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Simplified Theory of the Michelson-Morley Experiment

RQY J. KENNEDY, University of Waskington

(Received March 22, 1935)

It is shown that a correct application of Huygens principle in the theory of the experiment
leads to the same expression for the expected result as is derived in the simple classical theory.
The effect due to path difference is shown to be the same as the effect derivable from the
relative rotation of the interfering beams. Critics of the classical theory have mistakenly re-
garded the latter value as a compensating factor almost exactly offsetting the first.

~HE usually accepted theory of the Michel-
son-Morley experiment has been adversely

criticized in a number of papers, the first of which
apparently was that of Hicks. ' Since then Righi'
and Hedrick' have concluded that the effect is
not the accepted one, at least not for the so-
called "ideal" adjustment of the mirrors, while
Woempner4 and Cartmel' derive a third-order
expression for the fringe-shift. (By the order of
the effect is meant the degree of the ratio P of
the velocity of the system through the ether to
the velocity of light. ) The formulas derived by
all these writers involve factors which depend on
the adjustment of the apparatus. Righi, Hedrick
and Koempner suppose that the fringe-shift to
be expected in view of the difference in the times
required to traverse the two paths in the inter-
ferometer is compensated for by the relative
rotation of the two recombining beams, at least
in special cases. Their procedure seems to be
essentially that of computing the same quantity
approximately in two different ways, and then
mistakenly subtracting one result from the other.
They find that the position of the central fringe
is practically unaffected by rotation of the
apparatus, but wrongly infer from this fact a
null (or very small) effect for the experiment.
Oddly enough the third-order effects derived by
Woempner and by Cartmel seem to be in good
agreement with Miller's experimental data if
the linear velocity of the solar system due to

~ Hicks, Phil. Mag. 6, 3, 32, 555 (1902).
2 Righi, Comptes rendus, 1917, several papers. These

are summarized in English by Stein, Memori della Societa
Astronomica Italiana 1, 283 (1920).
.

- 'Hedrick, Conference on the Michelson-Morley Expt. ,
Astrophys. J. 68 (1928).

4 Woempner, unpublished manuscript.
~ Cartmel, paper presented at the Pittsburgh Meeting

of the Am. Phys. Soc., Dec. 27—29, 1934. Phys. Rev. 47,
333A (1935).

rotation of the galaxy is used in evaluating the
ratio P.

It was long ago demonstrated by Lorentz'
that a rotation of the interfering beams of the
magnitude actually occurring could not offset
the phase difference produced by the relative
lengthening of one path as compared to the other.
Contrary results have been reached by so many
other investigators, however, that it has seemed
worth while to attack the problem by a variation
of their detailed method with a view to reconcil-
ing it with Lorentz's beautifully simple treat-
ment. The present discussion is based almost
entirely on the careful application of Huygens'
principle to the reHection from the moving
mirrors. By this means the directions of the rays
in a reference system supposed Axed in the ether
are computed; from these directions it is a
simple matter to infer the courses of-the two
beams with respect to the apparatus, and the
fringe-shift (or relative phase change) which
would result from rotation of the apparatus. It
turns out to be unnecessary to compute the
lengths of the actual paths in the ether.

In the first place a simple demonstration will

be given of the relation of the angle of reHection

@ to the angle of incidence 8 (glancing angles)
of a beam of light falling on a mirror moving
with velocity v in a direction at an angle n with
the normal to the back of the mirror. In Fig. 1

is represented an element of the mirror of length
8s(=op). During the time Q between the arrival
of the wave front at o and its arrival at p the
point p of the mirror will have moved a distance
vbt=pp' to the position p'. Hence by the usual
argument it is evident that the reHected wave
front will be along gp', which is tangent to the

'Lorentz, demonstration restated at Conference, refer-
ence 3.
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fringe-widths simply the ratio of x to this width,
l.e. )

lp' cos 2p/tan 2(cog —a,) =—P' cos 2P. (3)
X/tan 2((v2 —(ug)

Now the wave fronts from mirror M2 are
indistinguishable from those from M2' except as
to phase, and from the elementary theory of the
experiment it turns out that the variable part of
this difference of phase is the distance between
M2 and 3E&' multiplied by (p'/X) cos2$. The
distance is l tan eo2 so the fringe-shift due to this
path-difference is (l/X) p' cos 2p tan co2,'because
of the factor tan cv2 this is evidently ignorable
in comparison with the shift expressed in Eq. (3).

The errors of the writers referred to are of two
kinds: they either confuse the central fringe
defined above with the axial fringe, and so infer
a null effect from the fact that the former is

practically stationary, or else regard the effect
computed above from the angular deviations of
the rays as but one component of the whole

effect, the other being the shift due to the
difference in the lengths of the two paths. By
computing the latter approximately (to the
second order) and the former to the third order,
one erroneously derives a third-order effect. It
is readily shown, however, that the to/al effect
is expressed in Eq. (3) which we have derived.
For the wavefronts in each beam are parallel

planes at fixed distances apart, two of which

intersect in a line (the central fringe established

by a hypothetical case) which is practically
fixed in the axes moving with the apparatus.
Hence their intersections, and the fringes formed
at them, are completely determined in position

by the angles between the wave fronts.
Hence the total effect to be expected in the

experiment is expressed in Eq. (3), which is the
same as results from the simple approximate
theory.

The same variation in phase exists in the

"ideal" case, i.e. , that in which the end-mirrors
are exactly perpendicular to the axes, although
then the approximate expression in terms of
fringe-width would not be valid and the fringes
would become indefinitely broad. Nevertheless
the method employed by the writer~ and
Illingworth, ' in which the phase-shift would
exhibit itself by unbalancing a split photometric
field, would still be applicable. In other words
the "ideal" case is special only in that the fringes
produced are too broad to permit direct visual
estimation of their positions.

The actual experiment, of course, deals with
cones of rays brought finally to a focus in a
telescope, instead of plane waves interfering on
a screen. The latter have been considered here
only because they have given rise to the whole
confusion. It is much simpler, paraphrasing
Lorentz, to treat the general case. The phase-
differences may be computed by the elementary
method in which the second-order differences in
direction discussed above are ignored for the
reason that such directional differences can only
produce errors of order higher than the second
in the result. For, if the approximate value for
the length of either path be lo while the actual
length is a function /(e', e2, e3) where the argu-
ments are the small angles (of the order of p')
between corresponding segments of the actual
and approximate paths, then on expansion of
the function we find for the error

Bl Bl Bl
l(Elp62)68) lo=E1 +E2 +63

Bc] c)6g

+terms involving higher powers of the e's.

But Fermat's principle requires that the path be
a minimum; hence the first derivatives vanish,
showing that the error involves only powers of

p higher than the third, and therefore ignorable.

' Kennedy, Proc. Nat. Acad. Sci. 12, 621 (1926).
Illingworth, Phys. Rev. 30, 692 (1927).


