v) 'd rdp,

As v' differs little from v, the integrand may be
written

v v, co — v, co o. v

+Av(B/Bv) [v'f(v, p~')]o (v, B).

The first term is that obtained by Lorentz, and
gives on integration NQvfi(v, p&—) cos pp. The
second term follows from the inclusion of the
energy loss, and is small due to the factor
(m/M) in Av. Consequently, in itf can be replaced
by fp, and (b —a) becomes finally

and hence the net number coming into the
element d7.dp by collisions is

(b a)drd~= —(2~N/v')1';-[v"f(v', ~')a(v', B)

v4f(v, p—i) p(v, B)j sin BdBdrdy.

gain of momentum, due to diffusion and drift
down the field, and the loss of momentum, due to
collisions. The quantity (1/NQ) is of course the
electronic mean free path (for momentum trans-
fer). The second equation represents the balance
between the gain of energy, because of diffusion
and drift down the field, and the loss of energy
by collisions.

Since Lorentz had only Eq. (7), he had to
assume the form of fp to be Maxwellian and then
to find fi in terms of it. Pidduck' introduced an
average balance of energy by determining the
temperature of the Maxwell distribution in such
a way that the total energy gained by drift and
diffusion was equal to the total energy lost by
collisions. As will be noted later, such a distri-
bution predicts entirely too many fast electrons
to agree with the experimental facts. The correct
distribution must have less "spread" than the
Maxwell distribution.

The addition of Eq. (8) secures a detailed
balance of energy in each velocity range, and not
merely a balance of the totals; and enables one
to solve for both fp and fi without any further
assumptions. In the present paper these two
functions will be obtained for two special cases.

HOMOGENEOUS D ISTRIBUT ION

When f is independent of x, Eq. (8) integrates
immediately to

eEpfi=6(m/M)NQp'fp

or, on multiplication by (8 /p3rm)d , p

8veZ 16rrNQ m
pf, d p ———— — p'f pd p = ——jde,i (10)

3rg2 m2 3f
(b a)drdy—

m%8
NQvf, cos cp—+—— (v'Qf, ) d—rd7 (6a).

M v'Bv

The condition for a steady state is now given
by equating c to (b a) Equat—ing s. eparately the
terms in cos co and those which do not contain
cos co gives two equations:

e&flfp/Bv+mv&f p/&x = NQmvf i, — (7)

eZ 8 Bf, m'3N 8—(v'f, )+pmv' =— (v'Qf, ) —(8).
2v Bv Bx 3II 2v Bv

The first of these equations is the one obtained by
Lorentz, and represents the balance between the

where the constant B, or j, is a constant of
integration. Eq. (10) gives the balance of energy,
for the current carried by electrons having
energies between p and p +de (i.e. , in the velocity
elementdy= (47r/m)vdp) is dJ=e/fdic= (ev/3)f&dy,
and the energy taken from the field per sec. per cc
is EdJ= (8rreE/3m') pfidp. This is the first term of
Eq. (10). The second term is the energy lost by
collisions. If these energies are to balance, the
constant 8, or j, must be zero. On the other hand,
if these energies do not balance and, say, the
energy gained is less than that lost, then the

' Pidduck, Proc. Roy. Soc. A88, 296 (1913).
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electrons are losing energy and j is a measure of
that loss. In fact, jwill be seen to be equal to the
number of electrons per cc per sec. losing energy
and passing through the energy value c from
higher energies to lower energies. Suppose elec-
trons of high energy to be introduced into the
system and allowed to lose energy by collisions,
then j will equal the number of electrons so
introduced per cc per sec. having energies higher
than e. If, on the other hand, high energy
electrons are suffering inelastic impacts, and are
thus being removed from the high energy range
and replaced with a low energy, ( —j) will equal
the number per cc per sec. , originally having
energies larger than ~, which are being stopped by
an inelastic collision, and which must subse-

quently gain energy until they make another
inelastic collision. This will be treated more fully
in a later part of the paper.

At present, we will consider 8, or j, to be zero.
Substituting Eq. (9) into Eq. (7) when f is
independent of x, and when Q is considered to be
constant, one obtains

3m (NQpq '
f,=Ze-"'"'=A exp —

( [, (11)
3f EeE)

where h'= (3m/M) (NQm/2eZ)' and the constant
A = [nh'/nI'( ,') j The -nu.mber n is the density of

electrons per cc.
The natural units of energy and velocity for

this case are the energy p, = (eE/NQ) and velocity
v, = (2'/mNQ)' gained by an electron in falling,

from rest, down the field for a mean free path. In
terms of these units the average kinetic energy
and mean drift velocity of the electrons are

r(5/4) (M) ' (Mq
-'*

p, =0 4270( —
) &„(12)

I'(3/4) (3m& Em J

(3m) ' (m) '

I
'=06345' —

I
' (»)

3r(3/4) & M) &M)

is obtained from Eq. (9), fi/f p
2——.56(m/M) '*

Since this ratio is never larger than 0.07, it is seen
that for the range of energy which is important,
fi is only a small correction to the spherically
symmetric term fp. For electronic energies larger
than the mean energy, fi becomes relatively more
important, but the exponential in Eq. (11)
renders the whole distribution function negligibly
small before fi can be the same size as fp

It is of interest to compare the results of this
distribution with those obtained by Pidduck. '
If one neglects Eq. (8), sets fp Be ——'"r, and
requires an average energy balance, it turns out
that hT= (M/3m)i(p, /2). The average kinetic
energy is 0.4320 (M/m) 4„only 1.014 times the
average given in Eq. (12). The average drift
velocity is 0.9900 (m/M)'v„greater than the
average given in Eq. (13) by a factor of 1.560.
Hence average values are not much different for
the two distributions. However, the number of
fast electrons is markedly less for the new

.distribution, and quantities .vhich depend only
on fast electrons, such as rates of excitation and
ionization, will be considerably less for the new
than for' the Maxwell distribution. This is in
better accord with experiment, for the Maxwell
distribution predicts several times more ioniza-
tion than is measured by Townsend. 4 The
difference between the two functions is shown in
Fig. 2.

The distribution given in Eq. (11) is valid only
if the momentum transfer cross section is nearly
independent of velocity. If it cannot be assumed
that Q is constant, then the distribution function
must be written

It is seen that the mean energy increases as
(M/m) increases, because the heavier the gas
atoms are, the less energy can be lost per collision.
On the other hand, the average drift velocity
decreases as (M/m) increases. The average speed,
(2p/m)&, bears to I the fixed ratio 1.03(M/m)'*,
which is as large as 63 even for hydrogen gas.

The relative size of fi and fp at the mean energy

Veiocity

FIG. 2. Distribution in random velocity of electrons
under the influence of an electric field (A), compared to a
Maxwell distribution for the same average energy (M).

4 Townsend, Electricity in Gases, p. 295.
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(14)

bution both in space and in energy will be a
solution of Eqs. (7) and (8) with Z=O. When Q
can be considered constant, it is convenient to
introduce new variables, defined as follows:

z=NQx, t,= (M/2m) In (pp/p),

The general effect of a variable cross section is
easily seen. The cross section Q can be considered
as a scale factor for the variable e, so that where
the cross section is small the curve is flatter,
where it is large the curve is steeper, than it
otherwise would be. The change is small except
when the cross section exhibits a Ramsauer
effect, in which case the derived mobility, rate of
ionization, etc. , may be considerably affected.

HOMOGENEOUS D ISTRIBUTION WITHOUT FIELD

The distribution discussed in the last section is
maintained by the electric field E' and will not
hold if E falls low enough for the mean kinetic
energy of the electrons to be comparable to that
of the atoms. It is possible, however, to maintain
a distribution without a supporting field by
continuously introducing electrons of high energy
ep, as, for instance, by ionizing the gas by x-rays.
These electrons gradually lose energy by collisions
and thus drift down the energy scale to end up in
a large accumulation of electrons of low energy.

The stationary distribution must be such that
the number of electrons falling in unit time below
any energy level is equal to the rate j at which
they are introduced. But the electrons crossing
the energy level e are just those in the range
Av=vm/M above p which have collisions. Thus,
j =NQvf 47rv'(m/M)v, or

f=fp (M/m) (j m——'/16prNQ p') (15)

INHOMOGENEOUS D ISTR IBUT ION

Imagine electrons of energy ep to be liberated in
a limited region of a gas, and to diffuse away
from this region, at the same time losing energy
due to collisions. The function giving the distri-

This is, of course, the solution of Eq. (10) with E
set equal to zero. The distribution is isotropic
unless j varies with x. The distribution f goes to
infinity as p approaches zero, but Eq. (15) is no
longer valid for electronic energies less than the
temperature energy of the gas molecules.

R =4 prv'f =Rp+cos ppR i. (16)

The variable s is the distance measured in mean
free paths, and the relation dp= —(2m/M)pdt
=Amdt shows that in order to lose the energy de

the electron must make, on the average, dt
collisions. Hence, t measures the average number
of collisions the electron has suffered since it
started.

Making all these changes, Eqs. (7) and (8)
reduce to

Rr —— BR—p/Bz, 38Rp/Bt =O'R p/Bz' (17).

By generalizing Eqs. (7) and (8), it can be shown
that the three dimensional variation of R is
governed by the equation

V'R p 3(8/Bt) R——p,

where the unit of length is again a mean free
path. In this case, the drift current due to
electrons in the velocity range dv is the vector

dJ= —(1/3v) grad (Rp)dv.

Eq. (18) or the second Eq. (17) is formally the
same as the heat flow equation, Rp corresponding
to the temperature and t to the time; it shows
that the electrons spread out in space as their
energy decreases exactly as heat spreads out with
time.

A solution of the one dimensional equation is
the Green's function

Rp ——(M/2NQm) (3/prt) le '*'"
which is here normalized to correspond to the
introduction of one electron, with the energy ep,

per second at the point a=0. The singularity in
the solution at t=0 corresponds to the highest
energy in the distribution, 6p.

The problem to which we wish to apply this
theory, and which has been studied experi-
mentally, is the following: a beam of electrons is
projected with kinetic energy ep into a region free
from electric fields, it is desired to find the
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electrons passing the grid to reach the collector,
but only those whose normal velocity is great
enough to overcome the retarding potential e V.
The correct integration here would be difficult,

but if the angle coi is not large, no great error is
made if we simply integrate over all energies ~

greater than eV. The current to the collector is
then

I,=I+. (m/4M) sin' cP&ltrRp(s&)dt

where C= (3/16p. )
** sin' pp~, and T= (M/2m)

Xln (Up/U). Due to the factor (3E/2m), T be-
comes quite large as soon as the collector
voltage V is made somewhat smaller than the
accelerating voltage Vp, so that over most of the
range of V the asymptotic form for J, can be
used:

J,~Ipe "+IpA[ln (Up/U) jl(1 e"—) (20.)

The constant A is left in this expression to be
determined by experiment. There are several
factors whose effects cannot be exactly calcu-
lated, as the electron beam is not infinitely wide
and the exact inHuence of the walls of the tube
and of the grids is unknown. If these effects do
not depend too markedly on the velocity, they
should be taken care of by adjusting A.

AN EXPERIMENTAL CHECK

The experimental tube was built to correspond
to Fig. 3. It contained a nickel cylinder, a
filament, and a plate collector. The cylinder was
five cm long and five cm in diameter. The end of
the cylinder nearest the filament was covered by
the gauze grid Gp, and the other end with sheet
nickel, except for a central circular window one
cm in diameter, covered with nickel gauze, the
grid Gi. The filament was ten-mil tungsten two
cm long, situated five mm from the grid Gp. The
plate C was a disk of sheet nickel and was five mm
from the grid Gi. This was done to eliminate, as
far as possible, collisions between electrons and
gas atoms everywhere except in the field-free
space between the grids.

The filament was heated by alternating current
obtained from a low voltage transformer. Since

the ends of the filament were cooled by conduc-
tion along the leads, only its central portion
contributed to the emission current. An exami-
nation of the energy distribution of the electrons
emitted by the filament showed a total spread
which did not exceed one volt.

For a fixed accelerating voltage Vp between
filament and entrance grid, the current to the
plate C was measured as a function of the
retarding potential V between collector and exit
grid. The first tests in high vacuum showed a
wide-spread distribution in normal components
of energy of the electrons reaching C. It was
decided that this spread resulted from reflection
of the electrons by the grids and from the walls
of the cylinder. The tube was taken apart,
therefore, and the cylinder, grids and collector
were covered with amorphous carbon to reduce
electron reflection. The energy distribution subse-

quently obtained in high vacuum was extremely
Hat over most of the range, and showed only a
small residue of the previously observed effect.

After having made the run in high vacuum,
runs were made with helium gas in the tube over
a range of pressures such as to allow from one to
ten mean free paths between the grids. Helium
was chosen because its effective cross section
varies least with velocity, and an accelerating
potential of only 18.5 volts was used to insure
that the number of inelastic collisions would be
negligible.

The experimental results are shown as circles
in Fig. 5. The solid curves are plots of Eq. (20).
Ip was taken as the value of the current when the
tube was evacuated, and was 0.478 micro-
ampere, or 143 mm galvanometer deHection.
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Fj.o. 5. Comparison of experimental results (circles and
crosses) with calculated curves for the apparatus shown in
Fig. 3, for different pressures of helium, in mm of mercury.
Accelerating voltage Vo is 18.5 v, and collector current i
for vacuum is 143 mm galvanometer deflection. The single
arbitrary constant is adjusted to make the curves fit the
point indicated by the heavy circle.

The value of NQ, the number of collisions per cm
path at 18.5 volts, is obtained from Normand's
measurements of the cross section of helium. ' It
is 8 collisions per cm per mm gas pressure. Since
the distance between grids, I., is 5 cm, the
quantity z& is 40p, where p is the gas pressure in
mm of mercury. The only unknown parameter is
A, and it was determined by fitting the single
point indicated by the heavy circle in the figure.
The agreement for all three curves is quite
satisfactory.

FURTHER APPLICATIONS

The Green's function method can also be
applied to the lateral diffusion from a narrow
beam of electrons in a held-free space. For
instance, the distribution function for a beam
defined by a slit whose width is a mean free paths
is given in terms of the function

(a+2/ (3) *) (a —2x (3) *)
x c'I

I
-

I I+4I I
-

I I, (»)
(~) J & 4 «))

where z is the distance, in mean free paths, along
the beam, and x is the distance at right angles to
the beam. Fig. 6 shows Eo as a function of x for
different values of s and of f. As the electrons

' Normand, Phys. Rev. 35, 1217 (1930).

FIG. 6. Dispersion of a narrow beam of electrons by
passage through a gas. Curves give values of Ro——47fv'fo,
as function of x the distance across the beam in mean free
paths, for different values of s the distance from entry, and
of t the average number of collisions since entry.

have more than 0.997 of their initial energy when
t= 3, it is seen how rapidly the beam loses
definition as the electrons lose energy.

Although the discussion above was based on
the assumption that the cross section Q was
practically independent of the electronic velocity,
it is possible to obtain a solution when Q cannot be
considered constant. We set S=4vv4NQf, and Eq.
(7), for Z=O, becomes S&= —(1/NQ)(BSp/Bx).
Choosing a new variable

p = (3E/m) J;"'[dv/(NQ)'v j,
Eq. (8) becomes (B'So/Bx') = 3(BSO/Bp), which is
similar to Eq. (17). S can therefore be obtained
by the methods discussed above. However, since
the relation between p and v is a complicated one
if Q varies markedly with v, average values of
current, etc. , must be obtained by numerical
integration.

The foregoing investigation originated from a.

suggestion, made by Dr. K. T. Compton in
connection with a problem of sputtering, that
the effects due to particles which had suffered
several collisions would be as important as those
due the primary beam. W'e are indebted to him
and to Dr. Irving Langmuir for several helpful
dsscussrons.


