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Theory of the Photoelastic Effect of Cubic Crystals
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The theory of Ewald and Born of the double refraction
of crystals is applied to the calculation of the photoelastic
properties of D lattices. Only in special cases, as for
instance in KC1 for pressure parallel L1117, is the effect
determined by the anisotropy of the Lorentz and Coulomb
forces. In these cases the photoelastic data determine the
ratio R~l/R~ of the ionic refractions. Satisfactory agree-
ment v ith all observations can be reached by assuming
that the elastic deformations produce optical anisotropy

of the atoms. Introducing this assumption in the Ewald-
Born theory leads to an explanation of the change of the
index of refraction with the density, and of the different
photoelastic properties of NaC1, KCl, CaF~ and diamond.
The photoelastic constants of other crystals are predicted.
It is shown that the "cavity" method of Lorentz and Bragg
gives the same Lorentz force as the theory of Born and
Ewald. The calculations of the photoelastic eEe=t by
Herzfeld arid Banerjee are in"orrect and incomplete.

F a cubic. crystal is subjected to a pressure
normal to a cube face, it becomes tetragonal,

and hence doubly refracting. According to Ewald'
and Born' the birefringence of crystals is due to
the anisotropy of the Lorentz-Lorenz force. In
ionic crystals the anisotropy of the Coulomb
forces is an additional cause of birefringence.
Taking into account both effects, Hylleraas'
calculated the optical properties of calomel,
rutile, anatas and quartz. For carbonates and
nitrates, W. L. Bragg4 developed a somewhat
different theory in which the birefringence is
primarily due to the optical anisotropy of the
CO3 or NO3 groups.

The success of these theories gives reason to
anticipate that they could also explain the
accidental double refraction of cubic crystals.
We shall show that, in general, this expectation
is not justified. Neither Ewald-Born's nor Bragg's
theory can explain the photoelastic behavior of
cubic crystals, except in some special cases.
This conclusion has been reached previously by
Herzfeld, ' Herzfeld and Lee, and Banerjee. ' It
will, however, be demonstrated here that Herz-
feM's papers contain a numerical error and that
Banerjee's method is wrong. Hence their results
are not conclusive.

P. Ewald, Thesis, Munich, 1912; Ann. d. Physik 49,
1, 117 (1916).' M. Born, Handbuch der Physik Vol. 24, p. 770.' E. Hylleraas, Zeits. f. Physik 36, 859 (1926); Zeits. f.
Krist. 65, 469 (1927).

W. L. 8ragg, Proc. Roy. Soc. A10S, 307 (1924);
A106, 346 (1924).' K. F.Herzfeld, J.Opt. Soc. Am. 17, 26 (1928); Herzfeld
and Lee, Phys. Rev. 44, 625 (1933).' K. Banerjee, Ind. J. Phys. 2, 195 (1927).

In a previous paper the writer7 has shown that
a third cause of the photoelastic effect must be
considered. A deformation of the lattice changes
the energy levels and transition probabilities of
the optical electrons, and hence alters the re-
fraction of the atoms. This effect is a generaliza-
tion of the results of Fajans and Joos' who
showed that in crystals the refraction of the ions
are usually smaller than in solutions. We assume
that a decrease of the lattice constant reduces
the refractions still further. But, contrary to
Fajans and Joos, we do not believe that this
effect is due to the Coulomb forces between the
ions. The effect exists also in homopolar crystals.
It is caused by a change of the charge distribution
or the binding of the optical electrons. It can be
considered as produced by the repulsive forces
between the atoms' and depends primarily on the
arrangement of, and the distances between
nearest neighboring atoms.

In photoelastic experiments the lattice dis-
tances parallel to the pressure are decreased, and
the distances normal to the stress are increased.
This gives rise to an anisotropy of the atomic
refractions.

By taking into account all three effects we
are able to give a satisfactory explanation of
the observed photoelasticity of simple cubic lat-
tices.

z H. Mueller, Physics 6, 179 (1935).' Fajans and Joos, Zeits. f. Physik 23, 1 (1924).
'The possibility that the repulsive forces may deform

and even polarize an atom, giving rise to negative polar-
izabilities, was discussed by Heckmann, Zeits. f. Krist.
61, 250 (1925).
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CLASSICAL THEORY OF PHOTOELASTICITY

The phenomenological theory of photoelas-
ticity of crystals was developed by F. Pockels. "
The theory assumes that the elastic deforma-
tions, and not the stresses, are primarily re-
sponsible for the birefringence. The behavior of
cubic crystals is characterized by three elasto-
optical constants Pll, pl~, P44, which for the
purpose of our calculation are best defined as
follows:

A simple strain s, in the direction
I 001]

produces uniaxial birefringence and we have

normal to an octahedral face. This is the case for
NaC1, KC1 and the alums; but, for CaF2, p44 is
positive. A satisfactory theory must be able to
account for these reversals of sign.

The comparison between theory and observa-
tion is simplified by introducing

Pg=n'P13(n' —1) '= —2n(n' —1) 'dn, /der,

Ps=n'P»(n' 1) '—= —2n(n' —1) 'dna/der

p'= p, =2n4p33(n3 1)
—'—

= —2n(n' —1) 'dn, /dx, ',

S S —2R Pl2Z

n, n, = ',—n'(p„—-p„)s,
n is the index of refraction of the undeformed
crystal, and n, and n, are the indices for light
whose electric vector oscillates in the direction
parallel and perpendicular to the strain.

The combination of a strain x, 1n the direction
L110] and a strain y„'= —x,' in the direction
L110] represents a shear x„=2x, ' and produces
biaxial birefringence with the axis of the index
ellipsoid in the directions x'= L110], y'= [110],
s'=L001]. Then

P =P,—P, =n'(Pig —P3.)(n' —1)—'.

THE EWALD-BORN THEORY OF THE LORENTZ-

LDRENz FQRcE

We consider a lattice with only one atom at
the corners of the elementary cells, Each atom
carries a charge e=1, and a continuous charge
distribution of constant density p = —1/6 com-
pensates for the discrete charges. 6 is the volume
of the elementary cell, which is determined by the
three vectors al, a2, as. The position of the atoms
is given by the vectors r' = l ill+ l2a&+l3c3.
Except at the points r' the electric potential 11

satisfies everywhere Poisson's equation
n, =n+An, n„r=n —An, n, =n, and

An = n'p„x, '. (2)—
and has the value'

Af =43r/6

The "Cauchy relation" P44 ——
3 (P» —P») holds

only for amorphous solids. For hydrostatic pres-
sure, for which x, =y„=s,=dU/3 U= —d p/3p,
where p is the density, the index of refraction
changes by

where

$ = |Pr+ |P3,

dn= —-', n'I P33s,+P33(x.+y„)]
= (p»+2p&3)n'd p/6p. (3) 4= ~G(3 I

"—r
I )/I" —r

I

—3r/"~
(6)

If pll —pl2&0 a pressure normal to a cube
face produces positive birefringence. This is the
case" for KC1, KBr, KI and NH4I. pll —pl2 is
negative for NaC1, CaF~, NaF, ZnS, diamond,
Al- and NH4-alum. If P44 is negative, the crystal
shows negative uniaxial birefringence for pressure

"F.Pockels, Wied. Ann. 3'7, 151 (1889); Lehrbuch der
Eristal/Physik, Leipzig and Berlin, 1906.

"Johnson, ¹ues Jahrbuch fur Mineralogy, 1902, Vol.
II, p. 146.

j=& ( —1), 3 is an arbitraryparameter; g'=23r(l&b&

+4b3+l3b3), where b3 = La3 Xa3]/6, etc. , are the
vectors of the reciprocal lattice; G(x) = 1
—23r lJ3'e "da; and the summations are to be
taken over all combinations (l&, l3, l3), excepting
(0, 0, 0) in the summations Z'.

Let us now consider a second lattice, geo-
metrically identical with the first, but each
lattice point carrying a charge e= —1 and dis-

placed by a vector dr with respect to the atoms
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of the first lattice. At the point r the second
lattice produces a potential P*= —P+ (d r grad P) .
Since the continuous charges cancel each other,
the two lattices together represent a lattice of
dipoles with the moments p= —dr. Their po-
tential is &=/+AD*= —(p grad f). In order to
find the field due to all other dipoles acting on
the dipole at the origin, one subtracts the field
of this dipole and gets the potential
—(p grad p), ll =p —1/r We .consider now the
simple case, where all dipoles are parallel to the
applied field E,. The total field acting on any
dipole is the Lorentz-Lorenz force

F,=E, (dy/dx) —
p E,+y,——(r7'P/Bx') p

=E.+ 4xL.P., (7)

where P, =p, /5 is the polarization, and where
we have introduced the "Lorentz factor"

L,= (6!47r) (O'P/Bx') p

From (5) it follows that L,+L„+L,=1, and
hence for a simple cubic lattice" L,=L„=L,
= 1/3.

For a simple tetragonal lattice, where a~=a2
/a3, we have L,=L„, L,=1—2L . The nu-
merical calculation is conveniently carried out
for L —L,. Choosing ~=m '6 "we get

L*-L-= -2'(Q*-Q*)Q-'-p (-Q)
+P'(R, —R,)(3/2R+1)R ' exp (—R)

+(3s.l/4) Y (R, R,)R "'G(Rl—), (9)

where.

Q= Q, +Q„+Q,= 7r&*'(lg'/a, '+lp'/ap'+l, '/ap'), ,

R=R +R„+R,=s.h l(l~'ai'+lp ap'+lp'ap').

All the series in (9) converge very rapidly. The
values of L, and I., depend only on the ratio
Gp/Gr.

The results in Fig. 1 show that for ap/a~)2
they can be represented by the approximation
I.,=1—2L, =1—0.72 ap/a~. For ap/a~)1. 4 and
for ap/a&(0. 6 one Lorentz factor becomes nega-
tive. Hence in many crystals the interaction

"The same derivation of the factor -', can also be used
for a random distribution of atoms, Another derivation
by Darwin, Proc. Roy. Soc. A146, 17 (1934).

FIG. 1. The Lorentz factor for simple tetragonal lattices.

Lx=LII 3+SxSzi Lz= 3 isz~z

and we must have 2s,+s, =0.

(1o)

(11)

The differentiation s, =dL, /ds, leads to com-

" In these cases Havelock's assumption (Proc. Roy.
Soc. A80, 31 (1908)), which replaces Lorentz's spherical
cavity by an ellipsoid, cannot hold. Negative Lorentz
factors can be used to explain the fact that the anomalous
dielectric properties of Rochelle salt occur only for fields
in direction of the a axis (H. Mueller, Phys. Rev. 47,
175 (1935)).

"W. A. Wooster, Zeits. f. Krist. 80, 495 (1931).

between the dipoles does not increase, but de-
creases the polarization. "

If ap/a&(1 the crystal is a chain lattice. For
light oscillating parallel to the chains the I
factor is larger than for light oscillating normal
to the chains. Hence chain lattices show positive
birefringence. On the other hand, for layer
lattices, where ap/a~)1, the L factor is small
for light oscillating normal to the layers and the
birefringence is negative. The observations verify
these rules for arbitrary layer and chain lattices. "

In the problem of photoelasticity of cubic
crystals we are interested in the values'of L and
L, for a lattice which differs only slightly from a
cubic lattice. A strain s, produces an axial ratio
aq . ap .'imp=1: 1: (1+a,) and the I. factors
differ from -', by small amounts; hence
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plicated expressions. Much less numerical work
is involved in calculating the difference quotient
s, = IL,(1+s,) ——',I/s, . By choosing s, =0.01 we
obtain sufficiently accurate values. Thus we get
for simple cubic lattices L„(1.01) = 0.33832,
L,(1.01) =0.32333, and hence s, =0.499, s, =
—1.000. These values agree with Herzfeld's
results s, =0.501, s, = —1.01, which are calcu-
lated from Madelung's lattice potential. From
Banerjee's calculation we derive s, =0.5045, s,
= —1.0090.

THE LORENTZ-LORENZ FORCE IN STRAINED

D LATTICESS

If the elementary cells contain several different
atoms at the positions r;, rA, , etc. , carrying the
moments pA, „one must find the field of all other
dipoles acting on an atom i. This leads to the
Lorentz factors L;~, and the Lorentz force"

F;,=F,+4z+L, I.„Pg, , -PI,„@jr,/5 ——(12).

If the elementary cell is orthorhombic, one
finds by choosing again e= 7r:6 &

R are defined by (10) and Rfp=R;& +R;z„+R;&,
= ~&-*[(&ioi—x;~)'+ (4~p —y;~)'+ (4~p —

s; )p']
where x;I„y;I„z;& are the components of the
vector ri~ r; —r—~.—From (5) it follows that for
all indices ik

L;I„.,+Lip„+Lip, ——1. (15)

These equations serve to calculate the Lorentz
factors for elastically deformed diagonal lattices.
For undeformed D lattices (15) leads to ZL;q, Pq

3I „and the Lorentz-Lorenz equation is valid.
To determine the L factors for any D lattice
which is deformed by a strain s, =0.01 or a shear
x„/2=x, '= —y„'=0.01, it is only necessary to
carry out the calculations for the three ortho-
rhombic cells shown in Fig. 2. The symmetry of
these cells requires that for fields parallel to the
edges of the cells all dipole moments be parallel
to the electric field. Hence L;~„.,„——0, excepting
L;I„,——Li~ . For reasons of symmetry L;.L„——LL,i,
and there are a large number of relations between
the 48 L factors given below. "

Since for an undeformed D lattice F=E
+4rrP/3, we write for a lattice deformed by a
strain s,

L„;,= (6/47r) (O'P/Bx') p

= —,
' —2'Q.Q-' exp ( —Q)

+P'R„R ' exp (—R)

+2+'(3R,R ' —1)R ' exp (—R)

+(vrl/4) P'(3R.R ' —1)R 'G(R+*'), (13)

Lg„= (6/4m) (O'P/Bx') ...
= —Z'Q*Q ' exp [ Q+i (~i'r'p)]—

+JR;p,R;I„. ' exp ( R;(„)—.

+—'Q(3R;g, R;p ' 1)R;Ir ' exp ( —Rg,'l-
+(7r-'/4) p(3R;.,R ). ' —1)R I„~G(R;k+l), (14)

and analogous equations for L;&„and L;&,. Q and

F,,=Z,+(4x/6) Pnkpg, .(-,'+s;p,s,). (16)

For a shear x,' = —y„' =x„/2 we write

F„;=8,+(4m/6) Png pg. (-,'+s;I„., x,'). (17)

"There are 16 relations due to Eq. (15). For cell A
there exist 10 obvious equalities Lil, =Li», 3 relations
ZI,L1I„=8L1, and 4 relations with the results in Fig. 1,
as, for instance —,'(Ln +L12,+L13g+L44 ) L (2.02). Similar
relations exist for cell 8 and C, and there are 8 relations
connecting the results for different cells. In the calculation
we have not made use of any of these relations. The fact
that all are satisfied shows that the errors cannot be
larger than 0.0001. In the summations terms smaller than
0.00002 were neglected. All series converge very rapidly.
We find the "Lorentz factors" given in Table I.

TABLE I. Lorentz factors. In cell A we have a1. a2. a3=1:1:1.01, in cell 3 a1 . a2 . a3=1.01:0.99:2-', and in
cell C a1 . a~ . a3 ——1.01:0.99:2 ..

Cell A Cell 8
* In Born's diagonal or D lattices the atoms of the

elementary cell are located on the body diagonal of the
elementary cube. The face- and body-centered cubic
lattice, and the lattices of diamond, NaC1, CsC1, CaF2
and ZnS are D lattices.

's In the general, case, the dipole moments py„. are not all
parallel to the applied field and the Lorentz force is
I';, =E +47f ZI Z„L;I„„P». We consider here only such
cases where the symmetry of the crystal requires that
L, I,-xy

——0 for x&y.

ik L;fx
11 0.3383
12 2.7528
13 —.8710
14 . —.8340
15 .3286s
16 —.3509
17 .6634
18 .6837s

Li»
0.3383—.87 10
2.7528—.8384
.3286s
.6634—.3509
.6837s

0.3233—.8818—.8818
2.6768—.3427

.6875

.6875—.3675

iA' Li Irx Li»
11 0.4858 0.5258
12 .1689 .1530
13 —.2716 —.2584
14 .9637 .8996

Cell C
11 0.1077 0.1337
12 .5664 .5262
13 —.5359 1.1866
14 1.1706 —.4882

LiI s
—0.0116

.6781
1.5300—.8633

0.7586—.0926
.3494
.3176
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TABLE II. Change of Lorene-factor with deformation.

I I
I

I
I

I

,().@ (

CHYSTAI
TYPE

S11$ S11w 0.50
Sllz —1.00
S12s S21y
S12g
Sllz S11y
S12z'

&C' NaCI CsC1

0.50—1.00—.47
.94
.88—1.58

0.08 0.01: 0.08—.06 —.o8 —.o6
.97—1.94—.60 —.62 —.60

1.26

ZnS

0.08—.06—.47
.94—.60—1.58

CaFS DI

0.08 O.5O —O.22—.06 —1.()0,44—.47 —.47
.94 .94—.60 .88 —1.09—1.58 —1.58

g
2

~

l

~R

FrG. 2. Orthorhombic cells.

nl, is the number of atoms of the kind k within
an elementary cell. Replacing again the deriva-
tive by the difference quotient, we can now
calculate the factors s;I, , s;I„.„s;A,etc. The cell A

gives the factors s 2, for the simple cubic (SC),
body centered (BC), and face centered (FC)
cubic lattices, and for the lattice types of NaC1,
CsCl, ZnS, Caf 2 and diamond (DI). The cell 8
furnishes the factors s;1„ for (SC), (FC) and
Nacl, and cell C gives these factors for (BC),
CsC1, ZnS, CaF2 and DI. For instance we get
for the NaC1 lattice

sllg= slly 100 I 4 (Lll +g1L6 +g1L7*+ 113g) 4 3 j y

slyg —Sylg 100 j —,
' (L12,+I 13g+L14g+L15g)4 3 j y

sllg = S22„' = —Slly' = 100 I 2 (Lllg+L12g)B 3 },

$12gi $12y&4 S21, ——100 I -, (L13g+L14g) 11 3 j

displacements" which occur for shear in ZnS
and CaF2.

These values agree neither with Herzfeld's nor
with Banerjee's results. Comparison with Herz-
feld's notation shows (his Eq. (12)) that his
values a. and P give for the Nacl lattice

s11-.—— 0.585 ——,——0.082
s12 S

———1.248 ——,= —1.915
s»~ —— 0.081 ——', = —0.586
s12,—— 2.255 —

3 = 1.588.

s11, and s12, are in fair agreement with our values,
but s» and s», are not. Since Poisson's equation
requires s», ———2s», and s», ———2s»„Herz-
feld's values of s» and s12 must be wrong. "
Herzfeld's calculation is marred only by a
numerical error, whereas Banerjee's method con-
tains a fundamental error which is discussed in
the next section.

BRAGG s THEQRY oF THE LQRENTz-LoRENz
FoRcE

Bragg's method is based on the classical pro-
cedure of H. A. Lorentz. One considers a spherical
or cubical boundary around the chosen atom.
The solid outside the boundary is considered

Similar expressions give the s;A, for the other
lattice types. The symmetry of all lattices re-
quires s;& ——s,» and s;&, = s,l„and from —(15)
it follows that s;I„———2s;I„-, and s;~, ——0. For
NaC1, CsC1, and ZnS we have evidently s»,
=s22„but for CaF2 this is not true. '

The factors s;I„and s;I„~ in Table II determine
the change of the Lorentz-Lorenz force produced
by. a uniform strain or shear. Our calculation
does not, "however, take into account the "inner

"For CaF2 the first column in Table II refers to Ca,
the second to F.

'8 These displacements, which give rise to the piezo-
electric effect and invalidate the Cauchy relation for the

elastic constants, complicate our problem considerably.
They lead to L,k„,WO. We neglect this effect, because the
magnitude of the displacernents is not known.

"The relation between s;I„- and a, p was communicated
to the writer by Professor Herzfeld. Professor Herzfeld
agrees that his values, —0.081 and 2.255, . are incorrect.
He has asked me to call attention to the following correc-
tions to his paper (J. Opt. Soc. Arn. 17, 26 (1928)):The
first formula on p. 31 has the wrong sign and is incomplete.
(The corresponding equation in the appendix is almost
correct. ) The factor 3 in the next formula should be
omitted. In the second equation in the appendix, (3+1)
should be replaced by (3+&) and, in the first formula on
y. 36 some coefficients are wrong. A recalculation, carried
out by Dr. M. Goeppert-Mayer, gives, for stress parallel
to the field, n= —0.590 and p=1.276. Using Poisson's
equation, this gives for stress normal to.the field a = —.706,
P = —1.638. These new values give s11,=0.039, s12, =0.971,
s11 = —0.077, s,2, = —1.943. They are in good agreement
with our values, which have an accuracy of &0.01.
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continuous matter, and one adds to the field of
this polarized continuum the field of the dipoles
within the boundary. Banerj ee6 applies this
method in the following manner. He considers a
cubical boundary. The field of the continuum is
then 4sP/3 and the field of the dipoles within
the cube is F '=3+u;,xP'/r, ' Pp;, /—r . In the
undeformed state the latter vanishes for D
lattices. Deformation due to a strain s, changes
the coordinates of each dipole from x;, y;, s; to
x;, y;, s;(1+s,) and the field of the dipoles
within the boundary can be developed in powers
of s,. In first approximation

F,'=s, [3+p;.s /r„' 15+@;—,x, 'z /rP],

F,'=s, [3+p„„s /r, ' 15+—p; „y s,'./r ],
F,'=z„[9+@;,s,2/rP 15+p;,z;4/—r r].

Banerjee calculates these sums for the NaCl and
CaF~ lattice. His results can be written F&,'

=8s,& 'tBn, p~, +B~2,p2, ], where the B;~, are
the numerical values of the finite lattice sums.
Since these sums contain only the coordinates of
the atoms in the undeformed state, Banerjee
extends the summations over a cube. But this is
wrong. The atoms which are within a cube in
the deformed state, are not within a cube in the
original state. In other words, Banerjee does not
calculate the field of the atoms contained in a
cube of the deformed crystal, but of the atoms
within a rectangular box with the dimensions
A, : A„:A.=1:1:(1+s,). Hence the field of
the continuum is not F"=47rP/3 but

F,"=4P, sin ' {2A,A„A,(A,'+A„'+A, ')'*/

(A.'+A„') (A,'+A 2) I.

This gives, in first approximation

F,"=4~P,/3+4P, 3
F."=4 Ps./3 8P,3 's. —

and the Lorentz-Lorenz forces are therefore

F. —g +F. ~+F ~1

=E,+47rh 'Qnl, pl„

XL-'.,+s,(2B;s,s. 'ng '+~ '3 '*)],

F, .=Z,+F,.'+ F."
=E,+47rh 'Qnppg,

XP, +s.(2B;p.vr 'ng ' 2X3-'*s ')]—

Comparison with (16) gives

s;(„——2Bg„,/7rng+3 '*7r ',

s;~r. =2B;~,/7rnA. , 2—X3 '~ '

and we can calculate s;I„-„from Banerjee's value of
8;~.. For NaCl we get, since nI ——n2 ——4

s», = —2s~~, =1.9005/2s —2X3 *'7r '= —0.0651,

sq2„-= —2si2~= —9.9613/2s —2X3 'vr '

= —1.9529.

For CaF2, where n~ ——4, n2=8,

spy „.———0.0651,

s22z = —2sg2z

= —8.0608/4vr —2X3 '~ '= —1.0090

s~~,. ———2s~~~ ——1.6.4904,/'4m —2 X3 &m '=0.9447.

In Banerjee's paper the terms 2&3 'm ' are
neglected "

The agreement between these and our previous
results shows that the Ewald-Born and the
Lorentz-Bragg methods are equivalent.

THE ANlsoTRQPY oF THE CQULQMB FoRcEs

In an ionic lattice the potential of an atom i
due to the charges s~e of all the other ions is
V, =s;~p(0)+op's&1t(r~) e is the positive value
of the electronic charge and sA, is the valence of
the ions k. The equilibrium condition demands
(grad U')0=0.

Under the inHuence of a light wave oscillating
in the x direction the atom i becomes an oscil-
lator. With Born' we make the assumption that
the oscillator can be considered as a vibrating
"electron" with the charge f,e The —forc. es
acting on this electron are the binding force of
the atom i, the Lorentz force of the light wave,
and the Coulomb forces of all other ions. If the
electron has a displacement u; from its rest
position, the Coulomb field is

F;,' = —(O' /V8 )xuO;, =

eu;.[s,(B—'P/Bx') 0+ Qsi, (B'rP/Bx') „,].
igk

"It is surprising that, in spite of this large error,
Banerjee finds reasonable results. This is probably due to
his questionable method for calculating the refractive
index (Banerjee's Eq. (6) and (8)). We have not succeeded
in correcting his calculations for shear.
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In a D lattice it follows from (15) that (fl'P/&x') p

= (pl'P/plx'), „=4~/3D and hence F; '= —pu; 4pr/
3A Pz&=0 because of the neutrality condition.
Hence the Coulomb forces do not inHuence the
refraction of D lattices.

In an elastically deformed D lattice, we get,
using (13) and (14) F; '= —4~pu;, 5 'Pz~L;k, .
Since u;,f—,p= p;„Q zp=0, this can also be
written

CRYSTAL pdn/dp —(1/a) dn/dt (n2 —1)(n"-+2)/6n Xp

NaC1
KC1
CaFg

0.304

.251

0.305
.30
.22

0.656
.576
.498

0.536
.48
.50

p dn/d p —(n' —1)(n'+2) (1—Xp)/6n

Xp
——Q);n,R;/Qn;R;.

The data in Table III show that Xo has, within

TABLE I II.

F;:=4~@„,z, (f;6) 'Pzgn,—s;p.. .

Analogous equations hold for F'; „F';..= —F';„.
In amorphousr solids all s;~,= 1/15, s;~, ———2/15
and hence, since Pnpz~ ——0, Coulomb forces have
no influence.

INFLUENCE OF HYDROSTATIC PRESSURE

Hydrostatic pressure does not change the
symmetry of cubic crystals. Since x,=y„=z, it
follows from (15) that the Lorentz factor is 1/3
and the Coulomb forces have no inHuence. This.
supports our previous statement that, in cubic
crystals, the change of refraction is not due to
the Coulomb forces, but is caused by a change
in the binding force of the optical electrons.

The Lorentz-Lorenz equation must therefore
be valid for hydrostatic pressure and should
determine the change of the index of refraction n
with the density p. Pockels" has calculated
dn/d p from photoelastic data, using (3), and
has shown that for NaC1, CaF2, and probably
also for KC1, it has practically the same value as
—1/n dn/dt, where n is the coefficient of tem-
perature expansion. But the observed increase
of n with density is considerably smaller than
the value given by the Lorentz-Lorenz equation.
This equation can only be reconciled with the
observations if we assume that a compression
reduces the polarizabilities of the atoms. We
must assume that a change of volume AV in-

creases all refractions R =R;(1+X;6V) and
get then

the accuracy of the data, the same value for
NaCl, KC1, and CaF2, and differs but little
from the value' 0.4 found for glasses.

OPTICAL AN ISOTROPY OF THE. ATOMS

It is natural to assume that in unstrained D
lattices all atoms are optically isotopic. Since a
hydrostatic pressure alters the refractions, a
strain will produce optical anisotropy of the
atoms. A distortion of the lattice produces a
deformation of the atoms. We must assume a
linear change of the molar refractions Rf„or
the polarizabilities nj„with the strain. If A is
Avogadro's number, we have

Rk, 47rAni„/3 =——Rg„——Rp(1+Kg,z,),
(20)

Rk, = 47rA cp,-. ,/3 =Rg(1+Kg,z,).

For a shear we must assume

Rg, ——Rg(1+Kg, x,'), Rp„=Rp(1+Kg„.x,').

The change of the refraction due to hydrostatic
pressure is determined by X;=-', (X;.+2K; ).

CALCULATION OF THE PHOTOELASTIC CONSTANTS

Under the influence of the Lorentz and
Coulomb forces the atoms i acquire the dipole
moments p;, =n;, (F; +F;,'), where n;, is the
polarizability for the frequency of the lightwave.
Introducing the expressions from Eqs. (16), (18)
and (20), we get a set of linear equations for
the moments p;,

p, ,=3R,(1+X;;„)A '[E,/4~+6 'Pn—~pg, (-'„, +s;~,z.)+p;,z,(f 5) 'Pz, ~nps;~, j

From their solutions we determine

(n, ' —1)/4x=P. /E, = Pnkpg ,/E, . .

For s,= 0, one finds the Lorentz-Lorenz equation
(n' —1)/(n'+2) = PnqRI, /AD. Differentiation of

(21) (21) gives, according to (4), P„and in the same
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way one determines p, and p, . In differentiating
we must take into account the fact that a strain
z, changes the volume 6 of the elementary cell.
The final result can be written

P'= Po+P*'+P:+P*"

p. =pp+p '+p '+p="

pl +pc +pal

(22)

pp is due to the change of the density

pa
——(n'+ 2) /3 (n' —1) .

p,. ~ = —Ps„~„,n;nI,.R;R. k/(Pni RL) ', (24)

p, ' gives the effect produced by the Coulomb
field of the ions

p, '= —QR 2n;f; 'Pn~s~s, ~,/(PniR~)-". (25)

This term is responsible for the fact that p~~ and

p» always have positive values. p, is due to
the anisotropy of the Lorentz force

The shear constant of photoelasticity is given

by
p'=p' +p"+p' (29)

where

p' =p~;; p"=p' ~; p' = —V(n'+2)/3(n' —1);
X' = Q-', (X;, X;„—)n,R,/Qn, R;

Eqs. (27) and (29) represent our final result.
They give p and p', which, according to (4), are
proportional to the elasto-optical constants.

pll P12 2XC1/n (sll sin) q

p44
——'2XC2/n's44

CQMPARIsoN WITH ExPERIMENTAL REsULTs

In the experiments the accidental birefringence
is measured as a function of the applied pressure.
If C is the difference in optical path of the
ordinary and extraordinary ray produced by a
pressure of 1 dyne/cm2 directed normal to the
light path of 1 cm length, then

where
p,"= —(n'+ ~)X,/3 (n' —1),

X,= Qlj. ;,n;R;/Qn;R;.

(26)

Equations analogous to (24), (25), (26) give

p,~, p~, , etc. Finally we write

p= p p*=p'+p'+—p" (27)

where, since for all D lattices s;/„= —2s;~„p~
= —3p p'= —3p ' p"= —X(n'+2)/3(n' —1)
X= X —X . Xp, which determines the change of
refraction due to hydrostatic pressure, is

Xp ——-', (X,+2lj.,). (28)

If the refraction of the atoms i is represented by
a set of oscillators with the refractions R;~ and
strengths f;~, one must substitute R,'/f;= QR;P/
f, t, , R;= JR;&. p," is the contribution of the
optical anisotropy of the atoms due to strains

Here ) is &he wavelength of the light, siA-, are
Voigt's elastic moduli, and C~ and C~ refer
to pressure normal to the cube and octahedral
faces, respectively. If the pressure is normal
to a dodecahedral face, one gets" C3=C2, C4

2 (Cl+ C9), where C3 and C4 are for light normal
to dodecahedral and cubic faces, respectively.
Only determinations of C for small pressures
have a physical significance. Large pressures
produce translation gliding and lead to irre-
versible effects."

Reliable determinations of all the quantities
C;, si& and n are available only for NaC1, KC1
and CaF2."They refer to sodium light and give
for NaCl p = —0.124, p' = —0.065; for KCI
p=0.179, p'= —0.182 and for CaF2 p= —0.653
p' = 0.179.

For crystals of the type NaC1 the theory
gives

p=(R,+R,)—'L009(R '+R2')+5.82R,R,+2.82s(R &f, R2'/f2)] —X(n —+2)/3(n —1), (30)

p' = (R,+R,)—'L0.60(R,'+R.') —2.52R&R~ —1 86s(R, '/ f, —R.2'/f 2)]—X'(n'+ 2) /3 (n' —1). (31)

"Pockels' data verify these relations, but Banerjee's
data give slightly different results. According to our
theory we must expect deviations from Pockels' theory,
because the X;, are not components of a simple tensor.

"The results of Maris, J. Opt. Soc. Am. 15, 194 (1927)
are probably due to this eKect. This is shown by Ritzel,
Zeits. f. Krist. 52, 275 (1912).

"The values for NaC1 are averages calculated from the
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The index 1 refers to the negative ion, and s is
the valence of both ions.

Under a pressure normal to a cube face the
NaCl lattice approaches the structure of a chain
lattice. Consequently the inHuence of the Lorentz
force given by the first two terms of (30) pro-
duces positive birefringence. The next terms are
due to the Coulomb forces. The negative ions
give a positive contribution because they are
surrounded by positive ions which attract the
optical electron. A pressure increases this attrac-
tion in the direction of the stress, and hence this
gives rise to positive birefringence. For the
positive ions this effect is reversed, but, since in
most cases R~)R~, the net effect of the Coulomb
forces is a positive double refraction. Hence in

every case the Born-Ewald theory gives positive
birefringence for any NaC1 lattice compressed
normal to a cube face. The fact that sodium
chloride shows negative birefringence shows

clearly the importance of the optical anisotropy
of the atoms due to pressure. We conclude the. t
p is the difference between two large terms of
equal magnitude, and this explains why it is

always small for NaC1 lattices, and why it can
be positive or negative.

For pressure normal to an octahedral face the
Lorentz force gives either a small positive or a
negative effect. But the Coulomb forces and the
anisotropy produce negative birefringence, and
hence p' is always negative for NaC1 lattices.

A quantitative test of the theory requires the
values of R and f The ion. ic refractions are
known with a satisfactory degree of accuracy.
However, very little is known concerning the
strengths f; of the oscillators. Herzfeld and
Wolf'4 have shown that for ions f probably has
the same values as for the corresponding inert
gases. We shall base our calculation on this
assumption, but we are aware that this may be
incorrect. From the point of view of the quantum
theory of dispersion there is even some doubt

data of F. Pockels, Ann. d. Physik 39, 440 (1890), and of
K. Banerjee, Ind. J. Phys. 2, 195 (1927). Their results
differ by about 8 percent. Pockels' results for KC1 are
corrected by using Forsterling's values of the elastic
constants (Zeits. f. Physik 2, 172 (1920)). CaF& was
measured by Pockels, Ann. d. Physik 3'7, 372 (1889).
Many other investigators have verified the signs and order
of magnitude of the six constants.

'4. Herzfeld and Wolf, Ann. d. Physik '78, 35 (1925).

whether our f values are identical with the
strength of the oscillators. "

If we use for NaC1 and KC1 the values given
by Herzfeld and Wolf, we get

for NaCI p=0.401+0.597 —1.055K; p'
= 0.392 —0.394—1.055K';

for KC1 P= 1.008+0.426 —1.152); P'
=0.005 —0.282 —1.152K'.

To get agreement with the experimental results,
we must have for NaC1, ) =1.06, )'=0.06; for
KC1, ) = 1..08, X'= —0.09.

These results are very satisfactory for the
following three reasons:

(1) The order of magnitude of the values of X

is the same as for glasses. For glasses' we calcu-
lated L* 0.6, and this represents an average
value between X and V. From (28) and the data
in Table II we get for NaC1, ),=1.24, ),=0.18;
for KC1, ),=1.20, X,=0.11. This leads to the
same conclusions as in our first paper. A strain
of 1 percent increases the refractions parallel to
the strain by about 1.2 percent. Moreover, it
increases slightly the refractions perpendicular
to the strain.

(2) Although they have different photoelastic
properties, both crystals lead to almost identical
values of all factors ). This agrees with the fact
that the refraction of NaC1 and KC1 is largely
due to the Cl ions.

(3) In both crystals the anisotropy produced
by a strain s, is much larger than the anisotropy
produced by a shear. A strain alters the distance
between nearest neighboring atoms. For a shear,
however, the NaC1 distance remains unchanged.
Hence ) ))'. The optical anisotropy due to a
shear is .caused by the change of the Cl-Cl
distance. In NaC1 the Cl ions are in contact with
each other because the Na ions are smaller than
the Cl ions. In KC1 the Cl-Cl distance is larger;
hence )'N, c~)X'~c~. A negative value of )' is

improbable and can be avoided by choosing
slightly different values of R; and f;

If, as in KCl, the anion and cation are almost
equal in size and structure, it is reasonable to
assume X'=0 and f&=f2 The shear . constant of
photoelasticity is then determined by the Ewald-
Born theory, and this offers a unique method

"Herzfeld and Lee, Phys. Rev. 44, 623 (1933) conclude
that f is probably larger than the strength of the oscillator.



HANS MUELLER

for the determination of the ratio r=R /iRg of
the ionic refractions. Namely, it follows then
from (31)

(1+r)'p'= 0.60(1+r') 2—52r. 1—.86(r' —1)/f

negative and at least ten to twenty times larger
than for NaC1. Since the index of refraction of
diamond increases with temperature, " ) is
probably also unusually large.

Assuming fK=fci f~——„=4.58 leads to r=5.12,
and since RE+Re~ =R~e~ = 10.85 we get Re~
=9.07, RE= 1.78. Re) is in very good agreement
with the value given by Born and Heisenberg. "
RK is somewhat smaller than the accepted value
for the free ion, RE=2.23. Agreement with the
values of Fajans and Joos' and Pauling" can be
reached by choosing f=5.9, or by assuming a
30 percent larger experimental value. The latter
alternative is not excluded because Poekels and
Voigt report that their KC1 crystals were
optically and elastically imperfect.

For CaF2 the theory gives, if we introduce
Rp=2.5, Res=1 35' fF=2 37' fca=4 581 p=0.46
—0.73 —1.28K; p'= 0.35+0.48 —1.28) '. For a
pressure normal to a cube face the Lorentz
force again produces positive birefringence, but
this is compensated by the negative contribution
of the Coulomb forces. Hence CaF2 becomes
negatively birefringent. For a pressure normal
to an octahedral face the Lorentz and Coulomb
forces produce positive birefringence which
cannot be compensated by the relatively small
anisotropy due to shear. Qualitatively the theory
explains the photoelastic properties of fluorite.
Quantitatively, however, we find X=0.3, which
is certainly too small, and V=0.5, which is too
large. By choosing fF=5, much more sensible
values, ) =0.61, )'=0.06, are obtained. An in-
vestigation of the dispersion of the photo-,
elastic effect should determine the proper choice
of the f values. It is doubtful whether the inner
displaeements would change the result.

For diamond Wertheim" observed a negative
stress optical constant, but he does not state the
direction of pressure. The fact that the photo-
elastic effect can be observed even in small
crystals in spite of the large elastic constants of
diamond, indicates that either p or p' must have
an unusually large negative value. The theory
confirms that p= —0.66—X(n'+2)/3(n' —1) is

26 Born and Heisenberg, Zeits. f. Physik 23, 388 (1924)."L.Pauling, Proc. Roy. Soc. A114, 181 (1927).
Wertheim, Pogg. Ann. 85, 321 C', 1852).

PHoToEr. xsT~crTv AND CRvsTAL STRUcTURE

Pockels" has classified the cubic crystals in
four groups according to the signs of (pii —pi2)
and p44, or, what is equivalent, of p and p'.

GronP
I

II
III
IV

Examp/e
none
NaCl
CaF.
KC1

~' A. Sella, Rend. Acc. Lincei 7, 300 (1891).

Observations with crossed nicols of the inter-
ferenee colors produced by pressure decide to
which group a crystal belongs.

In general the theory is not able to predict the
sign of p and p'. Negative values are assured if
the Lorentz and Coulomb forces produce nega-
tive birefringence, because the anisotropy will

always give a negative effect. If p~ and p'
together give a positive value, the result depends
on whether or not (p~+p') is large enough to
compensate the effect of the anisotropy of the
atoms. Since the magnitude of the latter cannot
be predicted, no definite answer can be given.
Our results on glasses, NaCI and KC1 indicate
that p" has for most substances nearly the same
value. Hence we expect a positive value of p if

(p +p') )1. For shear the anisotropy produces a
smaller effect and hence p' will be positive if
(P' +P")&0.3. The choice of these limits is
somewhat arbitrary, and in border eases our
conclusions will not always be justified.

Using these critical values we are now able to
predict certain correlations between Pockels'
groups and the various cubic lattice types. For
monoatomic crystals we have p'=0, p~=3sii„
and p' = —sir, . From the values in Table II we
conclude that simple cubic lattices belong to
group IV, face- and body-centered and diamond
lattices to group III or eventually to group II.
Experimental verification is only possible for
diamond.

For the diatomic ionic lattice types, NaC1,
CsC1 and ZnS, the results depend on the ratio
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r=R /R+, thevaluesof f, f+andthevalencys.
For all three types we have

p +p =3syyz+3(s12g sylz)

X(1+r) '[2r+(r' f—/f+)s/f ],
p +p = Stir'+(Spy'' Sy"*')

X(1+r) '[2r+(r2 f /—f+)s/f j

do not realize that in cubic crystals"Many observers o no
the photoelastic effect dep ends on t e iree ion
and observation, and their results canno e
they neglect to state these directions.

h re f /f differs much from unity the"In all cases w e e J +
ratio r is so large that the value of J /J+ is imma

/

.si
F' 3 shows the variation of P +P' and P' +P"
with r. The dotted curves give p and p . W
ha e asume "f/f+=1, d
values s =0.2 ands/f =0 4 For. m. ost crystals
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+
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+p" 's small or negative, and vice versa.

on the ammonium-halides would furnish an
Consequen y, no

eor because the twointe esting test of the t eor ecrystal be onging o t s group as ever bee
uld show

C tal of the t pe CaF b ha e 1 ke Csh th e crystals belong either to group II orhence t ese cry

J
r all K-, Rb-, s--) - ~s- and

of whether the4- 1 d, d or the bivalent salts, aO,

11 1 ff t o ld h
g ogope din to Fi . 3 no other

fact canb og ogop . Ti
with the known

lattice type e
~ ~

f e nu
' ' " rvations is

therefore e useb d for the determination or
acts. e nuverification of crystal structures.

very limited, and we p
~ ~
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