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Exact Solutions of the Schrodinger Equation
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In classical mechanics the problem of determining the
forms of potential function which permit solution in terms
of known functions received considerable attention; The
present paper is a partial study of the same problem in
quantum mechanics. A method is given for determining
the forms of potential function which permit an exact
solution of the one-dimensional Schrodinger equation in
terms of series whose coefficients are related by either two
or three term recursion formulas. The more interesting
expressions for the potential energy have been tabulated.
A correspondence is found between these solutions and
the solutions of the corresponding Hamilton-Jacobi equa-
tion. It is shown that whenever the Hamilton- Jacobi

equation is soluble in terms of circular or exponential
functions, the corresponding Schrodinger equation is
soluble in terms of a series whose coefficients are related
by a two-term recursion formula. Khenever the Hamilton-
Jacobi equation is soluble in terms of elliptic functions, the
corresponding Schrodinger equation is soluble in terms of a
series whose coefficients are related by a three-term re-
cursion formula. For the first case the quantized values of
the energy are found by restricting the series to a poly-
nomial and in the second by finding the roots of a con-
tinued fraction. A brief discussion of the technique of.
solution of continued fractions is given.

EXACT SOLUTIONS IN CLASSICAL MECHANICS

where r is the coordinate and x is a function of r
in terms of which the integration is simpler.
If the integrand is expressed as a radical divided
by a rational function of x, the degree of the
expression under the radical determines the kind
of function in terms of which the integral can
be expressed. If the expression is quadratic
in x, the integral can be solved in terms of
circular functions; if the expression is of the
third or fourth degree in x, the integral can be
solved in terms of elliptic functions.

EXACT SOLUTIONS IN QUANTUM MECHANICS

If rotation is neglected, the one-dimensional
Schrodinger equation has the form,

d'R/dr'+At E—V(r)]R = 0, (2)

where k=8x'rmc/II, B is the energy in cm '.
In order to obtain exact solutions of the

differential equation for many interesting forms
of potential functions, it is necessary to make a
transformation of the independent variable. If
the transformation x=x(r/p) is ca.rried out, the
result is:

N either classical mechanics or in the Bohr-
- ' Sommerfeld formulation of quantum me-
chanics, the solution of a problem involves
evaluation of an integral of the form:

1'L2m(Z —V) (dr/dx) ' jldx

d'x/dr'
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(dx/dr) ' R'+ R=O, (3)
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of which there is a solution of the form:

R=x~(1 x)~(a+x)&e "—&' '""Qa x" (5)

where W=kp'8 C =kp'U.
If dx/dr has the form x"o(1—x) "~(a+x)"2

the coeflicient of R becomes Ao/x+AI/(1 —x)
+A 2/(a+x).

The coeAicient of R is, except for a constant,
the same as the expression under the radical in
Eq. (1).

The problem of obtaining an exact solution of
the one-dimensional Schrodinger equation re-
quires the solution of a linear second order
differential equation. The methods of solution of
such an equation depend upon the number and
character of the singular points of the differential
equation. For the purposes of the present study,
six types of equations will be considered. These
six types are all special cases of a more general
equation. This more general equation is:
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TABLE I. Classification of equations.

TYPE CONSTANTS OF EQS. (4) AND (5) WHICH ARE ZERO REG. SING. PTS.

IRREG.
SING.
PTS.
2ND

SPECIES

IRREG.
SING.
PTS.
4TH

SPECIES KNOWN EXAMPLES

I A 2& 82& C2 Clay C3y C4& C6& Py C5& 6& 8
& 83&

A ly A 2& 8ly 82& Cly C2& C4& C6& C5& 6& 8& 83& Py

IIIa C3 C4 C6& p C5, ~, 8, 83IIIb» 4&

IVa A 2& 82& Cl& C2& C6& C5& && ~& 83&
c&

V A ly A 2& Bl& 82& Cly C
& C4& C5+2Pey By 83& P&

VI Al A2 8182 Cl C2 C4 P, y, C6, C5, 6

0, +j., ~
0

0, +i, a& —'1, ~
0, +1, a)+1, ~

0, +1,
0, —1,

0
0, oa

Hypergeometric
Con f. hypergeornetric
Lame

Spheroidal

Mathieu

The above table gives the essential charac-
teristics of the six types of equations. In the first
column is the number by which that type of
equation will be referred to; in the second

column are listed the constants of Eqs. (4) and

(5) which are zero for that type of equation;
in the third column the regular singular points of

the equation are listed; in the fourth column the
irregular singular points of the second species'
are listed, and in the fifth column the essential

singular points of the fourth species' are listed.

Many of these equations, or their special cases,
have been studied and named. These names are

given in the last column of Table I.
For the first two types of equation the re-

cursion relation involves only two of the a„'s.
For the other four types of equations the
recursion involves three of the a 's. For the first

five types of equation, there will be two roots
of the indicial equation, although it may be
that only one of the roots gives a solution satis-

fying the boundary conditions. For the sixth

type of equation, there will be at most only one

root of the indicial equation.

FORMS OF POTENTIAL FUNCTIONS PERMITTING

AN EXACT SOLUTION

From Eq. (3) it follows that if a differential

equation of a given type is to be a transformed
Schrodinger equation, one term in the coefficient
of R must have the form of a constant divided by
a function of x. If this constant is taken to be W

and the denominator set equal to p'(dx/dr)', a
differential equation is obtained which can be

' For a discussion of the "species" of an irregular singular
point, see Ince, Ordinary Digerential Equations, Chap. 20.

solved for r as a function of x and by inversion

for x as a function of r. The remaining terms in

the coefficient of R are then taken to be
—C/p'(dx/dr)'. By this method C can be found

as a function of r. A very large number of trans-
formations can be found but for many of them x
can be obtained from r only as a table of values.
In the table which follows, consideration is

limited to those transformations where x is

defined as either a power of r or as an exponential
function of r. In the adjoining table, the first
column gives the type of differential equation
considered, the second gives the constant which

is taken to be 8", the third gives the expression
for pdx/dr, the fourth gives the expression for x
as a function of r, the fifth column gives the
expression for the potential energy, and the last
column gives the reference for the cases that
have been investigated. ' For the sake of brevity,
the various constants in the expression for C

have been combined and the following substi-
tutions used: s = r/2 p, && = 1/x, » = 1/1 —x, w

=1/1+x, s= 1/a+x.
The first list includes the cases for which

valid solutions (for certain values of the energy)
can be found in terms of convergent series about
the origin. The second list includes those cases
for which it may be necessary to join solutions

about different singular points to obtain valid
solutions. In any case the solutions for potential
functions given in the second list must be
examined in detail for each special case. For the
potential functions which lead to Eq. III there

' Essentially this method has been used by Rosen to
determine the forms of potential function soluble in terms
of hypergeometric or confluent hypergeornetric functions.
Since these results have not been published, they are in-
cluded here for completeness.
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TABLE II. Potential functions pernsittint, exact solutions.

TYPE

I
II
II
Ir
III
III
IVa
IVa
V
V
V
V
V

IVa
IVa
Ivb
VI
VI
VI

Bp
BQ

p
C3
Bp
BQ
Bp
Bp
Bp
C3
Bp
C3

~2

B3

p,

C3
C3
B2
C3

~2

pdx/dr

—x
x(1—x)'
1
x'
—x—x
x(1 —x) &

—x
x,(1—x) '
x2
—x

1
X s

1/x
1

~1
xs
(x(1+x))-

1

~e—2s

sech' s
22

9

e
—2z

2$

sech' s
~e—28

sech' s
«2

2z

(3q)'*
2sv
28

&28
&82
sinh' g

2z

S2

28

K1X2v2+K2xv
Klx+K2X V

E1u+K2u'
K1Q+K2x
K1x+K2x'
Klx2v2+ K2x2s2+ (K3X+K4x2) vs
K1x+K2xs+K x v+K4x (1—x)s
K lx+K2X2+K3X2v+K4X2v2
K1x+K2X2+K3X3+K4v
K&u+K2X+Kgx'+K4X3
K,x+K2X2+K3X3+K,x4

K,Q3+K2Q2+K3Q+K4X
K1Q4+K2Q'+K3u'+K4Q
K1Q +K2Q+K3X+K4X2

K1Q2+K2Q+ K3v+ K4v2
K1Q+K2x+K3xv+ K4xv
K1X+K2x'+K3xm+E4u
K1u'+K2u+K3x+ E4x'
E1Q3+K2Q2+K3Q+E4X
K1Q4+K2Q'+K3u'+E4u
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will also be the cases when a is replaced by —u
and the case when a= —1. For the case a= —1
there is a possible transformation x = sech 2s for
which the corresponding potential function be-
longs in the second group.

If, in Eqs. I and II, the coefficient of R is
written over a common denominator, the nu-
merator is quadratic in x. By comparison of
Eqs. (1) and (3), it follows that whenever the
Hamilton-Jacobi equation is soluble in terms of
circular functions, ' the corresponding Schrod-
inger equation is soluble in terms of functions
characterized by a two term recursion relation.
If in Eqs. III, IV, V, VI, the coefficient of R is
written over a common denominator, the nu-

merator will be of the fourth degree in x. Hence,
it follows that whenever the Hamilton-Jacobi
equation is soluble in terms of elliptic functions, '
the corresponding Schrodinger equation is soluble
in terms of functions characterized by a three-
term recursion relation.

' In accordance with what has been said, it follows that
the classical solutions for the potential functions listed
here can be found in terms of either circular or elliptic
functions. The transformations of the form x=r" are dis-
cussed in the fourth chapter of Whittaker's Analytical
Dynamics, but the other transformations have received
little attention in textbooks on classical mechanics.

BOUNDARY CONDITIONS AND
'
METHOD OF DE-

TERMINING ENERGY LEVELS

The solutions for all forms of potential function
which lead to differential equations of the first
two types have been given in the literature.
It turns out that, for these cases, whenever the
total energy is less than the potential energy at
both plus and minus infinity, solutions satisfying
the boundary conditions can be found only for
those values of the energy for which the infinite
series reduces to a polynomial.

For the last four types of equation, the re-
cursion relation between coefficients has the
form

H„b„+g+1+M./b. = 0, (6)

where b„=a„/a„~ and II„and M„are expressible
in terms of the various constants and the running
number e. The convergence of such a series can
be tested by a method given by MacLaurin. 4

The esseritial feature of this method is the
assumption (which can be justified) that at
large m, b„+~=b $1+0(1/n)]. When this sub-
stitution is ma.de, Eq. (6) reduces to a quadratic
equation which can be solved for 5„. If one of
the roots of this equation satisfies the ordinary
convergence test, a series solution satisfying

4 MacLaurin, Trans. Camb. Phil. Soc. 17, 33 (1898).
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00=1——Qg
Qu

a o ~

Ql —1

1 —H]b]+g

where Q„=R 31 +i.
At sufficiently large n the asymptotic value of

b„can be substituted without appreciable error,
and the continued fraction terminated. For a
given set of constants in the potential function
and an arbitrary value of the energy, the result
found by carrying out the process of repeated
divisions and subtractions will not be zero but
will be a function of the value assumed for the
energy. This function will be zero only for
certain values of the energy —these are the
values of the energy for which the boundary
conditions are fulfilled. The problem of de-
termining these values must, . except for the
simplest cases, be carried out numerically. The
method used is similar to that used in finding
the roots of an algebraic equation of degree
higher than the fourth and consists of evaluating
the left-hand side of Eq. (8) for two values of W
and interpolating or extrapolating for a better
approximation to the value of W which makes
the left-hand side of Eq. (8) vanish. The process
can be repeated until the desired accuracy is
reached. The value of the continued fraction as a

the boundary conditions can be found for certain
values of the energy. For Eq. III, Eq. IV when
the range of the variable to from zero to unity,
and Eq. V the necessary conditions are fulfilled.
For Eq. VI and Eq. IV when the range of the
variable includes infinity, the series will con-
verge in only a restricted region and it is neces-
sary to use some method of joining solutions
which are valid about diAerent expansion points.

The series solution must satisfy two conditions.
There must be no terms containing negative
powers of x, . and at large n the ratio of two
successive coeKcients must approach the allowed
limiting value found by the method just de-
scribed. If Eq. (6) is written for @=0, the first
condition causes this relation to reduce to:

0= 1+Hp6] ~

By using Eq. (16) to solve for b, in terms of
Hi, Mi and b2 and then to find b2 in terms of
succeeding values of H, 3EI and b, the result is

function of the value of W has a number of
branches and when extrapolating or interpolating
care must be taken that the points used are all
on the same branch.

The form given in (8) is not always satis-
factory for numerical solution. By repeated
inversions (8) can be transformed into

Q-+i
Qm+~

1 0 ~ ~

m—2

1
1 ~ ~ ~

1 —
p

(9)

The values of the energy which make these two
expressions equal are the ones for which the
boundary conditions are satisfied. The best form
of Eq. (9) for numerical solution is when Q in
the numerator of the left-hand side is the largest
of all the Q's.

For Eq. VI it is necessary to expand about an
essential singular point. Detailed examination
shows that the boundary conditions at x=0 can
be satisfied only by so choosing the root (there
is only one) of the indicial equation that there
are at most only a finite number of negative
powers of x in the series expansion. The series
so found will converge for finite values of x but
will diverge at x equal infinity. If a similar series
expansion about x equal infinity is found it
will have the same properties in terms of 1/x.

By properly choosing the scale factor p the
continued fraction corresponding to the solution
valid about x equal infinity can be made the
same as the continued fraction corresponding to
the solution valid about x equal zero. For the
values of the energy obtained by'solution of this
continued fraction it will be possible to join the
two solutions at some intermediate point (say x
equal unity) and thus obtain solutions ~alid
throughout the entire range of the independent
variable, It may be pointed out that this method
is somewhat similar to that used for the Mathieu
equation which is a special case of Eq. UI.
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