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Radiative capture of Protons by Carbon
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In previous notes' we have reported results of calcula-
tions which show that the probability of p-ray radiation is
sufficiently high to make the reaction C' +H'~N" +p a
probable one. It turned out that the theoretical yield is
larger than that observed by a factor of roughly 1000.
As in all intensity calculations the overlapping of wave
functions in the initial and final states is of primary im-

portance and the theoretical result is sensitive to this over-
lapping. The apparent discrepancy between calculation
and experiment may be taken to indicate that the inter-
action between C'" and H' is not represented sufficiently
well by a potential function which is constant inside C'2

and is Coulombian outside of it. In order to decrease the
theoretical yield one has to change the potential in such a
way as to decrease the region in which the initial and final
wave functions overlap or else one must shift the region
towards smaller radii. The y-ray yield expected in the
bombardment of Be' by protons is calculated for a nuclear
radius of 0.318X10 "cm and a well 9 MEV deep. It in-
creases more slowly with the voltage than the observed
intensity indicating a deeper nuclear well. A simple dis-
cussion of the method of complex eigenwerte is applied to
the properties of wave functions near resonance.

1. GENERAL RELATIONS FOR CAPTURE IN A

CENTRAL FIELD

A PARTICLE of mass 3f» and charge Z»e

traveling with velocity v is incident on
another particle of mass M2 and charge Z~e

supposed to be initially at rest. The particles
repel each other according to the inverse square
law of force when they are separated by distances
r)ro. Inside ro the force is supposed to remain
central but to change into an attractive one. The
system is transformed as usual into a separable
system in which the coordinates of the common
center of mass and the relative coordinates of the
two particles can be treated independently of
each other. The kinetic energy of the center of
mass is constant and the factor of the wave
function which involves the relative coordinates
satisfies a Schrodinger equation for a single
particle with mass

p = MgMg/(Mg+ M2).

The kinetic energy of relative motion is (p/M) T
where T=(-', )M&v' is the kinetic energy of the
incident particle. The plane wave which repre-
sents v particles Z», M» per second per cm'
traveling along the Z axis is described in the
reference system of the center of mass by e'~'

where

1 with respect to particle 2.
If the field were Coulombian also inside r = ro

the plane wave would be modified by the field
into'

e'"'—+Q(2L+1)i 'Pc(cos 0)e"IFr(p)/p;
0

.c——arg r(L+1+iq);
p= kr,

(3)

v = 1/ha =ZiZ2c/" 137"v.

Here I'"I, is the solution of

e'"'~g(2 +L1)icPc(cos 8)e' &Fc(p)/p, (5)

where I'1. is the solution of the radial equation in
the changed field for the azimuthal number I.
normalized to be asympototic to a sine function
of unit amplitude at p—+~ and regular at p=0.
The radial equation is (4) for r )ro and

[d'/dp'+1+(2/pv') U L(L+1)/p')Fc 0;— ——
r (ro, (4')

[d'/dp'+1 —2v/p L(L+1)/p' jFc—0, (4)——

which is regular at p=O normalized so as to be
asymptotic to a sine wave of unit amplitude at
p = ~.The deviation of the field from the inverse
square law modifies (3) into

(2)

' G. Breit and F. L. Yost, Phys. Rev. 46, 1110 (1934); ' N, F. Mott and H. S. W. Massey, The Theory of Atomic
47, 508 (1935). Collisions (Oxford University Press, 1933), Chapter III.
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p/
where U is the potential energy inside the

and x, y, s are the relative coordinates of particle "potential well."
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The incident wave in accordance with Eq. (5)
consists of a superposition of states with different
orbital angular momenta L. The transition
probability from any of these states to a lower
stable state can be calculated by the formula

64~4 v'

* I
'+

I
~ ."

I

'+
I
~ .* I

'
I (6)

where BR is the dipole moment due to the relative
displacement of the two particles and m, n are,
respectively, the magnetic quantum numbers of
the incident and bound state. Eq. (6) is well

known for two stationary states and the matrix
elements entering it are supposed to be calculated
by using wave functions normalized to unity.
Introducing a fundamental volume V one has to
divide expression (5) by U" and using that
expression in (6) one obtains the transition

probability when the incident state corresponds
to v/V particles/sec. /cm'. The number of cap-
tures which occur per second due to a single
nucleus exposed to the bombardment of
particles/sec. /cm' will be defined as Eoand . 0.

will be called the collision cross section. Using (6)
in the above manner one obtains therefore
vo./V. This amounts to using (5) directly in the
calculation of matrix elements and equating the
result to vo.. Due to any term with a definite L
in (5) it is possible to obtain a transition to a
lower stable term having azimuthal quantum
number L+1 or L—1. We let the radial wave
function of the stable state be R and we normalize
it so as to have

j2"R2r2dr = 1.

Perforzning the angular integrations in (6) one
finds

256m'e'v'
0 l. , I.&1 (L+,'- &-2)A' k '

~ fFLRr'dr
~

-'

3hc'v

=30 3(c/v)A'k 'X 2~ J'FLRr'dr~'(L+, '-&-')

(z)d 2zl ~1~2)/(zlzz+ old 2) ~

Fz.= (Fz/(1 —FzGLf'1 z. 2Fz, f'11)),=, , ' u, —(9)

5 L
——(FL'/F L FL'/F L)„=„„— (9')

where the last differentiations are with respect to
p. The connection with usual formulas of the
theory of anomalous scattering is given by the

It is often desirable to express F~ inside the
barrier as a multiple of a function I having unit
amplitude at r=rp and proportional to FI.. One
can determine the value of F~ at r = rp in terms of
the logarithmic derivative of Fl, at r=rp —0 and
the values of FI, and G~ at r =rp. Here Gl, is the
solution of Eq (4) w. hich is asymptotic to
cos [p L2r/2 —

2Z ln 2p—+O.zj while Fz, is asymp-
totic to sin [p L2z/2 q ln 2p—+—a L]. Requiring
that for r&rp, Fl, be expressible as a linear
combination of Fl. and Gl. and that for large p the
function FI, should consist of FJ. and a term in
e" one satisfies the condition of having (5) equal
to a sum of the modified plane wave (3) and a set
of diverging waves. It is found by an easy
calculation that

asymptotic form of FI. .

FL e'xL sin [p Lzr/2 —q ln 2p+—oL+KL.j, (10)

where XL, is determined by

s2'zz L= [(] FLG Lg L+ 2F—L2f1 L) /

(1 FLGLfzL 2FL ~L)]r=rg ~ (10 )

The phase Xl. is the usual phase shift which is

responsible for anomalous scattering. ' Formula
(9) determines the amplitude of FL. The main
contributions to 0. come usually from the region
inside the nuclear radius rp and a comparable
region rp(r&3rp. Inside r(rp the shape of u is
determined by (4') and for r) r2 the function u
can be usually determined sufficiently accurately
by approximate methods. The quotient FL/u
requires the knowledge of FL, and Gi.. It is
possible to express Fi in the following way

' H. M. Taylor, Proc. Roy. Soc. A134, 103 (1931);
A136, 605 (1932).

4 Th. Sexi, Zeits. f. Physik 81, 163 (1933);J.A. Wheeler,
F. L. Yost and G. Breit, in preparation for publication.
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FI CI.p @I p

CI.= }2~nLL'+ n'][(L 1)—'+ n'] L1+n']/[&""—1]}'
(2L+1)!

Go=Dr. j[p c+& z+zp ~+z+ +0 pz+z+rzr+ppz+'+ ]+[pin 2p+rl]Fc/Cc},
22 L+1

(2L+1)C,Dr. = 1; p = [L'+~'][(L—')'+ ~'] "['+~']n
(2I.)!(2I-+1)!

L 1 ) 1 1"( iq)-
g=p -+ + —

}
1+—+ + —}+27+RP.

LP+ ~P 1+~P 4 2 2L+1) r( —i&)

2L L 2"
+(—) ~+z p I.P. (iq+n 1)—~ ~ (ig L). —

(2L)! ~=—c (L+n)!(L—n+1)

Here 4 I, is a power series in p the first term of
which is 1 and y is Euler's constant. The above
form of F, G was worked out by Wheeler and the
tables the computation of which was begun by
him were used for the values of CI, and the
second power series entering GI, . Introducing

we have

4'=rRk l, J'4'dp=1,

0=8 0'f),

op ——30.3(c/v)A'k —9.—'Fz'

&&
I
Jo'"p+zzdpI'(L+l+l), (12)

&'= }1/L(1 FcG~f c)'+—F~'~~'] }.=.. (»')

If FI.GI.SI.——1 there is resonance of the nucleus
to the L component of the incident wave. In this
case Fr.'B'=Gc'(krp), which is la.rge for high
barriers on account of the presence of e2 & —1 in

DI.. The functions FI„GI.satisfy FI.'GI, —FI+I.'
=1. Using this relation the condition for reso-
nance can be expressed as

Fc'/F c= Gr, '/Gr. , (13)

which shows together with 3'=Gz, '(krp) that
resonance is obtained when the function FI, has
the proper phase to join itself on to the irregular
solution GI. at r =ro.

Although it is convenient to define the reso-
nance velocity arbitrarily as that velocity of
incident particles for which FI,GI.bI, ——1 it should
be remembered that neither 82 nor o. , considered
as functions of the velocity, have maxima
precisely when this condition is satisfied. Thus

the maximum of 8'FI. should be reached at
slightly lower velocities. For sharp resonance
however the condition used is sufficiently
accurate.

If resonance is sharp then the observed yield in
thick targets is primarily due to the captures of
particles retarded by the stopping power of the
target to approximately the resonance velocity.
The yield can be then calculated approximately
by integrating the contributions which result
from (12) in the neighborhood of resonance. The
quantity 1 —FI,GI,bI, can be then supposed to
vary linearly with the energy in the energy range
giving important contributions around reso-
nance. Changes in all other quantities entering 0.

will be neglected in this approximation, and their
values at resonance will be used. According to the
3/2 power law of variation of range with the
kinetic energy T the distance d/ laid off by the
particle in the target while the energy changes by
dT is dl= (3/2)ldT/T. By means of this relation
and (12) it is found that the number of captures
per ¹

incident particles bombarding a target
having

¹
nuclei per cm' is

7= (3zr/2)(AT/T)NzNpl pap/Fr. 5z', (14)

where lo is the range of particles having the
resonance velocity and AT is one-half of the half
value breadth of resonance so that the resonance
curve is represented by 1/[(AT)'+(T —Tp)'].
For high barriers the dependence of I' is most
critical with respect to AT/T and the factors
1/Fz'bz, ' as well as the Fr.' involved in op. The
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two last factors together give a net factor. Gl.' so
that F is proportional to GI.'(AT/T). Here GJ.'
increases with the barrier height but AT/T
decreases and the net effect will be seen to leave
F nearly independent of the barrier height.

2. RELATIONS BETWEEN WAVE FUNCTIONS NEAR

RESONANCE

It was shown by Casimir' that Gamow's use of
solutions exponentially decaying with time and
exponentially increasing with distance can be
interpreted as an approximation to a straight-
forward calculation by means of wave packets
and that the actual solution satisfies the neces-
sary conditions of finiteness at infinite distances.
The same fact together with relations between
wave functions near resonance was previously
reported by one of us. ' In view of the fact that
the method used allows one to see the connection
between capture and spontaneous disintegration
most clearly it is described below.

We consider solutions of the radial equation

d'4'/dr'+ (2m/h') (E U) +=—0 (15)

and we suppose that at infinity the function U
decreases with r faster than 1/r. This restriction
is of a purely mathematical character because at

. sufficiently large distances the Coulombian field

can be changed into a more rapidly decreasing
one without changing the physical results. We
shall also require that the function U is such as to
allow regular solutions for O. Otherwise the
function U can be arbitrary. The energy E is

supposed to be positive. Asymptotically for large
r we have

+(E)=Ae '~'+Be+'"' k= (2mE)'/h. (16)

If + is defined in the neighborhood of r =0 by the
value of its first nonvanishing derivative C the
differential Eq. (15) establishes its values for all r
and hence the coefficients A, 8 are determined as
functions A (C, E), B(C, E). Physical applications
should be made with real E. It is nevertheless
useful to examine the functions A, 8 also for
complex E. Gamow's complex eigenwerte method
simply amounts to making use of the properties

'H. Casimir, Physica 1, 193 (1934); cf. also H. Bethe,
Ann. d. Physik 4, 443 (1930),

6 G. Breit, Phys. Rev. 40, 127 (1932).

of A, 8 as functions of E in the neighborhood of
the root of

A(C, E)=0. (16')

A root of this equation we call Eo A—h/2 where
Eo, X are real. The constant ) has no relation to
the wavelength which it stood for in the first
section and will be interpreted as the disinte-
gration constant. For real C, E the function &I

must be real and hence

B=A* (E real). (16")

The roots of (16') are therefore complex, and
X&0. As in Gamow's paper one shows that for
small

I
X

I only X)0 need be considered. For real
Z close to Eo and for small X one may expand by
Taylor's series around Eo —i),h/2

A(E) = (E ED+Ah—/2)(dA/dE) g 0,.
(17)

B(E)= (E Eo iXh—/2)(—dA/dE)*g p

By using these values in (16) it follows that for
large r

I
+ I'= 21(d~/dE) s=o I'I (E—Eo)'+(&h/2)'j (17')

For small r the function + varies only slowly
with E and this is particularly so if there is a
"well" at small r in the potential U. Thus
according to (17') the relative probability of the
particle being in the region of small r, i.e. , inside
the nucleus, is proportional to

1/L(E —Eo)'+ (7 h/2) '3

+=Jo"@(E)e 'e "&f(E)dE (19)

and one can arrange f(E) so as to have
initially vanish at r= ~. Approximately this is

accomplished by

f(E) = ().h/2m)/I (E—Eo) '+ (Xh/2) ']. (19')

The calculation of the function (19) by using

(16), (19') is easily made approximately by using

X Xp —(E—Ep)/heo where vo is the velocity at

This shows that half value breadth is )5 while the
quantity AT of the first section is Vi/2.

Superposing solutions (16) one obtains a wave
packet
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resonance and by changing the range of inte-
gration from 0—+~ into —~ ~+ ~. The inte-
gration reduces then to

e '*'-iS[ x—i I/2]-'dr= O(t') O)
.

= 27rie""i'(t' &O)

e ""-iS[x+iltt/2] 'dx-=~

~
—27rie "'"(t )0) ' =0(t'&0).

It is found that in the region where (16) holds

O'=B(Ep —iN/2) exp [—i(E,t —mvpr)/5

—Ii(t —r/vo) /2] (t)r/vo), (20)

same amplitude at r = ~ for all energies.
According to Gamow's conservation theorem

argument one can determine the disintegration
constant by

X=v iB(Ep iV—z/2) i
'/

(J'
I +(Ep)

I

'«) e=s.-'»( (»)
where the integral is to be taken only through the
nucleus. Here the numerator represents the
number of particles leaving the nucleus and the
denominator similarly represents the number of
particles in the nucleus. This formula of Gamow's
is often inconvenient in applications because it
presupposes the knowledge of the solution of the
wave equation for complex energies. Using Eq.
(17) we have

4=0
where

(t & r/vp),

B(Ep i7Jt/—2) = —i)5(dA/dE)*g=p (20')

B(Ep —iVi/2) = 2B(Ep).

Substituting this into Eq. (21) we see that

(21')

in accordance with the fact that (17) applies for
complex as well as real values of E. Similarly for
small r one finds, using (19') and the fact that
4'(E) is practically independent of E in the region
where f(E) is appreciable:

0=+(Ep) exp [ iEpt/It X—t/2]. (2—0")

Eqs. (20), (20") show that to within the approx-
imations made Gamow's solution represents the
wave packet in the region r(rot but that for
r&vot the wave packet gives zero probability of
finding the particle. In higher approximations
the head of the wave packet at r= vot becomes
rounded off and for r &rot there is a finite though
small probability of finding the particle.

Eq. (18) shows that one may define Ep as that
real energy for which the probability of the
particle being inside the nucleus is a maximum
taken relatively to the probability of its being
very far away. Eqs. (17), (19), (19') show that
the wave packet which is represented by
Gamow's solution contains stationary states with
different energies and that the relative proba-
bilities of these energies vary in proportion with
the same resonance factor (18) which determines
the relative probabilities of capture for particles
of these energies; in comparing relative proba-
bilities of particles of different energies we use the

X=v/ J'[G['dr, (21")

&T/T=1/ J'
~
G

~

'dp,. (p mvr/=It) (22.)

The above general properties of wave functions
near resonance are seen to be verified by the
special functions used in section 1. Thus ac-
cording to Eq. (17) the phase of the function at
resonance divers by pr/2 from what it is far away
from resonance and this is in agreement with
Eq. (10).

3. APPLICATIONS

By means of Eq. (22) we change Eq. (14) into

Y= 142.8NiNplp(L+-' , +-', )A'(c/v)k 'li '

X ( Jp p@Gdp) / J'G dp (23)

where X again stands for the wavelength. For
r & ra, G is identical with Gl. and for r (ro it is the
continuation of Gl, in the field U. As has been
shown in connection with Eq. (13) this con-
tinuation is regular at r=ro at resona, nce. The
integral in the denominator is to be extended only

where G is the solution of the wave equation for a
real energy normalized so as to be asymptotic to a
sine function of unit amplitude at ~. Re-
membering that AT =Mt/2 we also have
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through the nucleus. The function G is the only
quantity in this formula which contains the
energy of the incident particle exponentially. It
occurs with equal powers in the numerator and
denominator of Y and as a result Y depends on
the energy much less critically than the disinte-
gration yield away from resonance. The AT/T is
proportional in its order of magnitude to e ' &

while ao/Fr, 8r,' is the collision cross section at
resonance and it behaves as FI, ' and is of the
order e' &. At resonance the collision cross section
increases in the same ratio as the width of the
resonance region decreases. This property is seen
to be general and not confined to radiative
captures. We may, therefore, expect observable
yields of nuclear reactions in cases of resonance
even though the exponential factors describing
the probability of penetrating a nuclear barrier
should be very small.

The expected probability of radiative capture
was calculated for carbon with several values of
the nuclear radius and of the depth of the
potential well. Only a certain range of values
comes into consideration because mass defects
indicate that the energy released in the capture of
a proton by C" is of the order of 6 or 7 MEV. It
is therefore necessary to have the radius and the
depth such as to allow an s level at E ——6
MEV. At the same time it is necessary to account
for resonance to incident protons at about 0.5
MEV. Supposing that the process occurs as a
transition L = 1—+L =0, only certain radii and
depths will give simultaneously the correct
position of the bound s level and of the virtual p
level. For simplicity we have supposed that the
1s and 2p levels are responsible for the transition
so as to have no nodes inside the nucleus for the
wave function, either in the initial or in the final
state. Similarly the potential energy —U inside
the nucleus was taken to be constant. This
corresponds to the usual treatment of radioactive
nuclei and although actually U may vary, an
approximate idea about the probability of the
process is obtainable with such a model. Letting
ro&(10"=0.33, 0.41, 0.52 cm we found by trial
that the corresponding values of U which had to
be used in order to obtain resonance to the first p
level at 564 kv are 21.4, 13.4, 8.3 MEV. The
energy of the s level calculated with these values
of ro and the corresponding values of U is

approximately —10, —6.5, —4.0 MEV and it is
seen that ro ——0.41&(10 "cm, U=13.4 MEV fit
the requirement of correct binding energy best.

For any of these radii and depths resonance is
sharp and the direct calculation of 1 —FCb and
F'b in the vicinity of resonance is troublesome.
Eq. (23) is more suitable. Since it was supposed in
deriving it that Eq. (22) is at least approximately
valid we have verified the latter by comparison
with approximate direct calculations in which the
values of F, G, were used. For the latter calcula-
tions 1 —FGb and F'0 were computed for T= 224,
356, 564, 894 kv and the rate of change of
1 —FGb at 564 kv was compared with F'b. The
quantity F9 varies sufficiently rapidly to make
its change through the resonance region appreci-
able but not very serious and we used the value of
F'8 at maximum resonance in estimating the
resonance width. We obtain for AT/T by Eq.
(22) 1.63X10 ' and by direct estimate 1.44X10 '
for ro ——0.31&&10 " cm. For ro ——0.41)&10 " cm
the agreement is worse, Eq. (22) giving 2.5 X 10 '
and direct estimate 2.0 X 10 '. It could be
expected that for broader resonance Eq. (22) will

be less accurate. In both cases the agreement is
sufficiently good to warrant the application of
Eq. (22) to the calculation of the yield.

Formulas (14), (23) give the yield expected in

thick targets on the supposition that only
particles with nearly the resonance velocity need
be considered. This assumption is justified for the
theoretical model used here as may be seen by
comparing the collision cross section at resonance
with that at other voltages. Thus for @=13.4
MEV, r0=0.41X10 "cm the approximate values
of 0. are given below:

T=224 kv 356 kv 564 kv 894 kv
r =6.1y10 311.8y10 "5.0y10 'Q.8)&10 29CG12.

At the resonant voltage the effective collision
cross section is 4.2)& 10 "cm' and is appreciably
higher than the other values listed above. In the
above tabulation changes in fr'Rudr with
voltage were neglected, being relatively unim-
portant because N is primarily determined by the
depth and width of the potential well rather than
the kinetic energy of the incident proton.

The values of F, G, FG8, F'8 and J'p@udp for
different ro and U are listed in Table I for
diferent voltages. The latter as well as the values
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TABLE I. y-ray yield per proton as a function of energy of
incident particle and radius of bombarded nucleus,

T F'/F F FGB FQ J p%'udp

ro =0.33 X 10 t' cm
894 3.525 .02664 6,727
564 4.494 .00962 14.43
356 5.699 .002876 37.82
224 7.212 .0006735 127.0

ro=0.41X10» cm
894 2.837 .04465 5.03
564 3.640 .01626 10.48
356 4.640 .00488 27, 12
224 5.880 .001147 90.40

rp=0. 52 X10 '2; U=8.3
894 2.281 .0754 3.81
564 2.952 .02778 7.56
356 3.784 .00840 19.18
224 4.818 .00198 63.1

U =21.4 MEV,
1.036 0.00410
.994 .000663
.971 .000074
.956

U =13.4 MEV
1.073 0.010
1.002 .00155
.967 .000182
.942

MEV
1.135 0.0225
1.006 .00369
.944 .00041
~ 907

Y per
proton

0.267 7.3 X10 'I

0.371 2.66 X10 ~

0.525 0.85 X10 7

' L. R. Hafstad and M. A. Tuve, Phys. Rev. 47, 506, 507
(1935).' C. C. Lauritsen and H. R. Crane, private communica-
tion.' J. D. Cockcroft, C. W. Gilbert and E. T. S. Walton,
Proc. Roy. Soc. A148, 225 (1935)~

of ro were chosen so as to be able to use the
tables for Ii and G without interpolation. The
values of Y also listed in Table I were obtained
with /0=6. 96X10 ' cm for 564 kv while 1.136
)(1023 was used as the number of carbon atoms
per cm'. The values of DT/T used for Y were
1.036X10 ' for ro ——0.33&10 " cm, 1.44&(10 '
for ro ——0.41&10 " cm, 1.90&&10 ' for ro ——0.52
)&10 "cm. The values of Y for these three radii
correspond to 4.6X10' 1.7X10' 0.54/10' cap-
tures per microampere. The decrease of Y with
increase of nuclear radius is due to a large extent
to an increase in the wavelength of the emitted
y-ray. The energy of the s level increases as ro

and so does the wavelength of the p-ray. The
wavelengths used for the three radii were
1.21)&10 "cm, 1.89)&10 " cm, 3.07)&10 " cm.

According to Hafstad and Tuve' and to Crane
and Lauritsen the observed yield is due to
resonance which takes place at about 425 kv.
The observations of Cockcroft, Gilbert and
Walton are consistent with the existence of
resonance but speak for a somewhat higher value
of the resonance energy. The difference between
the 564 kv used in the calculations and the true
experimental energy is not certain and cannot be
very significant because according to formula
(23) the yield does not vary critically with the
barrier. This is also indicated by the fact that our
calculated yields decrease with the radius.

The observed yield as estimated by Hafstad
and Tuve is one in 10" incident protons. Among

the radii which we tried ro ——0.41 )& 10 " cm
seems to be the most acceptable because the
corresponding binding energy corresponds most
closely to the expected 6 or 7 MEV. The theo-
retical yield for this radius is 2700 times greater
than the observed yield and it is thus quite
possible to explain the formation of radioactive
N" as due to radiative capture of the proton. The
discrepancy between theory and experiment
indicates that the model used is only a poor
approximation to reality and this could have
been expected because both the assumption that
the field acting on the proton is central and that
this field has the particular shape used by us are
open to question. As in all intensity calculations
the transition probability is proportional to the
square of the matrix element for the displace-
ment and is therefore sensitive to the degree of
overlapping of the initial and final state. By
increasing U at small r one can contract the wave
function of the bound s state towards small r
without affecting the p function of the incident
state nearly as much. Almost any desired result
can be obtained by this means and the theoretical
value can be decreased to the experimental one.
It is questionable, however, whether such forcing
of theory to experiment has much meaning
because the assumption of the central nature of
the field is also questionable.

According to Massey and Mohr" who follow a
discussion of Taylor and Mott" one may expect
dipole radiation to be absent on the Heisenberg
Majorana theory of nuclear binding forces.
According to Bethe and Peierls, "however, dipole
radiation is expected on either the Heisenberg
Majorana or the Wigner theory. It is clear
without calculation that a dipole moment exists
in our special problem and a more detailed
calculation which we omit here shows that the
exchange interaction does not essentially modify
the possibility of dipole radiation.

The revised masses of Bethe" give 1.0032 for
the difference between the masses of C" and C"
instead of the previously supposed 1.0003 which

H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc.
A148, 225 (1935).

"H. M. Taylor and N. F. Mott, Proc. Roy. Soc. A138,
665 (1932).

"H. Bethe and R. Peierls, Proc. Roy. Soc. A148, 146
(1935).

"H. Bethe, Phys. Rev. 47, 633 (1935).
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followed from Aston's value 12.0036 for C" and
King and Birge's value 13.0039 for C". This
change when used for an estimate of the mass of
N" lowers the estimated frequency of the p-ray
to about 3 MEV with 0,0014 for the kinetic
energy of the positrons in N"~C"+e+ and neg-
lecting the mass of the neutrino. The nuclear
radius has to be increased and the depth of the
well must be decreased to fit this p-ray wave-
length. The estimated yield is decreased by
approximately a factor of 3.

According to Hafstad and Tuve there is a
strong indication of a fine. structure of the
resonance of carbon to protons. If this were due
to the proton magnetic moment we would expect
the fine structure to have the same order of
magnitude as though the proton obeyed Dirac's
equation. The discontinuity in the potential
energy will be expected to give rise to a doublet
splitting of the order of

8+0
FI'G'dr

~ Id p

where II' = (po/1840)'(2L+1)d U/rdr which
amounts to (2L+1)(v'/4c)G'U/J G dp. Multi-
plying the result by 3 in order to take into ac-
count the fact that the magnetic moment of the
proton is greater than would be expected on
Dirac's theory one still has an energy difference
of the order of only 700 volts which is much less
than the observed structure of about 70 kv. The
structure may however be accounted for by the
coupling between movable parts of the C"
nucleus or else by the simultaneous presence of
two or more "wells" for the incident proton. As
is well known, the interaction of two equal wells
in molecules gives rise to a doublet structure and
a similar phenomenon may be imagined to take
place here.

Application to Be'+H'

Applying the above formulas to the p-rays
emitted in the bombardment of Be' by protons
we obtain the following values of (c/v)(F'/k')/
(1 —FG8)' for r, =0.318&&10 ' cm and U=9
MEV:

T= 99.8 158.2 250, 7 397.3 629.7 998.0 1582 kv
(c/v)(~~/p')/(1 —FG)) =2.3 +10 29 2.1)(10 28 1.21)(]p 27 4.8X10 &7 1.43)(10 '26 3,5 +10 26 7.6)&10 6cm~.

O-/0 = .28 .33 .38 .43

The above numbers are nearly proportional to o-

because the part of I which matters is in the
"well" and is nearly independent of T. Plotting
the logs of above values against T s one obtains
nearly a straight line. Approximating the graph
by a series of straight lines one determines for
each T the coefficient b for the approximation
o. =e " r. Using the 3/2 power law and this
approximation we obtain by integration the
ratio o./0. where o is the effective cross section for
thick targets de6ned by o"x= J&*0(x)dx where x
is the distance inside the target measured from
the face. The approximate values of o./0 are also
tabulated above. The values of

S= (c/v) F'k —'(1 —FG6) -'(o./0. ) (7'/397. 3) "*

920 1000 kv
6.0

T 600 700 800 900
10'""S .9 1.7 2.8 4.3

Experimental ray
yield .3 .5 1.2 5.0 6.7

experimental yield increases much faster from
700 to 900 kv than the theoretical. This suggests
a deeper well and perhaps the approach of
resonance around 1 MEV which, however, has
not been found so far.

should be proportional to the observed yield and
are compared below with the observed y-ray
yield on an arbitrary scale. The observations are
due to Tuve and Hafstad and were kindly
made available to us before publication. The


