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The production of an electron and positron by the spher-
ical y-wave emitted from a nucleus has been considered
on the basis of different approximation methods (Section
II, III, IV), which yield simple closed formulae for the
probability of the process. Regarding the nucleus as a
Hertzian oscillator, both the dipole and quadripole radia-
tion are treated. The approximate methods, which may be
classified according to which of a certain set of parameters
(the momenta of the particles, nZ, and eventually the
ratios of these) are to be considered small, form a consistent

scheme ()6, where also the case of the plane y-wave is
discussed). A discussion of the qualitative features of the
angular and energy distribution is given ($7 and $8) and a
comparison is made with the rigorous treatment of the
problem by Jager and Hulme ()9). This shows that both
the differential and total internal conversion coef6cient
may be computed with a fair degree of accuracy by the
combined use of the Born and the Schrodinger approxima-
tion results.

I. INTRoDUcTIoN

HE Dirac theory of the positron' describes
the formation of an electron-positron pair

by p-radiation neap a nucleus as a kind of photo-
electric effect. The absorption of a y-quantum
of energy ~2mc2=10' ev raises an electron in an
occupied negative energy state to a state in the
positive continuum, the "hole" left in the nega-
tive energy spectrum together with the electron
in the positive state constitute the positron-
electron pair. For the case that the y-radiation is
a plane wave, calculations, with approximate

. wave functions for the probability of the process
have been made by Oppenheimer and Plesset,
Bethe and Heitler and others. ' For the case of
a spherical y-wave emitted by the nucleus, with
which we shall be concerned here, there exist
the calculations of Oppenheimer and Nedelsky, '
where the Born approximation is used, and
those of Jager and Hulme, ' in which the exact
solutions of the Dirac equations for a Coulomb
field have been used. Because of the lengthy
numerical computations necessary in the exact
theory, we have gone back to approximate

' P. A. M. Dirac, Proc. Roy. Soc. 133, 60 (1931).' J. R. Oppenheimer and M. Plesset, Phys; Rev. 44, 53
(1933) (nonrelativistic approximation); H. Bethe and W.
Heitler, Proc. Roy. Soc. 146, 83 (1934) (Born approxima-
tion, inQuence of screening); G. Racah, Nuovo Cimento 11,
3 (1934) (Born approximation); Y. Nishina, S. Tomonaga
and S.Sakata, Suppl. Sc. Pap. I. P. C. R. 24, 1 (1934) {non-
relativistic and Born approximation).' J. R. Oppenheimer and L. Nedelsky, Phys. Rev. 44,
948 (1933).

J. C. Jager and H. R. Hulme, Proc. Roy. Soc. 148, 708
(1935).
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methods which give simple closed formulae.
We have especially examined the consistency of
these methods. By comparing the results with
those of Jager and Hulme one can then obtain an
idea concerning the range of applicability of
these approximate methods, which may be also
of value in other related problems.

2.
The calculation of the probability for pair

formation can in all cases be reduced to the
evaluation of the matrix elements of the per-
turbation due to the radiation. W'e write the
Dirac equation for the electron in a Coulomb
field with a nuclear charge n&Z. '

iB&/Bt= {(n p)+P+nZ/r n&X]P. (1).—
Here SC is the perturbation of thy radiation
field:

X=IIe '~'+compl. conj. ,

IX= U+(n A),

k is the frequency which in our units is the same
as the energy of the photon of this frequency;
V and A are the space parts .of the scalar and
vector potentials. In accordance with the results
of Hulme, Taylor and Mott' for the atomic

' In the following we will always use rational relativistic
units. In this system the unit of energy is mc', of momentum
mc and of length the Compton wavelength A/mc. Equations
in ordinary units may be written in these units by replacing
A, m and c by unity and the electron charge e by a', where
u is the fine structure constant e'/Ac. This a is not to be
confused with the Dirac matrices u„n„, a„collectively
denoted by n.

H. R. Hulme, Proc. Roy. Soc. 138, 643 (1932); H. M.
Taylor and N. F. Mott, Proc. Roy. Soc. 138, 665 (1932).
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internal conversion, we will consider the case
of the electric quadripole wave as well as that
of the electric dipole wave. The fields are given
by (omitting from each potential a constant
factor having the meaning of a moment, since
it does not enter in the final results):

Electric dipole:

V= (1/r)e'"'(i 1/kr—) cos 8;
A, =(i/r)e" A, =A, =O. (3)

Applying the usual method of variation of
consta, nts the solution of (1) may be expressed
in terms of the probability amplitudes a„(t) of

Electric quadripole

V= (1/r)e' "I2Pg(cos 0)(1+3i/kr —3/k'r')+1 I,
(4)

A, = (3/r)e* ""(1+'i/kr) cos 8, A, =A„=0.

the various states. At time t =0 the electron is in
a negative energy state Wo, so that a„(0)=b„i.
One finds then from (1) for the probability la
that the electron be in state 8'„at the time t:

sin' (W„—Wo —k)t/2
Ia. l'=4~I(~IIII0) I' (3)

(W —Wp —k)'

using the Dirac notation for the matrix elements.
One has now to sum Ia„l' over the spin, energy
and direction of momentum (or quantum num-
bers corresponding thereto) of both particles.
The summation over the energy of one of the
particles will give then as usual the conservation
of energy. The manner in which the summation
has further to be carried out will depend on the
type of wave functions used. We will distinguish
between three cases.

(a) Both particles are represented by p/ane waves Ot infinity This is m. ost convenient when the Born
approximation or parabolic coordinate wave functions are used. To obtain the energy distribution a
summation of (5) over the direction of the momenta and over the spin has to be carried out. The
result is:

o(W+)dW+=dW+(2n/(2')'n)(P+P W~W /k) JJ'dQ dQ+P I (p s IFII p+s+) I
i.

Here quantities referring to the electron are denoted by the index —and those referring to the
positron by the index +; d0, dQ+ are elements of solid angle of the direction of emission of the two
particles. The matrix element has to be formed with wave functions normalized to one particle per
unit volume. The four term summation over the spin variables s and s+ reduces to twice a two term
sum over one, say s+, because although there is a preferred direction (the s axis) there is no preferred
sense. Finally nk is the number of y-quanta which in unit time are emitted by the nucleus; n depends
on the type of radiation;

n = 4/3 for electric and magnetic dipole,
n =12/5 for electric quadripole.

(b) Both particles represented by spherical ieaves at infiriity This is. most convenient in the case of
the nonrelativistic approximation. Because the Dirac equations for a central field are separable
only in polar coordinates, ' this will also be the natural representation when the exact wave functions
are used. Here the integration over the direction of the momenta is replaced by a summation over
the azimuthal and magnetic quantum numbers of both particles. The energy distribution is then:

We have taken the z direction along the multipole axis
and we will also take the axis of quantization in this
direction. That this is no loss in generality can be shown
by averaging the results for an arbitrarily orientated
multipole field over all directions of its axes. In the same
way one shows that our restriction in (4) to a zonal
quadripole is not essential. In the strict development of the
electromagnetic field of an oscillating charge distribution
there appears together with the electric quadripole the
so-called magnetic dipole terms:

A, = sin 8 sin y(1+i/kr) (1/r)ei~"
V=A, =0 (4a)

A„= —. sin 8 cos q (1+i/kr)(1/r)e'k"
which we shall also consider (cf. H. M. Taylor and J. B.
Fisk, Proc. Roy. Soc. 140, 178 (1934)).

8 The energy W0 and momentum p0 of an electron in a
negative energy state are related to the corresponding
quantities for a positron by W0= —W+ and p0 ———p+.' This is the reason why the internal conversion problem.
is simpler than the problem of pair formation by a plane
wave.
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o(W~)dW+=dW+(4o/7m)(W~W /p+p k) Q Q Q ((Lm s ~II~l~m+s+) ~'.
l+m+ l m 8+

For the fields (3), (4) or (4a) there will be selection rules which eliminate the summation over one
set of quantum numbers l and m. The matrix element has here to be formed with wave functions
normalized to one particle in a sphere of unit radius.

(c) One particle represented by a plane wave and the other by a spherical wave at infinity Thi.s we will

use in order to determine the form of the energy distribution curve at the ends, that is when one
of the particles receives almost all the energy of the y-quantum. In the case that the positron is
represented by a plane wave at infinity the energy distribution is:

o(W„)dW+=dW~(n/27r"n)(p+W+W /p k) J'dQ +Q g ~

(Lm s ~II~p+s+) ~'.
l m s+

By interchanging the indices + and —one obtains the formula for the case that the electron is
represented by a plane wave. Integration over S'+ from 1 to k —1 yields the total internal conversion
coefficient 0..

II. TIIH BORN APPROXIMATION

3.
For light nuclei or for high energies of the particles we can neglect the nuclear field and take for

the wave functions plane waves. The criterion for the validity of this approximation is that the Born
parameters cxZ/p+ and uZ/p are both small compared to unity. Then

P~= u~[exp Wi(p~ r)]
and the amplitudes u+ and u are:

(1.+W i '
g (2)—

E. 2W )
t'1+ W-& '' P *+iP-
( 2R' ) 1+%' (6a)

(1+W+i '*

I+&»=-
( 2W+)

P+&+ P+v

1+S'+

(6b)
(1+W+i * p+, ip+„—+'"=

I

E 28'+ ) 1+1/t/'+

The superscripts (1) and (2) refer to the two spin directions. Oppenheimer and Nedelsky' have given
the results for the energy distribution for the electric dipole and quadripole. We shall here outline
the method of calculation. The matrix element in (A) will have the form:

(p s ~II~p+s+)=(u "'u+) J[exp —i('P r)]Udr+(u *n,u+) J[exp i(P'r))A, d—r,
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in which P =p +p+ and V and A, are given by (3) or (4). The angular integrations are elementary
and lead to radial integrals of the form:

f, Ji~, (Pr)e'"'r"+ldr,

where P = {P
~

and I and v are integers. These may diverge at infinity. One has then, as in the deriva-
tion of the Rutherford scattering formula using the Born approximation, to introduce a convergence
factor exp ( ar)—and after the integration set a=0. One obtains in the case of the dipole:

{(p s {II{p~s~){
=(16ir'/k'(O' —P')') iP, '{u . u+~'+2PkR(u 'u„)(u+. nu )+k'{u 'nu~{'},

where R denotes "real part of." Using (6a) and (6b), summing over the spin of one of the particles
and carrying out in (A) the integrations over all the angles but the one between p+ and p, designated
by 8, we obtain the angular distribution. 9 riting J(8, W+) for the number of pairs per unit energy
range and per unit solid angle, one finds:

A k' t/t/'+'+ R' '
J(8 W+) =— p p+ -+,, +1

(q' —P P co») ' -(q' P+P co—s 8)-
where q'=1+ 6"+S' . The energy distribution is given by:

o (W+) = 2irJ; J(8, W+) sin 8d8 = (n/mk") i 2P+P + (14'+'+ H~ ') log b },
kb=1+W+W +p+p .

(D,)

EVhen k is large one finds for the total internal conversion coefficient:

0= ji" '0(W+)dW+=(2n/3ir}(log 2k —-';)+O(1/k).

The calculation for the quadripole is quite analogous and one finds:

CX k' p+'+ p
J(8 W+)=, „p+p , -,+

4m'k' (q' P+P cos 8) '—(q' P~P cos 8)—

8
+ (16W~1iV —3k') — (q' —P iP cos 8), (9)

3k' 3k'

ir(W+) = (n/3irk') {Sp+p (WpW —1)+3k'(p~'+ p '} log b },
0 = (2n/3ir) (log 2k —61/30)+O(1/k).

A discussion of these results wi11 be given in section V.IO

( i)

(10)

I II. TIIl'. SCEIRODINGLR APPROXIMATloN

When the energy of the y-quantum is so small that throughout the entire allowed energy range
p+«1, p ((1 and when further nZ«1 the so-called Schrodinger approximation of the Dirac wave
functions may be used. Then:

'0 It has been suggested by Taylor and Fisk, IXeference 7,
for the process of atomic internal conversion that one
should perhaps consider besides the electric quadripole
the magnetic dipole terms. We have therefore carried out
the calculation of the pair formation by this field (Eq. 4a)
and find:

0 (8'+) = (ajqf.k') (p+'+p ') log b.

This is slightly smaller than Q1, so that since the magnetic
dipole moment is almost certainly much smaller than the
electric quadripole moment, the contribution from this
source may be neglected.
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The superscripts again denote the two directions of the spin. The elements occurring as derivatives
will be referred to as the small components since they enter with a coefficient 1/c (not apparent in

our units). The u and u+ are solutions of the Schrodinger equation:

Au~+ (p~'w 2nZ/r) u~ = 0.

The solution of (12) for the electron in a state of the continuous spectrum (W )1) is

u =N()P("((1, q) f& (p r), -

(12)

where the angular normalization factor is:

N() =((21+1)/4)r)'(1+)u)! '(l —m)! '.

Of the radial wave function f( (p r) we shall need only the expansion around the origin:

nZ 2n'Z' —(l+1)p '
f( (p r) =N—

) r' 1 — r+ r + o ~ ~

l+1 2(l+1)(2l+3)
(13)

Normalizing to one particle in a sphere of unit radius, we get:"

lN( l'=e~~''&-(2p )"+'lp(1+1+i Z/pn) l'/2(2l+1)" (14)

The corresponding expressions for the positron may be obtained from these by changing the sign of
Z and replacing the index —by +. From the expressions for the electromagnetic fields (3) and (4)
one can show that the matrix elements in (8) will vanish unless the following selection rules are
fulfilled:

for the dipole

for the quadripole

For the internal conversion, first considering the dipole, it is evident from the normalization factors
(14) that transitions involving high l's will introduce the parameters of smallness, p+ and p to a
high power. Indeed a calculation shows that it is necessary to consider only the s —s transition and
the large components in the wave functions to get the main contribution. Then:

"We omit here the index —on the l and m.
"See e.g. H. Bethe, Handbucb der Physik, Vol. 24-1, p, 292.



216 M. E. ROSE AND G. E. UHLENBECK

(0, 0, z II[0, 0, —,') = j'P &'&n A f &"dr=i1'o re'""fo fo+dr,

only the vector potential and the wave functions with parallel spin contributing. Because fo fo+
varies slowly compared to the oscillations of exp (iver) the main contribution to the integral comes
from a region near the origin. We may therefore insert for f, and fo+ the first term of (13). In fact
one sees that the terms in (13) involving higher powers of r would give contributions of higher order
in p+, p and nZ; therefore it would be inconsequent to include these terms. Thus:

g f (Lm s [IIfl„m s+) f'=[(0, 0, —', fIIf0, 0, -', ) [' —fNo f'fN, +['/0',
l m 5+m+ 's+

where as before we have introduced a convergence factor exp (—ar) in the integrand and after
integration set a=0. The energy distribution is then from (B):

48m-n'Z'W+W
o(W+)dW+=dWp

$6(o2aaz/9&y 1)(] z
—2 aaz/ o)

(16)

To be consistent with the approximation here considered one should further replace 8"+ and TV by
1 and k by 2, so that:

37lA Z
o(W+)dW+=dW~

2(o2iraz/yy 1)(l o
—2iraz/y )

The calculation for the quadripole involves the s —p and p —s transitions. It is also necessary to
consider the small components in those terms where they are multiplied with a large component.
We will give only the result:

20am'Z' /' 4 12) W~W (p+'+p '+2n'Z')
o(W+)dW+=dW~

f
1 ——+—

f
3Q'" ( p p ) (o~«z»+ —1)(1—o 2aaz/& )-

Or again replacing k by 2:"
Szn'Z' p '+p '+2n'Z'

o(Wp)dW+=dW+
(o21raz/oq 1)(1 o

—21r z/o a)

By using polar coordinate wave functions as in (B) it is impossible to obtain an angular distribution
of the particles formed. For this one has to use wave functions which behave like plane waves at
infinity as in (A). In the Schrodinger approximation this can be done by means of the well-known

parabolic coordinate wave functions. " It is then found that in this approximation the distribution
function J(0, W+) is independent of //. For a discussion of these results see section V.

IV. ENDPQINT FQRMULAE

It is possible to find an expression for the energy distribution near the ends of the curve, that is,
when one of the particles receives almost all the energy of the y-quantum, by taking for the fast
particle plane wave functions (6) and for the slow particle Schrodinger approximation wave functions
(11).In case the positron is the fast particle the parameters of smallness are therefore nZ/p+, p and
~Z. Then for the dipole we need only to consider the electron in an s state. The square of the matrix
element in (C) summed over the spin s+ becomes:

"The corresponding result for the magnetic dipole is 3/5 of Q2. Cf. footnote 10.
'4 Cf. Bethe, Handbuch der Physik, Vol. 24-1, p. 299.
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P { (0, 0, s
~
H

~
y+s+) ~

' = (24r'/k)
~
No

~

'{1—[(k' —4) /k2) cos' 8 I

where e+ is the angle between y+ and the s axis. Consistently with our development in powers of p .

we have set p+' —k(k —2) and W+ —k —1. Inserting in (C) and integrating over 8+ one obtains:

o (W+)d W4.=d W4.2n'Z(k'+2) p+/k'(1 —e '~~ /&-). (D2)

Upon interchanging p+ and p and changing the sign of Z we get the formula for the case that the
positron is the slow particle:

o(W+)dW+=dW+2n'Z(k'+2)P /k'(e' e/o+ —1). (D2')

For the quadripole we have again to consider only the slow particle formed in an s state. It sufhces
to give the result for the positron the fast particle:

o(W+)dW+=dW+2n2Z(3k2+8)P+2/3k'(1 —e ' e»-).

The case in which the electron is the fast particle is to be obtained as before.

V. STRUCTURE AND DISCUSSION OF THE FGRMUIAE

6. Consistency of the approximation method. s

In the foregoing we have given the energy distribution for the electric dipole and quadripole in
three different regions of approximation:

D, and Q4 for: nZ/P+, nZ/P &(1,

D2 and Q2 fof: P+, P, nZ((1,

D2 and Q2 for. : nZ/P4. , P, nZ(&1.

That these approximation methods be consistent with each other it is necessary that the following
limit equations be fulfilled:

Lim DI —— Lim D2, Lim Dj ——Lim D3, Lim D2 ——Lim D3
&+2 u ~0 aZ/21+, aZ/P ~0 y -+0 aZ/y -+0 aZ/P+. -+0 y+-+0

(18)

and the corresponding equations with Q&, Q2 and Q2. Reference to the results given for o(W+) in II,
III and IU shows that all six limit equations are satis6ed and therefore, that there are no non-
uniformities in the approximation scheme.

It is of interest to consider in this connection whether a similar situation exists in the case of the
problem of pair formation by plane y-radiation. The result fo'r the differential cross section using the
Born approximation as given by Bethe and Heitler'5 becomes (in our units) when p+ and p are
made small:

o(W+)d W+= d W+(n'Z'/6) p+p (p+'+ p '). -- (19)

The Schrodinger approximation has been considered by Oppenheimer and Plesset' using parabolic
coordinates and taking only the big components in the wave functions. The result is:"

~2n5Z4 p 2+p 2+2n'2Z2
o.(W4.)d W+= d W+

(e2m ee/pi 1)(l e—2+as/2 )

' Reference 2, p. 90„Eq, (2j.). The + sign in front of the third line in this equation has to be changed to a —sign."A correction by a factor two has been made here (see Fermi and Uhlenbeck, Phys. Rev. 44, 510 (1933)). The
same result (20) follows, using polar coordinates and considering again only the big components for the s-P and P—s
transitions, which give the largest contribution.
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When nZ/p+ and nZ/p are small, (20) reduces to one-half of (19).However, we believe (20) is not
correct, since, using parabolic coordinates one can show that the small components as well as the next
approximation to the large ones give contributions of the same order of magnitude. A result different
from (20) has been given by Nishina, Tomonaga and Sakata

~'~'Z' (16/3) (p+'+ p ')+-~'Z'(4+~'/2)
o(W+)d W+= d W~

(s2m az/5+ 1)(1 s—2m az/0 )
(21)

This does reduce to (19) if nZ/p+ and nZ/p are small. We have not been able to check this formula. "
We have made a nonrelativistic calculation using the wave functions of Sommerfeld and Maue. "
They are an expansion of the Dirac wave functions for the Coulomb field in powers of nZ and may
be written:

where, if one uses parabolic coordinates, fo is the solution of the scalar Schrodinger equation in these
coordinates and the u's are the columns given in (6). The term with G is the first order correction
and is proportional to o/Z. Using fo only one gets the Oppenheimer-Plesset result Ho.wever the
correction term, even in the nonrelativistic limit, gives a contribution of the same order of magnitude.
We find then:

2~'a'Z4
o(W+)dW~=dW+

3

p 2+p 2+ ~2Z2

(s2waz/ y+ 1)(1 s—2m az/p )
(22)

which has the correct limit.

7. Angular distribution

It is readily seen that for both the electric
dipole and quadripole at each energy H/'+ the
angular distribution J(//, W+) as given by (7)
and (9) is a monotonically decreasing function of
0, so that there is always a tendency for the
particles to be emitted in the same direction.
This is most marked at the middle of the energy
distribution, i.e. , W+ ——W = k/2 (see Fig. 1}.
As p+ or p approach zero the emission becomes
more and more spherically symmetric, All these
properties may be seen in a qualitative manner
from the matrix element which governs the
angular distribution, that is

toward higher positron energies. The angular
distribution will in fact qualitatively depend on
a matrix element of the form (23) where now

p+ and p are functions of r For each . energy

(p s ~H~p+s+) j'drexp (ikr i(p++p —) r). (23)

In the exact theory one may expect that the
same qualitative features are true with the ex-
ception that the strongest parallel emission
(//=0) will be shifted away from the center

J(~ ~25 L

"The angular distribution (see their Eq, (1)) does not
upon integration over the angles give (21) ( = their Eq. (2)).

' A Sommerfeld and A. W. Maue, Ann. d. Physik 22,
629 (1935).

FIG. 1. Angular distribution for the dipole in the Born
approximation.
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Fir.. 2. Energy distribution for the dipole in the Born
approximation. The numbers affixed to the curves refer
to the value of k. In the statistical distribution S, computed
for k =5 a constant multiplicative factor has been chosen
so that the areas under this curve and under the corre-
sponding Born curve are the same.

the parallel emission will preponderate over the
antiparallel emission (8=~) and this contrast
will be greatest when p+(r) =p (r) for then the
integrand oscillates the least. Since the main
contribution comes from r =1, i.e. , the Compton
wavelength, then when p (1) =p+(1) the differ-
ence of the energies of electron and positron at
infinity will be about 2o.Z. That is, the maximum
preponderance of the parallel over the anti-
parallel emission may be expected to occur at a
point of the energy distribution which is dis-
placed from the center toward higher positron
energies by an amount 2o.Z, i.e. , 0.6 M EV
for Z=80.

For any fixed value of W+ Eqs. (7) and (9)
show that the angular distribution as a function
of the energy of. the y-quantum k will become
more and more spherically symmetric as k

approaches 2. This will also be true in the exact
theory, and is in accord with the result men-
tioned in the Schrodinger approximation.

For increasing k the parallel emission increases
while the antiparallel emission decreases so that
the maximum at 0=0 becomes more and more
sharp. In fact for large k the average value
of His:

FIG. 3. Energy distribution for the quadripole. The
curves marked 5, 10, 25 are the Born approximation
distribution for those values of k. The curve Q is the
Schrodinger approximation (17) for k=5, Z=6 while the
statistical distribution S, k =5 has the same area as Q.

9 (log 2k) —
&.

This holds for both dipole and quadripole fields.
Indeed from (7) and (9) it follows that for large k

the angular distributions and therefore the
energy distributions and the total internal con-
version coefficients for both fields become
asymptotically equal as may be verified from
(D~), (Q~) and (g), (10). This of course is to be
expected, since the pairs are formed in a region
around r —1 which for increasing k will lie more
and more in the radiation zone of the multipole
field. In this radiation zone the field strengths
E and II, normalized so as to give unit energy
Aux, will become the same for all multipoles and
therefore the probability for pair formation for k

large become the same. The asymptotic forms
of (7), (D~) and (8) will therefore be valid in-

dependently of the Born approximation and for
all multipole fields.

8. Energy distribution

In the interpretation of all the expressions
found for the energy distribution it is well to
distinguish between two factors. The first may
be called the statistical factor and is simply
proportional to the volume in phase space of
the particle formed. " In our case where the

"Cf.G. E. Uhlenbeck and S. Goudsmit, Zeewan Jgbilee
Papers, Nijhoff, The Hague, 1935, p. 201,
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FiG. 4. Energy distribution for the dipole in the
Schrodinger approximation for k =2.2. The numbers
aSxed to the curves refer to the value of Z.

FIG. 5. Energy distribution for the dipole in the Schrodinger
approximation for k =3 and the values of Z indicated.

energy is distributed between two particles with
no conservation of momentum this factor be-
comes S'+S' p+P . The second factor, which
is the more interesting one, is characteristic of
the mechanism of the process. We will refer to it
as the "mechanism factor. " It will depend
essentially on the matrix element of the pair-
producing field. The division into these two
factors is quite evident in (A) for example.

In Figs. 2 and 3 we have given the energy
distribution for different values of k for both
the dipole and quadripole as follows from the
Born approximation formulae D& and Q&.

20 As is
to be expected the curves are symmetrical
between the two particles; since the nuclear field
has been neglected there is physically no differ-
ence between the particles. For energies below
k =5 the form of the distribution is given almost
exactly by the statistical factor, so that the
mechanism factor is practically constant. For
higher k the distribution becomes flatter than
the statistical factor and eventually develops a
minimum at the center, just as the distribution
in the case of the plane y-wave. "This is probably

'0 Among the y-rays found for light elements there are
several of energies around k=5, 10 and 25. For example,
eB (2.4 MEV, k =4.7), eC (2.7 MEV, k =5 3), eC
(5.5 MEV, k=10.8), 80' (5.4 MEV, k=10.6), 3Li bom-
barded with protons (~12 MEV, k =24).

"Bethe and Heitler, Reference 2, Fig. 5.

due to the spin of the particles since in the Pauli-
Weiszkopf theory" such a minimum does not

appear.
In Figs. 4 and 5 we have given the energy

distribution for two values of k and several values
of Z as follows from the Schrodinger approxima-
tion formula (16) for the dipole. Because of the
inHuence of the nuclear field, which is contained
in the mechanism factor and is expressed by
~NO i'iNO+i' (see Eq. (15)), the distribution is

no longer symmetrical. This factor
~

¹

~

'i N,+
i

'
is the product of the densities of the two par-
ticles at the nucleus and for large Z or small k

essentially determines the form of the distribu-
tion. Expressing the repulsion of the positron by
the nucleus

~

No+ i' will be small and will make
the distribution function vanish exponentially
when p+ goes to zero. Due to the attraction of
the electron by the nucleus, expressed by

i
No

the distribution will be finite at the other end.
As a consequence for large Z or small k the dis-

tribution function will be mon otonically in-

creasing with S'+. For smaller Z or larger k the
curve will develop a. maximum which shifts
more and more to the center, and approaches the
statistical distribution. This is evident from

"W. Pauli and V. Weiszkopf, Helv. Phys. Acta 7, 709
(1934).



I ORMATION OF ELECTRON-POSITRON PAIRS 22i

(16) and (17) when nZ/p+ and nZ/p ((1.It be-
comes therefore similar to the Born approxima-
tion distribution for small k (cf. Fig. 3). For a
particular value of k and t/t/'+ the probability as
a function of Z will have a maximum which
occurs at larger Z the greater t/t/'+. This is due
to the interplay of the densities I¹I' and

I
No+ I' which are increasing and decreasing

functions of Z, respectively.
The behavior of the distribution function near

the ends as given by the endpoint formulae in
section IV is qualitatively the same as that
found from the Schrodinger approximation, since
they also contain the density factors. One might
hope that especially at the important end of
the distribution, i.e. , W =1, (D3} and (Q3)
would give quantitatively better results. Com-
parison with the exact theory (see )9) shows
that this is not the case, (D3) and (Qa) giving
too large values. This must mean that replacing
the positron wave function by a plane wave over-
estimates its "interference effect" on the proba-
bility. At the other end of the distribution, i.e. ,

W+ =1, (D~') and (Q3') give the same behavior as
the Schrodinger approximation. The strong expo-
nential decrease of the distribution function at
this end must be expected to be generally valid.

9. Comparison with the exact theory of Jager
and Hulme

Using the exact Dirac wave functions for the
Coulomb field Jager and Hulme have given the
theory for the internal conversion process for
both the dipole and the quadripole. They have
obtained numerical results for o(W+) at five
points on the energy range in the case &=3,
Z=84. Fig. 6 shows the comparison of these
results with the corresponding Schnidinger ap-
proximation curves. "

0 .2, .8 gp-f
/(-2

Fio. 6. Energy distribution for 0 =3, Z= 84, in the exact
theory (full lines) and in the Schrodinger approximation
(dashed lines). The dipole and quadripole curves are
designated by D and Q, respectively.

The agreement is no doubt partly accidental.
This becomes clear if one tries to improve the
Schrodinger approximation formulae (16) and
(17) by removing the restriction nZ«1. This
can be done by using the exact Dirac wave
functions, developing in p+ and p only and
considering just those transitions which give the
main contribution. These correspond to the s —s
(dipole) and s —p, p —s tra, nsitions (quadripole)
in the Schrodinger approximation. The result in
case of the dipole for the sum of the matrix
elements in (B) is quite analogous to (15).
One gets from this sum:

I
~-

I

'
I ~+ I

'(r'(2vo) /k"'), (24)

where y~= (1 n'Z')*' —and
I
~~—I'

I
~+I' »re

radial normalization factors:

(1+W )(2P )'&'e s~ » lr(yo-+i-nZW /P ) I'(go+1)'
Ice I'=-

4w' r'(2yp+1)

and
I
3II+

I

' is to be obtained from this by
changing the sign of Z and by replacing

by +. The difference in the dependence on k
between (15) and (24) is due to the fact that in

"The lowest value of W+ which Jager and Hulme have
computed is W+ ——1.25. In accordance with what has been
pointed out concerning the behavior of the distribution

function near W+=1, we believe it more plausible to
extrapolate their curve towards W+ ——1 as we have indi-
cated by the dotted curve.
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Fro. 7. Total internal conversion coefficient for the
dipole. B is the Born approximation curve, l+ the curve of
Jager and Hulme and S the Schrodinger approxim3tion
result all for Z=84. The dotted curve is the Schrodinger
approximation curve for Z = 10.

the exact theory the wave functions considered
behave like r&0 ' at the origin. Combining (24)
with (B) one obtains an expression for the
energy distribution which for o.Z&(1 becomes
the same as (16). This might be expected to
give better numerical results. Actually this is not
the case; the nZ arbitrary distribution lies
entirely below that obtained from (16). The
inanity of the wave functions at the origin,
expressed in the k-dependence, does tend to
increase the results but this is entirely overcome
by the fact that the positron normalization
factor

~
M+ ' is so much smaller than the non-

relativistic No+~2. Of course it is not surprising
that the nZ arbitrary distribution lies completely
below the true one of Jager and Hulme, since
one has also to consider other transitions. It
appears then that the overestimate of the
positron normalization factor

~

No+
~

' in the
Schrodinger approximation rather accidentally
compensates for the neglect of the other tran-
sitions.

One may expect that in a certai~ range of
energy this compensation will always be more
or less the case. Since in addition the Schrodinger
approximation formulae (16) and (17) have the

FIG. 8. Total internal conversion coefficient for the quadri-
pole, Z=84.

right qualitative behavior, we believe that for k

say up to 5 and for all Z, (16) and (17) will give
also quantitative results correct within a fair
degree of accuracy. For k larger than 5 and Z
small (say ~20) the Born approximation will no
doubt give nearly correct results. For large Z
however, the Born approximation even for
values of k as high as 6 or 7 will probably not
give the correct form of the energy distribution,
although the total area cr may be given quite
accurately.

10. The tota1 internal conversion coefficient

In Figs. 7 and 8 we have given the total
internal conversion coefficient as a function of k

both for dipole and quadripole. The Born
approximation result has been computed by
graphical integration from (D~) and (Q&).24 The
Schrodinger approximation results have been
obtained in the same way from (16) and (17).
For k near 2 (16) and (17) can be integrated
analytically, giving:

(3/4) &2Zg&e 2a az/g—

0 (5/12)u'Z—'g"e 'aa

respectively, if g'=2(k —2). This shows the be-

'4 AVe have not made use of the asymptotic formulae (8)
and (10) since the approach to them is very slow.
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havior for t, near 2; for large k (8) and (10)
show that 0- increases like log k.

These results have to be compared with the
results of Jager and Hulme which are also indi-

cated in the figures. They have given curves for

the dipole up to k = 7 and for the quadripole up

to k=5 in the case Z=84. One sees again that
by the combined use of the Born and Schrodinger
approximation results the total internal con-

version coefficient may be obtained for all k and
all Z to within a fair degree of accuracy, say of
the order 15 percent.
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The Spectrum of Molybdenum V

M. W. TRAwIcK, Department of Physics, Cornell University

(Received June 15, 1935)

The spectrum of Mo V has been excited in a vacuum spark and photographed with a vacuum

spectrograph. With the aid of the irregular doublet law applied to the Sr I-like isoelectronic

sequence, lines involving combinations of 4d23(FP), 4d5s ' 'D, 4d5d '(PD), and 4d5d '(DF)
with 4d5p ' '(F'D'P') and 4d4f '(O' F'), and lying in the spectral region from 2100A to 400A

have been identified. Estimates of the absolute term values have been made from a Moseley

diagram.

'HE spectra of the first four elements in the
Sr I-like isoelectronic sequence have been

classified by various investigators; Sr I by
Russell and Saunders and by others, ' Y II by
Meggers and Russell, ' Zr III by Kiess and

Lang, ' and Cb IV by Gibbs and White4 and,
more fully, by Lang. ' The present paper extends
the sequence to indude Mo V.

The spectrum of Mo V was excited in a vacuum

spark between solid metal electrodes and photo-

graphed with a vacuum spectrograph containing

a concave grating of 150-cm radius of curvature
and ruled with 15,000 lines per inch. The vacuum

spark. between aluminum electrodes furnished

the standard lines, either those of aluminum itself

or those of nitrogen and oxygen brought out in

the discharge.
Higher order lines were carefully noted. The

lines of Mo IV and Mo VI which lie in the region

investigated (2100A to 400A) were sorted out on

' Saunders, Astrophys. J. 56, 73 (1922); Russell and
Saunders, Astrophys. J. 61, 39 (1925).' Meggers and Russell, Bur. Standards J. Research 2,
733 (1929).

3Kiess and Lang, Bur. Standards J. Research 5, 305
(1930)

4 Gibbs and White, Phys. Rev. 31, 520 (1928).
'Lang, Phys. Rev. 44, 325 (1933). Also, private com-

munication to Professor R. C. Gibbs.

the basis of the classifications by Eliason' and

by the author. '
The identification of the multiplet transitions

4d5P '(F'D'P') into 4d' '(FP) and 4d5s 'D

furnished the key to the classification of the
triplet lines. First, the triplet transition 4d5s 'D
—

4d5p '(F'D'P') was looked for with the help

of a linear extrapolation of the wave numbers of

the corresponding lines for the preceding mem-

bers of the sequence. Fig. 1 is a diagram showing

the relative positions of the lines in these mul-

tiplets. In this diagram, only the stronger lines,

in general, are connected from one element to
the next.

Since there was a large number of lines in the

region of the spectrum occupied by the lines of

the 4d5s 'D 4d5p '(F'D'P')—multiplets, it was

only by finding lines lying in the region of
4d' 'F 4d5P '(F'D'P') —(as indicated by the

linear extrapolation of wave numbers) and having

the same wave number separations as the lines

of the 4d5s —4d5p transition that a solution of

the problem was obtained. Difficulty in identify-

ing these latter lines was experienced because

' Fliason, Phys. Rev. 43, 745 (1933).
' Trawick, Phys. Rev. 46, 63 (1934).


