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Elementary processes are considered, in which simul-
taneous transitions of an inner and an outer atomic
electron result in the emission of one single light quantum.
Considering the nuclear distance of the inner electron as
small compared to that of the outer electron, formulae are
developed for the probability of double transitions by
dipole radiation. The occurrence of the Cu Kajs satellite is

given as a possible illustration of the case, where the inner
transition alone occurs by dipole emission; a special con-
sideration applies in this connection to the probability of
simultaneous inner ionization and outer excitation. For
the case of a forbidden inner transition, the simultaneous
emission of a light quantum and an outer electron (radi-
ative Auger effect) is discussed.

1. INTRODUCTION

HE possibility of double electron transitions
in x-ray spectra was first suggested by
Richtmyer! in connection with the occurrence of
the so-called “satellites” of x-ray spectral lines.
According to his theory, the satellite line is due to
the simultaneous transition of an inner and an
outer electron from a higher to a lower energy
level, so that the energy of the emitted quantum
is the sum of both energy differences, while for
the ‘“‘parent” line only the transition of the inner
electron should be responsible. An alternative
explanation of the satellites has been given by
Wentzel? and Druyvesteyn,® who attribute their
appearance to the possibility of double ioniza-
tions of inner shells.

A quantitative theoretical justification of the
double transition hypothesis has in the first place
to explain a considerable probability of a simul-
taneous excitation of an outer electron and an
ionization of an inner shell while for the double
jonization a sufficiently frequent occurrence of
such processes has to be explained.

Whereas it seems at first that at least one of
these two theories must be wrong, one has to
consider the possibility that both have a certain
but different range of applicability. Indeed, the
experimental evidence rather leads to the con-
clusion that one has to assume different mechan-
isms according to whether one considers the
satellites of K or L lines. While the former occur
only in the spectra of comparatively light ele-
ments, the latter show an irregular dependence!
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on the atomic number Z, being absent in the
range from about Z =350 to Z=70, but occurring
both for lower and higher atomic numbers.

Recently Coster and Kronig® have succeeded
in giving a satisfactory explanation of the L
satellites both as to their great intensities and
their peculiar dependence on Z. They have to be
understood as the result of a special process of
double ionization, due to the Auger emission of an
M electron and the simultaneous radiationless
transition of an L electron from (2p) to (2s).

It is clear, however, that such an explanation
cannot account for the satellites of the K series,
and it seems to us that here, indeed, Richtmyer’s
point of view has to be taken into consideration.
Some time ago, Ramberg® published arguments
against the double transition theory, coming to
the conclusion that such transitions should be
expected to be far too improbable to account for
the observed intensity of the Ka satellites. In his
considerations, however, decisive features are
omitted which, as we will see, bring the theoretical
intensity of the satellites quite close to the ob-
served order of magnitude. Our main objection
applies against his argument, that the ratio of the
probabilities of double excitation (i.e., simul-
taneous ionization of the K shell and excitation
of an outer level) to single excitation (i.e., mere
ionization of the K shell) should be of the same
order of magnitude as those of double transition
to single transition. This would imply that the
square of the latter ratio should give approxi-
mately the intensity ratio of satellite to parent
line and would indeed turn out to be of far too

5 D. Coster and R. de L. Kronig, Physica 2, 1, 13 (1935).
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small an order of magnitude. Although, however,
as Ramberg points out, both double excitation
and double transition involve the coupling of an
inner with an outer electron, there is neverthe-
less a radical difference between the two proc-
esses, making the former far more probable than
the latter. While in the double transition the inner
electron merely changes between two inner
levels, for the double excitation an inner electron
is completely removed, thus in a nonadiabatic
process changing approximately the effective
atomic number Z* of an outer electron into
Z*+1. As we will point out later for the case of
the Cu Ka satellite, this has as a consequence
that if the K electron is removed, there is not a
small probability but almost ceriainty that at
least one of the outer electrons will be excited;
thus we understand also why in this case the
satellite is found on the short wavelength side of
the parent line and that there are not, as Ram-
berg would expect, two corresponding satellites
on both sides, the more intense one lying on the
long wavelength side.
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We believe also that there are other cases of
double transitions. A particularly interesting one
is associated with the occurrence of ‘‘forbidden”
lines, and is brought to evidence by recent ob-
servations of Ross.” This mechanism can roughly
be described in the following way: Instead of
performing a forbidden radiative transition the
atom is able to emit simultaneously a light
quantum and an outer electron. The total system
(consisting of inner + outer electron) can thus
radiate by dipole emission (instead of quadrupole
emission, as in the case of the forbidden line) and
emit a continuum on the long wavelength side of
the forbidden line, this type of ‘“satellite’” being
more intense than the weak ‘“‘parent” line.

A more quantitative discussion of the processes
here considered would necessitate very accurate
knowledge of atomic eigenfunctions and involve
a great amount of numerical integration. We
will restrict ourselves in the next sections to
pointing out the main characteristics of the most
interesting cases and estimating their probability
under special conditions.

2. PROBABILITY OF DOUBLE TRANSITIONS

We consider an inner electron 1 and an outer electron 2, assuming that the orbital dimensions of 1
shall be small compared with those of 2; in this case the eigenfunctions of 1 and 2 will overlap only
very little, so that their exchange can be neglected. The presence of other atomic electrons shall be
taken into account only insofar as they modify the potential field, in which 1 and 2 move, and as
those transitions of 1 and 2 shall be excluded that lead to states occupied by any of the other electrons.
This means that as ‘‘zero order’’ atomic eigenfunction we assume a function that can be written as a
product of functions, each of them depending only on the coordinates of one electron.

Calling r; and r, the position vectors of electron 1 and 2 with components (x1y121) and (xey222),
respectively, we may expand the interaction energy of 1 and 2 in terms of the coordinates of 1 in the
form:

e/ | ti—r2| =e¥/ratuv(ry, ra)=e2/ro+v (11, 13) 40" (14, 12), (1)

where V' (11, 12) =€2(r1r2)/13? 2)

contains the terms that are linear, and
7)”(1'1, 1‘2) = 62/2[3 (x1x2+y1y2+zlzz)2/725 - 7’12/1’23] (3)

contains the terms that are quadratic in the coordinates of 1, higher order terms being neglected.
The term e2/r; in (1) has to be taken as part of the nonperturbed potential of electron 2, representing
the screening due to the presence of electron 1. The coupling energy v=1"+v"’ shall be considered as a
small perturbation. The nonperturbed eigenfunctions of 1 and 2 shall be generally designated by
u,(1), u,(2), respectively, the corresponding energy levels by E, and E,. Keeping only the terms
linear in the matrix elements of v, we can write the eigenfunction of the initial state

7F. Bloch and P. A. Ross, Phys. Rev. 47, 884 (1935).
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Vum, aa
aa 1) 2 =Uq 1 a 2 - "u 1 m 2 4
Veall, 2) = ua(1)a(2) B mga,aEu+Em—Eafan (Dun(2) (4)

and that of the final state

Vum, Bb
1, 2)=ug()uy(2) — - U, (1) %4 (2). 4a
Yau(1, 2)=up(1)uy(2) M%liﬁbE“JrEm_Eﬁ_Eb (Dun(2) (4a)

We may assume furthermore, that not only the orbital dimensions of 1 shall be small compared with
those of 2, but also, that the orbital dimensions of the final state 8 of electron 1 shall be small com-
pared with those of the initial state . In this case, the coupling energy v will practically act only on
the initial state «, @ and for the final state 8, b, we can, instead of (4a) write approximately

¥an(1, 2) =up(1)us(2). (5)
The emission of a light quantum with frequency
V= (Ea+Ea—EB—E1,)/h

will be mainly due to a radiative transition of 1. According to the general rules of the quantum
theory of radiation® the probability for such a transition will then be proportional to the absolute

square of
Igoe= fyo* exp (kr)(n, grad,)ymdrid7s, (6)

where n is a unit vector, perpendicular to the direction of propagation of the emitted quantum and k
its vector of propagation; (n grad,) stands for

7.0/0x1+1,0/3y1+n.0/321

and dm, dr, are the elements of the configuration space of 1 and 2, respectively. Using the expressions
(4) and (5) and taking the functions #(2) as orthogonal and normalized, we find for the ‘“parent’ line

Ige= fu.*(1) exp (ikry)(n, grady)us(1)dr, (63)

and for the “satellite” .
vaa, nb

I aa — ES 1 . k , d 1 d ‘ 6b

Bb ; Ea_’_Ea__E“—Eb fuﬂ ( ) exp ’L( rl) (n gra 1)1Lﬂ( ) T1 ( )

The difference of frequency Av=(E,— E,)/h between parent line and satellite will always be so small
that their intensity ratio will be given by the ratio of the absolute squares of (6a) and (6b). The
discussion of (6a) and (6b) offers two entirely different aspects, according to whether the parent line
is allowed or forbidden and they shall therefore be treated separately.

(a) Parent line allowed

If 1, is the angular momentum (measured in units 4/27) of a state u of electron 1, the well-known
selection rules imply in this case that [,—lg= 41. Similarly, in (6b) there will noticeably occur only
states u, for which /,—ls= 1. Both conditions together lead to the selection rule lo—/,=0, =2.
We may now split the matrix elements, occurring in (6b) into two parts, writing

vaa, ub:vlrxa, ub+v”aa, ub (7)
with V' aa, = S U™ (1)ua(2)0' (11, T2)u,(V)up(2)d71d 7o (7a)
and V' aa, = S ta* (1) 1a(2)0" (11, T2)un(1) 243 (2)d71d 70, (7b)

8 Cf. e.g., G. Wentzel, Handbuch der Physik, 24, part 1, p. 743 f.f.
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using for o’ and v/ the expressions given in (2) and (3). Since (7a) contains the coordinates of 1 linearly,
it leads only to a result different from zero, if I,—1,=+1. This condition contradicts the selection
rule /,—1,=0, &2, stated above and means that for the case of an allowed parent line, the terms
(7a) will give no contribution to (6b). On the contrary, since v"’ contains the coordinates of 1 in the
second power, (7b) will generally be different from zero for l,—1,=0, =2.

We can therefore write (6b) in the form

v//aa, nJ
Iger=73 fu *(1) exp (¢kr))(n, grad,)ug(1)dr,. 8
syl L )@, grad:)us(1)dr, ®)

The energy differences E,—E, of inner atomic levels will be big, compared with the outer atomic
difference E,— E;, so that we will get a considerable contribution to the sum (8) only from the term
u=a, which simplifies our expression to

7}l,o:a, ab
L= f w(1exp (ikri)(n, grady)us(1)drs. (8a)
a ™ dup Y

Comparing (8a) with (6a) we find finally for the intensity ratio of satellite to parent line
[Tgpee |2/ | T5*|*= 0" aa, at|*/(Ea—Eb)* )
In the following section we shall discuss this formula for the case of the Cu Kaj satellite.

(b) Parent line forbidden

We will consider here only the special case of a forbidden line, for which I,—lg=0, =2, so that (6a)
vanishes. The situation is here just the inverse of case (a); the condition /,—Ilg= =1 which is still
necessary for the nonvanishing terms in (6b) implies here l,—1,= 2=1, &3, a selection rule, which is
only compatible with the terms (7a) but not with (7b). We obtain therefore

¥ aa,
Tpee=3 0 f (1) exp (ikry) (n, grady)us(1)drs. (10)
¥ EatFa—E,—E,

The main difference between (10) and (8) has to be seen in the circumstance that here the term with
w=a gives no contribution, since the average value of the coordinates of 1 in the state « vanishes.
The sum has therefore to be extended over “‘intermediate’’ states u of the electron 1, different from «.
Now the exclusion-principle formulated in the antisymmetry of the zero order eigenfunction demands
that only such states u shall be taken as are not occupied by any other electron and we have to
investigate what possibilities there are left for u. One of them is that u refers to one of the optical
levels of the atom; but the corresponding terms in (10) will generally appear with such small numera-
tors and such big denominators that their contribution is negligible. Another possibility is u=4.
The state 8 has certainly to be supposed unoccupied since otherwise it could not be the final state for
electron 1; however, for u=4 the integral in (10) vanishes. The only remaining possibility is that u
refers to the state a, left unoccupied by the transition of electron 2 from a to b. This term will give
the main contribution to (10), if the orbit of state a lies in deeper regions of the atom than those of
optical levels. This assumption can and shall be made for further simplifications; it is not in contra-
diction to the distinction of “inner’’ and ‘‘outer’ electrons, introduced in the beginning of this section
since this distinction demands only the smallness of the orbital dimensions of &, compared with those
of a. Omitting in (10) all terms, except the one with u=«, we find thus

Igb'mz [v’aa, ab/(Ea—'Eb)]./‘ua*(l) exp /L(krl) (nv gradl)uﬂ(l)dTl' (11)
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Instead of comparing the probability of such a double transition with the forbidden single transition
a—f, it is more convenient to compare it with that of the single transition a—g. Using (6a), we find for
their ratio

R= [T [*/[1s]*= |V aa, & |/ (Ea—Ep)* (12)

In a paper, recently published with Ross,” we gave an illustration of case (b), applying to the
continuum, observed on the long wavelength side of Kg; of molybdenum. Here the final state b of the
outer electron 2 has to be considered to lie in the continuous part of the energy spectrum, correspond-
ing to an ejection of this electron. Instead of a well-defined satellite, we get then a continuous band;
the separation of its short wavelength end from the parent line is given by the ionization energy of
the ejected electron. Neglecting the binding forces, acting on the ejected electron (which is a good
approximation except for the immediate neighborhood of the short wavelength limit of the con-
tinuum) we find from (12) for the relative intensity of the continuum lying within a frequency range

dv:

AR = (87mkadv/h(I .+ E)?) [& [ 1t (1)t 2)[ (1112) /72" Ja(1) €xp 4 (KaTo)d71d72]". (13)

In this formula the horizontal line refers to the averaging over the different directions of the vector
k, with absolute value

ko= (27/h) 2mE)*.

E=hva, g—hv— I, is the kinetic energy of the ejected electron with mass m, ., g the frequency of the
forbidden parent line and I,, I, the ionization energies of the initial states of inner and outer electrons,
respectively.

The details of the intensity distribution represented by (13) depend sensitively on the special shape
of the eigenfunction u.(2). As general features, we may mention: vanishing for E=0 (short wave-
length limit of the continuum) rapid approach of a maximum and slow falling off towards longer
wavelengths.

The ratio of the total intensity of the continuum to that of the line a—8 can be estimated to be of
the order of magnitude

SAR =(e*/ES) (ri/10°)%,

r; and 7, being the radius of the initial orbits of inner and outer electrons, respectively.

(14)

3. INTENSITY OF THE CU Ka SATELLITE state being probably conduction electrons. After
having removed one inner electron, the 3d elec-
trons have to be compared with those of Zn,
the element with the next higher atomic number;
their ionization energy, the first ionization poten-
tial of the doubly ionized Zn equals 40 e.v.10
Considering the 4s electrons in the metal as
practically free, it seems therefore plausible to
assume that Cu Keaj; is due to a previous excita-
tion of a 3d electron and emission of a 1s electron
and a subsequent transition 2p,4s—1s,3d.

As already indicated in the introduction, we

The general formula (9) for the intensity ratio
of a satellite to its strong parent line cannot be
evaluated without further assumptions. We want
to estimate its order of magnitude for the special
case of the satellite K«3 of the Cu Koy line, which
has been carefully investigated by DuMond and
Hoyt{® its separation from the parent line Koy
corresponds to an energy difference of about 35
e.v. The outer electronic configuration of Cu is of
the type (3d)'° (4s), the 4s electrons in the solid

9 J. W. M. DuMond and A. Hoyt, Phys. Rev. 36, 799
(1930). The following considerations shall be regarded as
an illustration of a possible double electron transition.
That they cannot claim general validity is shown by the
wo;k of Coster and Thijssen on one of the X satellites of
sulfur.

want first to show that the simultaneous excita-
tion of a 3d electron and a transition 1s— o hasa
considerable probability; in fact, the expression

10 Bacher and Goudsmit, Afomic energy states, page 525.



192 F.

(9) has to be multiplied by this probability in
order to obtain the true intensity ratio of satellite
to parent line. Let #y and u, be the normalized
eigenfunctions of one and the same 3d state in
Cu and Zn, respectively. Then the probability
that after having suddenly removed an inner
electron, the electron will still be in its original
3d state, is obviously given by

1—e=| Suy™*, wpd |2

e is then the probability that the electron is not
found in its original but in'an excited state since
all states with lower energy are occupied by other
electrons. For the estimation of ¢ we assume that
both states b’ and b can be described by hydro-
genic functions, but with different effective
atomic numbers Z* and Z’. We thus find for
I1=Z,n=3

e=1— [42*/2*/(2*/ +Z*)2]-7

Z* and Z* we choose such, that they account for
the observed ionization energy of 3d electrons of
Zn** and Cut respectively, the former being 40,
the latter 20.2 e.v.!! We obtain so

Z*=3(40/13.5)}=5.2, Z*=3(20.2/13.5)}=3.7

and e=0.2.

This means that for a specified one of the 10
3d electrons there is a chance of about 1/5,
that after having removed one inner electron we
will find it in an excited state. Excluding ‘the
possibility that more than one of these electrons
will be excitated, we have now to ask for the
probability of having any one of them excited.
Calling, for the moment, g the number of such
equivalent electrons, we find for this probability

P=ge/(g—1)et+1

or with g=10, =02, P=5/7. (15)

It is true that the assumptions which have led
to this result, especially that of hydrogenic eigen-
functions, can give only rough approximations;
nevertheless we may state that it is perfectly
understandable that there is practical certainty
for an outer excitation, the value (15) being
rather close to unity and therefore only a satellite
on the short wavelength side is observed. Of
course we cannot exclude the possibility of a

11 Reference 10, p. 180.
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corresponding long wavelength satellite, but in
any case we would expect it to be considerably
weaker than the one on the short wavelength
side.*

For the intensity ratio R of satellite to parent
line, we have now

R=P|Ig|*/|Is|

where in our case a stands for (2p), 8 for (1s),
a for (4s), b for (3d). Since we only want to
estimate the order of magnitude, we will leave
out all factors of order of magnitude 1, and using
(9), write R in the approximate form

R =(et/(Ea—Ep)?)[(r:)?/ (r0)* %,

where 7 is of the order of magnitude of the radius
of the 2p orbit, 7, of the order of magnitude of the
radius of either 4s or 3d of the doubly ionized Zn.
From the corresponding ionization energies, we
may assume

vi 200/8, Yo ‘éao/Z,

@, being the Bohr radius. Taking furthermore for
E,—E, the energy, indicated by the separation
from satellite to parent line, i.e., E,— E,= 35 e.v.
231, where I is the ionization energy of hydro-
gen, we find approximately

R=(1/8)4/9(1/2)5=1/576. (16)

This result is only about a factor 3 times smaller
than the observed ratio R=1/180, but it is
naturally very unsure, because of the high power
in which all possible errors appear. It shows,
however, at least for the case of the Cu Kas
satellite, that the observed intensity lies entirely
within the scope of the order of magnitude,
theoretically to be expected and makes it plaus-
ible that here, indeed, we are faced with an
emission by double electron transition.
—*_mar and outer excitation would always occur
together, the satellite corresponding to the transition
2p(3d)10—15(3d)%s

could of course not be observed, because the initial state
would never be realized. One may object that nevertheless
there should be a long wavelength satellite

24(3d)"—>15(3d)4s.

It seems plausible, however, that the removal of a second
(and even more so of a third, etc.) electron from the 3d
level should occur with considerably smaller probability,
so that this satellite should be expected to be quite weak.
Besides it should not be exactly opposite to the long wave-
length satellite discussed above.



