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On the Cross Section of Heavy Nuclei for Slow Neutrons
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The cross section for slow neutrons is computed with the
statistical model of the nucleus and neutron-proton inter-
action of the Majorana form. The constants in the potential
are taken from Feenberg's calculations on the binding
energies of light nuclei. It is rather surprising that the
scattering problem is reducible to one particle form despite
the fact that the Majorana operators permute the coordi-
nates of neutrons and protons. The formulas for the cross

section are applicable even when there is neutron-neutron
interaction, as suggested by L. Young, provided a simple
change is made in the constants. It is shown that the
anomalously large cross sections in Cd and Hg cannot be
interpreted on the basis of an additional node of the
neutron's wave function within the nucleus for Hg as
compared with Cd.

ERMI and collaborators, ' also Dunning and
Pegram, 2 have found that the cross sections

of certain nuclei (notably 8, Cd, W, Hg) for
slow neutrons are larger than the geometrical
cross section. ' Fermi, ' Bethe4 and others' have
shown that such abnormally large values are
not really a mystery but can be naturally in-

terpreted by our usual quantum mechanics.
Namely, the quantum mechanical cross section
for slow particles depends markedly on the phase
at the edge of the nucleus, or in other words on
the fractional number of de Broglie waves of
centro-symmetric type (l=o) contained in the
nucleus. The determining factor is thus the value
of the expression

I=21; (21IE(W—V)]'*dr/h,

where V(r) is the potential function inside the
nucleus and R is the latter's radius. Since we

are considering very slow neutrons, we may
equate their energy W to zero in (1).When I is a
half-integer, the cross section is readily shown4 '
to be unusually large, of the order of the square
of the de Broglie wavelength of the incident
neutron outside the nucleus. This situation is

E. Amaldi, O. D'Agostino, E. Fermi, B. Pontecorvo,
F. Rasetti and E. Segre, Proc. Roy. Soc. A149, 522 (1935).' J. R. Dunning and G. B. Pegram, Phys. Rev. 47, 640A
(193').' The cross section may be either elastic or inelastic, as
in either case the dominant question is whether or not the
phase integral (1) has a value which permits the neutron
to penetrate the nucleus appreciably. We throughout use
the term scattering in a generalized sense to include absorp-
tion of neutrons in the nucleus as well as true scattering.
The abnormally large cross section usually appears to be
associated mostly with absorption (cf. Dunning, Pegram,
Fink and Mitchell, Phys. Rev. 47, 796, 970 (1935)).

4 H. Bethe, Phys. Rev. 47, 747 (1935)~

' Perrin and Elsasser, Comptes rendus 200, 450 (1935);
Beck and Horsley, Phys, Rev. 47, 510 (1935).

presumably the cause of many of the abnormally
large cross sections and is, so to speak, the
opposite extreme from that in the Ramsauer
effect in electron scattering, wherein I is a
whole integer and the cross section hence ab-
normally small. The purpose of the present
note is to evaluate (1) and so discover, if possible,
what particular ha, lf-integers should be corre-
lated with the observed maxima. We do not
explicitly compute the cross section but this can
be determined by the standard quantum me-
chanics of the scattering by a "potential hole"
if the latter's radius and the value of the phase
integral (1) are known.

The deflections of neutrons, either elastic or
inelastic, presumably owe their existence mainly
to neutron-proton forces, including the forces
exerted by the protons bound in the alpha-
particles contained in the nucleus. Consequently
we shall omit neutron-neutron forces until near
the end of the article. The form of the potential
function J(r „) for the interaction of neutrons
with protons will be taken from the work of
Feenberg. ' Do not confuse J(r„„),which repre-
sents the coupling of one neutron and one
proton, with V(r), which is the potential for a
neutron due to the totality of protons in the
nucleus.

Signer Theory. We shall first make the calcu-
lation under the assumption that J does not
involve permutation operators and so is a po-
tential of the ordinary or so-called Wigner type.
Of course it will immediately be objected that
the Wigner theory' is unsatisfactory since it is

' E. Feenberg, Phys. Rev. 47, 850 (1935).' E. Wigner, Phys. Rev. 43, 252 (1933).
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known to give the wrong dependence of nuclear
binding energy on atomic number. However,
the calculation with the Wigner7 form of po-
tential is very easy and serves as an illuminating
and more or less necessary introduction to the
computation with the preferable Majorana
theory. ' With the former, we have simply to
regard the scattered neutrons as subject to the
"time-exposure charge cloud" of the totality of
protons in the nucleus. We may suppose that
these protons are on the time average uniformly
distributed in a sphere of radius R, so that the
charge cloud is centro-symmetric and of uniform
density p=3Z/4~R', where Z is the number of
protons in the nucleus. The relation connecting
U and J is clearly

V=fff' Jpd&. (2)

Now according to Feenberg's calculations, ' or
any others devised to explain the high stability
of alpha-particles as compared with deuterons,
the neutron-proton forces are of short range

( 1.4 X 10 " cm) compared to the radius

( 7 X 10 " cm) of a heavy nucleus. Hence we
can neglect the "edge effect, " i.e. , we can assume
that the potential suddenly vanishes at the
boundary of the nucleus. Then V(r) vanishes for
r )R, while for r &R it is constant and has the
value

V= 3ZC/4~R', (3)

I=Z'*[ 6CM/vrh'Ro]'*. — (5)

If we use an exponential interaction function
J(r)=Ae "', the expression (4) equals A(m. /a)&.
Feenberg's best values of A, n for the Wigner
model are, respectively,

A = —165mc 1/n'*= 1.34X10 "cm (6)

while Gamow's value of the radius of the lead
nucleus gives Ro——7.8 X10 "/(82)' cm. With the

E. Majorana, Zeits. f. Physik 82, 137 (1933).

with C=fff J(r„„)de=4~f0 J(r„,)r„„'dr„, (4).
Because of the short range, it has been per-
missible to integrate to infinity in (4) rather
than over the nucleus. If the nuclear volume is
proportional to the atomic number, then one has
R'=ZRO', where Ro is independent of Z, and (1)
becomes

constants thus evaluated, the expression (1) has
the value 3.11 for Cd.

Impossibility of Attributing Successive Mctximn
to Additiona/ Nodes. In view of the inaccurate
status of nuclear models, especially those of
Wigner type, the fact that 3.11 is closer to an
integer than a half-integer, i.e. , the cross section
closer to a minimum than to the desired maxi-
mum need not cause concern. However, the
point that we do want to make is that it does not
appear possible to explain the maxima in W and
Hg as due to an additional node of the wave
function in the nucleus, i.e., increase of (1) by
an integer, as compared with Cd. If the constants
C and Ro are adjusted so that (5) equals 3.5 in
Cd, the values for W and Hg are, respectively,
4.05 and 4.15, considerably short of the next
resonance value 4.5. If 2.5 rather than 3.5 is
assigned to Cd the situation is even worse as
the value for Hg becomes 2.97, almost exactly
the wrong extreme. The corresponding value for
boron is 1.18 but is less significant, since our
theory is intended primarily for heavy atoms.
To locate successive maxima at Cd and Hg, the
value of I in Cd would have to be at least 5.5
and this is an impossibly high value since nothing
like this much leeway is allowable in the choice
of the parameters C, Ro, which fortunately enter
in (5) only to the power one-half. Of course it
is to be said that so far we have used the Wigner
rather than Majorana theory but inclusion of
the Majorana permutation operators makes
interaction possible only where the wave func-
tions overlap and so will reduce the magnitude
of the effective potential V(r). In fact, we will

later see that with a Majorana potential with
the same values (6) of the constants as we have
used in the Wigner form, the value of I for Cd
becomes 2.21 rather than 3.11. Thus with the
Majorana version it is, if anything, still clearer,
that the situation is quite unlike that in the
Ramsauer effect in electron impact, where the
periodic Ramsauer minima have been identified'
with increasing numbers of nodes of the electron's
wave function inside the atom as Z increases.

If the "additional node" hypothesis will not
work, how, then, are the frequent anomalously
large cross sections to be explained? A very sug-

' Cf. Mott and Massey, The Theory of Atomic Collisions
(Oxford University Press, 1933), p. 142.
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gestive tentative answer to this question will be
given in a future paper of Bethe and Smith.
They propose that sometimes the p, d,
partial cross sections (I= 1, 2, etc.) are
effective as well as the s in causing anomalous
scattering or absorption. To be sure, the cen-
trifugal force usually keeps all but s neutrons
out of the nucleus since we are dealing with
slow exterior velocities. However, near resonance
the behavior is somewhat exceptional, especially
since we do not have rigorously a one particle
system, and so p, d, wave functions may
acquire some s characteristics inasmuch as / is not
a good quantum number. Hence many of the
subsidiary maxima may be associated with other
than the s cross sections which we study. "

Majorana Theory. We now give the details of
the calculation with the Majorana theory, which
can be used without any undue difhculty pro-
vided that one applies the Thomas-Dirac sta-
tistical theory to the protons embedded in the
nucleus (but not, of course, to the scattered
neutron). This approximation is essentially the
analog of the use of the uniform charge cloud
in the Wigner form. In the Majorana theory the
potential coupling the scattered neutron with
the protons in the nucleus is

P, J(r„„')T(n;p') (r„„'=
~

x„—x„'~), (7)

where x„, x„' are, respectively, the position
vectors of the neutron and a typical proton i and
where T(n; p') is a permutation operator which
interchanges x„and x„' in the arguments of the
complete wave function. The wave equation is
reduced, if possible, to that of one particle, the
scattered neutron, by integrating over the coordi-
nates of the protons. In this fashion one obtains
the equation

( — k' 8/m'cV) V'P( x) +WP(x„) = Q, (8)

where

Q= P;JJ'J'y (x„)J(r„„')p;(x„)P(x„)dx„(9)
"Since the present paper was written, Dunning,

Pegram, Fink and Mitchell find that the rare earths Sm
and Tb (which lie between Cd and Hg) also have anoma-
lously large cross sections, even greater than that of Cd
(Phys. Rev. 47, 970 (1935)). The occurrence of such fre-
quent anomalies, also the complete absorption, ' makes it
appear somewhat doubtful whether the large cross sections
are really all to be interpreted as resonance phenomena of
the usual type, even when one considers the effect of states
with l)0.

The left side of this equation is called the Dirac
density function, which we will denote by p „
and the right side is an approximate expression
which he derives" for it by means of the Thomas-
Fermi statistical theory. The integration in (10)
is over a sphere of radius P given by

2 (4m P'/3) (4~R'/3) =Zk'

and it is supposed that the terminal point of
-', (x„+x„) is inside the nucleus; otherwise the
the density function vanishes. Since, our forces
are of short range compared with the nuclear
diameter, it will be allowable to consider that
(10) applies when the neutron is inside the
nucleus and that the left side of (10) vanishes
otherwise. The integration in (10) may be per-
formed in the usual way" by introducing polar
coordinates whose axis coincides in direction
with r. Then (10) becomes

p„„=( kr„~ cos—kr„„+sin kr„~)/7r'r„„', (12)

where
k= (9~Z/4R') & (13)

One now assumes that the neutron's wave

"See P. A. M. Dirac, Proc. Camb. Phil. Soc. 26, 376
(1930).

and where P denotes the wave function of the
neutron, and y; that of the proton i. We have
assumed that the complete wave function is
expressible as the product P(x„)IIp;(x ') of the
wave function of the scattered neutron and those
of the individual protons in the nucleus. (To
satisfy the Pauli principle, the usual anti-
symmetric linear combination of the protonic
wave functions must be taken, but our calcula-
tion still holds with this modification. ) Because
of this factorization it has been possible to make
the integration in (9) three rather than 3Z
dimensional, since with any given neutron-
proton potential term, the integration over
3(Z—1) protonic coordinates is trivial. Note
especially that the integrand of (9) contains the
product y;(x„)|k(x„)rather than p;(x„)|k(x„)as in
the usual Wigner theory, because of the permuta-
tion operator T involved in (7).

We now use the approximate relation

Z' v *(~.)~'(~.)
= (2/k') JJ'J' exp [27'p (x„—x„)/k]dp. (10)
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function is of the usual spherical type,

so that

where

1t (x„)=sin k„r/r,

4 (x.) = (e'"""" e""—"')/2ir. ,

(14)

(15)

r„'=r'+r„„' 2r—„„rcos e, (16)

cos tt= cos (r„„r).

—k '=8 r'MiV/k'=6irZCM/R'h' (19)

appropriate to the effective potential U. We
must emphasize that it is only because there has
turned out to be an effective potential constant
over the nucleus that we have been justified in
assuming that the neutron's wave function is of
the form (14). This assumption has been neces-

When one substitutes (15) and (16) in (9), the
integration over the angular part of the volume
element dx„= r„„'sin Odr„,dod p can be per-
formed in polar coordinates. One thus finds that

Q=f(x )Jo 4mk„'p„„J(r„„)(sink„r„„)r„„dr„„(17)

with p„„as in (12).Hence the wave equation (8)
has the one particle form Q= VP(x„) provided
V equals the integral in (17). An equivalent
statement is that (3) and (5) are still valid
provided C has the value

C=12irik ik„~Jj& p„„J(r„„)
&& (sin k„r„„)r„,dr„„(18)

instead of (4).
It must be regarded as rather surprising that

the scattering of the neutron cart thus be treated by a
one particle eglation despite the fact that the
Majorana theory permutes the coordinates of
the scattered neutron with those of the proton
in the nucleus. Furthermore, Mr. C. H. Fay will

prove in a later paper that this result is also
true of the other partial cross sections l)0;
the "effective potential" there, too, proves to be
given by (3) and (18). One's conjecture would
have been that because of the permutation
effects, Q in (8) would persistently involve

P(x„) through some sort of an integral operator
(cf., for instance, Fock's equation) rather than
finally turning out directly proportional to f(x„).
Thus far we have not explicitly specified the
value of the neutron's wavelength 2ir/k„ inside
the nucleus. It is, of course, that given by the
relation

3k' t
k' k„'q

+—
i
1- + i+"

224n' E 3n 60m')
(21)

is convenient for sma. ll values of k'/n. With
Feenberg's' best choice of constants for the
Majorana form, vis.

A = —174nzc', n—l = 1.29 && 10 "cm, (22)

one finds that k =1.06 10" and that I=2.21.
It makes no appreciable difference whether (6)
or (22) is used.

Inclusion of Neutron Neutron -Interaction As.
shown by L. Young, " considerations of the
relative stability of nuclei with different atomic
and mass numbers indicate that there must be
neutron-neutron forces (and by symmetry similar
proton-proton forces) besides the usual neutron-
proton and Coulombic proton-proton forces. The
neutron-neutron coupling is presumably small
compared to the neutron-proton, but still not
negligible. We shall show in the following para-
graphs that inclusion of neutron-neutron inter-

"In deriving (20), a useful relation is obtained by in-
tegrating formula 508 of Peirce's tables with respect to
the parameter b."L.Young, Phys. Rev. 47, 972 (1935).

sary in our proof of (18). Hence problems with
nonconstant potentials probably would not be
reducible to a one particle affair.

By eliminating C between (18) and (19) an
equation is obtained for the determination of k„.
This equation must be solved by trial and error
before (18) and (5) can be used to calculate (1).
Eq. (18) becomes identical with (4), as we should

expect, when the range of the interaction force
is small compared both to 2ir/k„, the neutron's
wavelength while traversing the nucleus and to
2s/k, the shortest wavelength of the proton
embedded in the nucleus.

With the exponential form J(r)=Ae "', Eq.
(18) becomes'"

C= (3ir'/k')A [E(w+) —R(w )

+2(n/irk )t(e ~+' —e "-')], (20)

where w~= (k„ak)/2n'*, E(w) = (2/~'*) J;"e *'dx.

A series expansion

1 k'p3 k„'y

En) 10~ E2 4~)
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action is approximately equivalent merely to
altering the constant A in (20) or (21).

The most general potential which depends on the rela-
tive alignment of the spins s;, s; (measured in multiples
of h/271) of two neutrons is expressible as a linear function

M(re'Q) +N(rnid) s; ~ s; (23)

"Our rather brief treatment here assumes some famil-
iarity with the Dirac vector model (Proc. Roy. Soc. A123,
714, 1929), whose use is more fully explained by the writer
in Phys. Rev. 45, 405 (1934) or in reference 15.

"Another and more complete discussion of neutron-
neutron interaction which does not employ the language
of the Dirac vector model (given here largely as an inter-
esting alternative) will be published by Feenberg."J.H. Van Vleck, The Theory of Electric and Magnetic
SuscePtibilities, pp. 341 and 318.

of their scalar product s; s; inasmuch as the latter has
only two characteristic values. Eq. (23) gives the "direct"
or essentially Wigner type of coupling between two neu-
trons. With two neutrons, however, there is exchange
degeneracy, a complication not found in neutron-proton
interaction. The exchange effect converts a Wigner force
into one of MaIorana type, or vice versa. (Hence the
present discussion is general enough to include both the
Wigner and Majorana models. ) If we use the Dirac
vector model, " '4 which shows that the exchange is
formally equivalent to insertion of a spin-spin coupling
factor —-', (1+4s; s;), we see that the exchange potential
associated with (23) is

—-',-T»,PM+Ns; s;1(114s; s;)
= ——,'Tnn{M(1+4s; s7)+N(-,'"- —s; s)) I, (24)

where T„„is a Majorana permutation operator. The sec-
ond form of (24) follows from the first in virtue of the
matrix identity" 16(s; s;)'+8s; s;—3=0. If we consider
the interaction of a neutron with two other neutrons i, i'
in a closed shell (i.e., in equivalent orbits with anti-parallel
spin), then the part of (23) or (24) proportional to s; s;
disappears since (s;+s„') s; =0. Thus on the average (23)
equals M and (24) equals ——,'T (M+-,'N), provided we
disregard forces between neutrons, neither of which are
in a closed shell, or else are in the same orbit. It is known
that if the direct potential persists on the average in heavy
atoms, then an excessive binding energy is obtained. (This
is essentially the difficulty that Wigner terms give an
energy which varies too rapidly with Z.) Hence M is zero,
or at least very small, and for our purposes we can consider
the neutron-neutron forces to be entirely of the Majorana
type, neglecting a small correction for neutrons not in

closed shells to be considered later. The effective potential
is thus the sum V+ V of two expressions V, V „, where
V is given by (3) and (18) and where V is given by
expressions similar to (3) and (18) except that Z is re-
placed by Z, the number of neutrons in the nucleus,
and that J, k must be replaced, respectively, by ——,'N and
k'=(9~Z„/4R')" (cf. Eq. (13)), In the neutron-neutron
version of (18) or (20) the change due to the substitution
of k' for k manifests itself mainly in the factor k ' (rather
than in p„„) if m is moderately large. Since the neutron-

neutron forces are subsidiary it will be a sufficient approxi-
mation if we ignore the distinction between k and k' except
in this factor. The resulting change in (18) or (20) is then
just counterbalanced by the substitution of Z„ for Z in (3).
Hence to a sufficient approximation V differs from V
merely in the substitution of —gN for J. Thus one may
allow for neutron-neutron coupling by taking the apparent
neutron-proton interaction to be J——,'N.

Feenberg uses a neutron-neutron interaction of
exponential form and of the same range as the
neutron-proton, so that J(r) = Ae "', N(r)
=Be "'. He finds"' that the following choice of
constants gives the proper binding energies for
light atoms:

A == —64 mc' -'B=26 mc'

1/a ** = 2.4 && 10 "cm.
(25)

Using (3) and (20), except that A is replaced by
A —-,'B in accordance with the preceding para-
graph, one finds that k=1.05&&10", I=2.19.
These values do not diff'er appreciably from those
obtained with the constants (22) appropriate to
a model with no neutron-neutron coupling. The
simila. rity of the results with (22) and (25) may
perhaps be a coincidence, since the constants
(25), notably the range 1/nl, differ considerably
from (22). Still it suggests that our estimate of
(1) will probably not be altered greatly by
neutron-neutron complications as long as the
constants are adjusted to fit the binding energies
of light atoms. This fact is comforting, as the
ratio of neutron-neutron to neutron-proton
forces is not known at present with any precision.

Comparison wi tk Bethe s Semi-empirical 3fethod.
Bethe4 has estimated the value of the integral
(1) by a method somewhat different from ours.
He subtracts the mean kinetic energy of the
neutrons bound in the nucleus, computed by
the Thomas statistical method from the ob-
served binding energy per neutron. The balance
is what we may term a semi-empirical potential
to be used in (1). He thus obtains the value 2.7

'"These calculations of Feenberg will be published later.
Since the present paper was written, he has extended them,
and finds that the neutron-neutron interaction is.probably
smaller and in (25). This development does not matter for
our purposes since even inclusion of as much neutron-
neutron interaction as in (25) does not change the value of
(1) materially. It is clearly to be understood that the reason
the results are not affected by inclusion of neutron-
neutron interaction is that the latter alters the values of A
and a in such a way as largely to compensate the effect of
making 8 /0.
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for (1) in Cd." That his value 2.7 is smaller
than our Wigner value 3.1 is immediately in-
telligible, as the Wigner model gives too large
an attractive potential energy for heavy atoms.
It is also clear why his estimate is larger than
our Majorana value 2.2. Namely, Bethe's pro-
cedure tacitly assumes forces of the Wigner
type and so is not accurately applicable to the
Majorana model since, in the latter, forces are
effective only where the wave functions overlap
and so are less potent for scattered neutrons than
for the average neutron bound in the nucleus,
because of the longer wavelength of the latter.
Hence the effective potential for scattering is of
smaller absolute magnitude than that for
binding. '7

Concluding Remarks. It would be satisfying if

(1) could be estimated sufficiently accurately so
that one could decide whether the resonance in

Cd corresponds to the value 2.5 or 1.S of I or
whether I is really not a half integer in Cd,
so that the anomaly is to be blamed on effects
involving l&0. Unfortunately we are unable to
achieve this goal. Some corrections which might
be applied to our calculations are the following:
The error due to considering the range of the
forces as negligible compared with the radius of
the nucleus and to neglecting the gradual tailing
off of the nucleus may be crudely estimated by
assuming that the potential decreases linearly
with r from R —L to R+L instead of terminating
suddenly at r=R. If L=2X10 "cm, the value
of (1) is raised about 10 percent. " A small

"In comparing with Bethe's work, one must note tha. t
his integral (8) differs from our (1) by an additive constant
as well as a factor ~ (see footnote 26b of his paper).
Bethe's value of I is raised from 2.7 to 2.9 when a correc-
tion is made for the effect of the Coulombic forces on
binding energy."Bethe's method suggests that a possible semi-empirical
modification of our procedure is to adjust the constant A
so as to obtain the right binding energy for heavy nuclei
when the latter is computed by the statistical method with
Gamow's empirical radius (i.e., is deduced from a calcula-
tion similar to that in Majorana's papers except that the
range of the forces is not assumed large compared to the
wavelength). The value of I is then raised from 2.2 to 2.8
if o, is given by either (22) or (25) (with neutron-neutron
forces included in the latter case). One might suspect that
this modified procedure had elements of truth, as the ap-
parent A deduced from an incorrect statistical calculation
of binding energies might be better for our purposes than
the true A. Thus the difference between 2.2 and 2.8
may be an estimate of the error inherent in our statistical
method. However, it is possible that this is an excessively
pessimistic view and that with (22) or (25) the actual value
of I is closer to 2.2 than 2.8, since more reliance can

increase of about 2 percent may be expected
for each neutron of uncompensated spin in
the nucleus, as such neutrons exert forces of the
ordinary rather than Majorana type. On the
other hand, a reduction of 10 or 1S percent in
our estimates of (1) is quite conceivable because
there is empirical evidence that the neutron-
proton forces in scattering are smaller than those
effective between bound particles. This dis-
tinction may be due either to a dependence of
force on velocity, as suggested by Feenberg, "
or to a dependence of force on spin alignment,
as proposed by Massey and Mohr, " Wigner
(unpublished) 'anrl others. The scattered neu-
tron's spin is parallel to only half the protonic
spins in heavy nuclei, whereas the situation is
different in calculations made on the binding
energy of the deuton, where the proton's spin
and the neutron's spin are parallel.

In closing, we may mention that the effective
potential given by (3) and (18), which reduces
the Majorana theory to a one electron problem,
will doubtless be useful in connection with other
nuclear phenomena besides scattering.

The writer is much indebted to Dr. E. Feen-
berg for valuable suggestions and the privilege
of seeing his manuscripts in advance of publica-
tion. He also wishes to thank Professor H.
Bethe for interesting discussion.

probably be placed in our use of the statistical method for
scattering than in the calculation of binding energies,
especially when the latter is performed in the worst possible
way with the nuclear radius as given rather as a variable
parameter. That such a calculation of binding energies is
certainly bad is shown by the fact that if A is given by
either (22) or (25), the absolute magnitude of the potential
energy turns out to be less than that of the kinetic energy,
so that nuclei cannot exist, and the proper stability is
achieved only if A is multiplied by a factor (2.8/2. 2)'. An
accurate calculation with (22) or (25) probably yields
about the right binding energy for heavy as well as light
atoms.

"The value of L can be less than 1/a', since in the
Majorana theory the forces are effective only where the
wave functions overlap."E.Feenberg, Phys. Rev. 47, 857 (1935).

Cf. Massey and Mohr, Proc. Roy. Soc. A148, 213
(1935). In the original Heisenberg theory (Zeits. f. Physik
7'7, 1 (1932)), the neutron-proton forces are of opposite
sign for parallel as compared with anti-parallel spins. In
the Majorana form there is no dependence on spin align-
ment. The dependence on this alignment cannot be as
drastic as in the Heisenberg theory since the latter is
unable to explain the singular stability of the alpha
particle and is therefore incorrect. There might, however,
be a moderate dependence, so that the forces are a linear
combination of the Heisenberg and Majorana types, with
the latter weighted morp heavily. Our calculations apply
to such a modified theory if the constant A is suitably
changed.


