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The theory of Ewald and Born of the double refraction
of crystals is applied to the calculation of the photoelastic
properties of D lattices. Only in special cases, as for
instance in KCl for pressure parallel [1117, is the effect
determined by the anisotropy of the Lorentz and Coulomb
forces. In these cases the photoelastic data determine the
ratio Rg)/Rx of the ionic refractions. Satisfactory agree-
ment with all observations can be reached by assuming
that the elastic deformations produce optical anisotropy

of the atoms. Introducing this assumption in the Ewald-
Born theory leads to an explanation of the change of the
index of refraction with the density, and of the different
photoelastic properties of NaCl, KCl, CaF; and diamond.
The photoelastic constants of other crystals are predicted.
It is shown that the “‘cavity’” method of Lorentz and Bragg
gives the same Lorentz force as the theory of Born and
Ewald. The calculations of the photoelastic effect by
Herzfeld and Banerjee are incorrect and incomplete.

F a cubic .crystal is subjected to a pressure
normal to a cube face, it becomes tetragonal,

and hence doubly refracting. According to Ewald!
and Born? the birefringence of crystals is due to
the anisotropy of the Lorentz-Lorenz force. In
ionic crystals the anisotropy of the Coulomb
forces is an additional cause of birefringence.
Taking into account both effects, Hylleraas?
calculated the optical properties of calomel,
rutile, anatas and quartz. For carbonates and
nitrates, W. L. Bragg* developed a somewhat
different theory in which the birefringence is
primarily due to the optical anisotropy of the
COj; or NOj; groups.

The success of these theories gives reason to
anticipate that they could also explain the
accidental double refraction of cubic crystals.
We shall show that, in general, this expectation
is not justified. Neither Ewald-Born’s nor Bragg’s
theory can explain the photoelastic behavior of
cubic crystals, except in some special cases.
This conclusion has been reached previously by
Herzfeld,® Herzfeld and Lee, and Banerjee.® It
will, however, be demonstrated here that Herz-
feld's papers contain a numerical error and that
Banerjee’s method is wrong. Hence their results
are not conclusive.
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In a previous paper the writer” has shown that
a third cause of the photoelastic effect must be
considered. A deformation of the lattice changes
the energy levels and transition probabilities of
the optical electrons, and hence alters the re-
fraction of the atoms. This effect is a generaliza-
tion of the results of Fajans and Joos® who

“showed that in crystals the refraction of the ions

are usually smaller than in solutions. We assume
that a decrease of the lattice constant reduces
the refractions still further. But, contrary to
Fajans and Joos, we do not believe that this
effect is due to the Coulomb forces between the
ions. The effect exists also in homopolar crystals.
It is caused by a change of the charge distribution
or the binding of the optical electrons. It can be
considered as produced by the repulsive forces
between the atoms® and depends primarily on the
arrangement of, and the distances between
nearest neighboring atoms.

In photoelastic experiments the lattice dis-
tances parallel to the pressure are decreased, and
the distances normal to the stress are increased.
This gives rise to an anisotropy of the atomic
refractions.

By taking into account all three effects we
are able to give a satisfactory explanation of
the observed photoelasticity of simple cubic lat-
tices.
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CLASsSICAL THEORY OF PHOTOELASTICITY

The phenomenological theory of photoelas-
ticity of crystals was developed by F. Pockels.!?
The theory assumes that the elastic deforma-
tions, and not the stresses, are primarily re-
sponsible for the birefringence. The behavior of
cubic crystals is characterized by three elasto-
optical constants pi11, P12, pas, which for the
purpose of our calculation are best defined as
follows:

A simple strain 2, in the direction [001]
produces uniaxial birefringence and we have

L1
n—mn,=3n3puz.,

n

n—nz=%n3p12zz,
Ne—N,=303(p11— P12)2.;

n is the index of refraction of the undeformed
crystal, and #, and », are the indices for light
whose electric vector oscillates in the direction
parallel and perpendicular to the strain.

The combination of a strain x,’ in the direction
[110] and a strain y,’= —x,” in the direction
[110] represents a shear x,=2x, and produces
biaxial birefringence with the axis of the index
ellipsoid in the directions x'=[1107, y'=[110],
2’=[001]. Then

Ny =n+An, ny=n—An, n,=n, and

(2)

The “Cauchy relation” pau=3%(p11—p12) holds
only for amorphous solids. For hydrostatic pres-
sure, for which x,=y,=2,=dV/3V=—dp/3p,

where p is the density, the index of refraction
changes by

dn=—n’[puz.+pr(r.+y,)]
= (pu+2p12)n’dp/6p.

An= — n3p44x1’.

©)

If p1i—p12>0 a pressure normal to a cube
face produces positive birefringence. This is the
case!! for KCl, KBr, KI and NH.I. p11—p12 is
negative for NaCl, CaF,, NaF, ZnS, diamond,
Al- and NHg-alum. If p44 is negative, the crystal
shows negative uniaxial birefringence for pressure

1 F, Pockels, Wied. Ann. 37, 151 (1889); Lehrbuch der
Kristallphysik, Leipzig and Berlin, 1906.

1t Johnson, Neues Jahrbuch fiir Mineralogie, 1902, Vol.
II, p. 146.
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normal to an octahedral face. This is the case for
NaCl, KCl and the alums; but, for CaFs, p4 is
positive. A satisfactory theory must be able to
account for these reversals of sign.

The comparison between theory and observa-
tion is simplified by introducing

pr=nipr(n?—1)"2= =2nn*—1)"%dn,/dz.,
p.=nipu(n?—1)"= —2n(n?—1)"2dn./dsz.,,

P =p=2ntpu(n’—1)"? 4)

=—=2n(n*—1)"2dn./dx.,

p=p.—p.=n*(pu—pr)(n?—1)"%

THE EwALD-BORN THEORY OF THE LORENTZ-
LoreENZ FORCE

We consider a lattice with only one atom at
the corners of the elementary cells. Each atom
carries a charge e=1, and a continuous charge
distribution of constant density p=—1/A com-
pensates for the discrete charges. A is the volume
of the elementary cell, which is determined by the
three vectors a1, as, a3. The position of the atoms
is given by the wvectors rl=la+1las+1sas.
Except at the points 7! the electric potential ¢
satisfies everywhere Poisson’s equation

Ay =47/A (5)
and has the value?
Y=y1+s,
where
47 -1 .
Yy1=—2"exp [ ——|q'| 2wLJ(glf)]/ lg'|%
A 4¢2
(6)

Vo= G(e|r'—r|)/|r—r| —m/eA;

j=+v (—1), eisan arbitrary parameter; ¢'=2m(l1b,
+1sbo+13bs), where bi=[a2Xas]/A, etc., are the
vectors of the reciprocal lattice; G(x)=1
— 27t fife=*da; and the summations are to be
taken over all combinations (I, Is, I3), excepting
(0, 0, 0) in the summations Z'.

Let us now consider a second lattice, geo-
metrically identical with the first, but each
lattice point carrying a charge e=—1 and dis-
placed by a vector dr with respect to the atoms
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of the first lattice. At the point 7 the second
lattice produces a potential y* = — ¢+ (drgrad ¢).
Since the continuous charges cancel each other,
the two lattices together represent a lattice of
dipoles with the moments u= —dr. Their po-
tential is ¢=y+y¢*=—(u grad ¢). In order to
find the field due to all other dipoles acting on
the dipole at the origin, one subtracts the field
of this dipole and gets the potential ¢=
—(u-grad ¥), y=y—1/r. We consider now the
simple case, where all dipoles are parallel to the
applied field E,. The total field acting on any
dipole is the Lorentz-Lorenz force

F,=E.—(d¢/dx)o=E.+u.(0%/x%,
=E.+4xLP,, (7)

where P,=u./A is the polarization, and where
we have introduced the ‘‘Lorentz factor’

L.=(A/47)(3%)/dx%)0. (8)

From (5) it follows that L,+L,+L.=1, and
hence for a simple cubic lattice®? L,=L,=1L,
=1/3.

For a simple tetragonal lattice, where a;=a,
#a3, we have L,=L, L,=1—2L,. The nu-
merical calculation is conveniently carried out
for L,—L,. Choosing e=7"*A"% we get

L:—L.=—2"(Q:—Q.)Q0 " exp (—Q)
+22'(R:—R.)(3/2R+1)R* exp (—R)
+@r/4) 2 (R.—R,)R*G(RY), (9)
where .
0=0,1+Q,+0Q.=rAl1,2/a >+ 1% /as®+152/as?),
R=R.,+R,+R,=7nA7%(l%a*+ :2a,2+15%a3?).

All the series in (9) converge very rapidly. The
values of L, and L, depend only on the ratio
ag/al.

The results in Fig. 1 show that for as/a;>2
they can be represented by the approximation
L,=1-2L,=1-0.72 a3/a1. For az/a;>1.4 and
for as3/a1<0.6 one Lorentz factor becomes nega-
tive. Hence in many crystals the interaction

12 The same derivation of the factor % can also be used
for a random distribution of atoms. Another derivation
by Darwin, Proc. Roy. Soc. A146, 17 (1934).

949

F16. 1. The Lorentz factor for simple tetragonal lattices.

between the dipoles does not increase, but de-
creases the polarization.13

If as/a1<1 the crystal is a chain lattice. For
light oscillating parallel to the chains the L
factor is Jarger than for light oscillating normal

* to the chains. Hence chain lattices show positive

birefringence. On the other hand, for layer
lattices, where a3/a;>1, the L factor is small
for light oscillating normal to the layers and the
birefringence is negative. The observations verify
these rules for arbitrary layer and chain lattices.!

In the problem of photoelasticity of cubic
crystals we are interested in the values'of L, and
L, for a lattice which differs only slightly from a
cubic lattice. A strain z, produces an axial ratio
a1:as:az=1:1:(142,) and the L factors
differ from } by small amounts; hence

L,;:Ly:%,“"'sxzz; Lz=1§+szzz (10)
(11)

The differentiation s,=dL./dz, leads to com-

and we must have 2s,+s5,=0.

.18 In these cases Havelock’s assumption (Proc. Roy.
Soc. A80, 31 (1908)), which replaces Lorentz’s spherical
cavity by an ellipsoid, cannot hold. Negative Lorentz
factors can be used to explain the fact that the anomalous
dielectric properties of Rochelle salt occur only for fields
in direction of the @ axis (H. Mueller, Phys. Rev. 47,
175 (1935)).

4W. A. Wooster, Zeits. {. Krist. 80, 495 (1931).
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plicated expressions. Much less numerical work
is involved in calculating the difference quotient
s.={L.(14+2.)—3%}/2.. By choosing z.,=0.01 we
obtain sufficiently accurate values. Thus we get
for simple cubic lattices L,(1.01)=0.33832,
L.(1.01)=0.32333, and hence s5,=0.499, s.=
—1.000. These values agree with Herzfeld’s
results s,=0.501, s,= —1.01, which are calcu-
lated from Madelung’s lattice potential. From
Banerjee's calculation we derive s,=0.5045, s,
= —1.0090.

THE LORENTZ-LORENZ FORCE IN STRAINED
D LATTICES*

If the elementary cells contain several different
atoms at the positions 7;, 7, etc., carrying the
moments u;,, one must find the field of all other
dipoles acting on an atom 4. This leads to the
Lorentz factors Ly, and the Lorentz force!®

Fi:c=Ez+4f7TZLika.ka; ka,‘:#lcx/A- (12)
k

If the elementary cell is orthorhombic, one
finds by choosing again e=n—3A—%
Lisz= (8/4m)(8%/0x%)0
=5—2'0:0"exp (- Q)
+>'R.R'exp (—R)
+32'BR.R'—1)R " exp (—R)
+(7}/4) ' BR.R'—1)RIG(RM),
Lire=(A/4m)(3%¥/3x%) 1,
=—2"0:0""exp [—Q+j(a'ru) ]
+2 RuRu~texp (—Ry)
+32 GBRuzRu~'—1)Ru~" exp (—Rix)
+ (7 /4) X Rz Ra ™ — 1) RyIG(Ry™), (14)

(13)

and analogous equations for L, and L.. Q and

*In Born’s diagonal or D lattices the atoms of the
elementary cell are located on the body diagonal of the
elementary cube. The face- and body-centered cubic
lattice, and the lattices of diamond, NaCl, CsCl, CaF,
and ZnS are D lattices.

15 In the general case, the dipole moments u; are not all
parallel to the applied field and the Lorentz force is
Fiy=FE, 447212, LirsyPr,. We consider here only such
cases where the symmetry of the crystal requires that
.Likzy =0 for xF=y.
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R are deﬁned by (10) and Rik=Rikx+Riky+Rikz
= ﬂ’A_%[(lﬂl - xik)2 + (12(12 - yuc)g + (lsaa - zik)zj
where X, Yy, 2i are the components of the
vector 7g4,=7;—#;. From (5) it follows that for
all indices 7k

Lo+ Ligy,+Li.=1. (15)

These equations serve to calculate the Lorentz
factors for elastically deformed diagonal lattices.
For undeformed D lattices (15) leads to L ;. P
=1P,, and the Lorentz-Lorenz equation is valid.
To determine the L factors for any D lattice
which is deformed by a strain z,=0.01 or a shear
x,/2=x,=—v,/=0.01, it is only necessary to
carry out the calculations for the three ortho-
rhombic cells shown in Fig. 2. The symmetry of
these cells requires that for fields parallel to the
edges of the cells all dipole moments be parallel
to the electric field. Hence L,,=0, excepting
Litzr= L. For reasons of symmetry Li,= Ly,
and there are a large number of relations between
the 48 L factors given below.1®

Since for an undeformed D lattice F=£FE
+47P/3, we write for a lattice deformed by a
strain z,

Fiy=E .+ @4n/A) X mipiez(3+5ia22).  (16)

For a shear x,/= —v,/=x,/2 we write

Fia:’ =E::+(47r/A)anﬂkz'(%“i"sik:c’xx’)- (17)

16 There are 16 relations due to Eq. (15). For cell 4
there exist 10 obvious equalities Lizz=Liz,, 3 relations
ZiLikz=8Ly:z, and 4 relations with the results in Fig. 1,
as, for instance % (Liz~+Lizs+Lizz+Lisz) = L2(2.02). Similar
relations exist for cell B and C, and there are 8 relations
connecting the results for different cells. In the calculation
we have not made use of any of these relations. The fact
that all are satisfied shows that the errors cannot be
larger than 0.0001. In the summations terms smaller than
0.00002 were neglected. All series converge very rapidly.
We find the ‘‘Lorentz factors’ given in Table I.

TaBLE 1. Lorentz factors. In cell A we have a;: az: a3
=1:1:1.01, in cell B a; :as : a3=1.01 : 0.99 : 2%, and in
cell Cay :ap :a3=1.01 :0.99 : 273,

Cell A Cell B
ik Likz Liky Likz ik Likz Lipy Lik:
11 0.3383 0.3383 0.3233 11 0.4858 0.5258 —0.0116
12 2.7528 —.8710 —.8818 12 .1689 L1530 6781
13 -—.8710 2.7528 —.8818 13 —.2716 —.2584 1.5300
14 —.8340 -—.8384 2.6768 14 9637 8996 —.8633
15 .3286;  .3286; —.3427 Cell C
16 —.3509  .6634  .6875 11 0.1077 0.1337  0.7586
17 .6634 —.3509 .6875 12 5664 5262 —.0926
18 .6837s .6837; —.3675 13 —.5359 1.1866 3494
14 1.1706 —.4882 3176
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Fi1G. 2. Orthorhombic cells.

ni is the number of atoms of the kind % within
an elementary cell. Replacing again the deriva-
tive by the difference quotient, we can now
calculate the factors sz, Sitz, Sirer, €tc. The cell 4
gives the factors s, for the simple cubic (SC),
body centered (BC), and face centered (FC)
cubic lattices, and for the lattice types of NaCl,
CsCl, ZnS, CaF; and diamond (DI). The cell B
furnishes the factors Sikay for (SC), (FC) and
NaCl, and cell C gives these factors for (BC),
CsCl, ZnS, CaF; and DI. For instance we get
for the NaCl lattice

s112 =511y =100 {§ (L112+Lisz+ Lyt Lis:) a— 3},
$12:=521,=100{§(L12z+L1se+Lisz+Lisa)a— 3§,
S11zr = S22 = —S119* = 100 {%(Lllz‘{'Ll?I)B—% } ’

S1200= —S124 = S21 =100 {3 (L13:+L14s) 5 — 5 } -

Similar expressions give the s;, for the other
lattice types. The symmetry of all lattices re-
quires Sixz=Sixy and Siu,r = — Sy and from (15)
it follows that sg.= —2su. and si. =0. For
NaCl, CsCl, and ZnS we have evidently s;1,
= S924, but for CaF, this is not true.'”

The factors s, and s;;,- in Table IT determine
the change of the Lorentz-Lorenz force produced
by . a uniform strain or shear. Our calculation
does not,'® however, take into account the “‘inner

17 For CakF, the first column in Table II refers to Ca,
the second to F.

18 These displacements, which give rise to the piezo-
electric effect and invalidate the Cauchy relation for the
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TaBLE I1. Change of Lorentz-factor with deformation.

CRYSTAL

TYPE SC FC BC NaCl CsCl ZnS CaF» DI
8112="811y 0.50 0.03 0.01; 0.03 050 0.03 003 050 —0.22
11z —1.00 —.06 —.03 —.06 —1.00 —.06 —.06 —1.00 44
S12r="321y 97 —47 —47 —4T7 —u47
318 —1.94 94 94 94 o4
s1z'=—s811y’ .33 —.60 —.62 —.60 33 —60 —.60 .33 —1.09
s12x" 1.26 —1.58 —1.58 —1.58 —1.58

displacements”” which occur for shear in ZnS
and CaF,.

These values agree neither with Herzfeld’s nor
with Banerjee’s results. Comparison with Herz-
feld’s notation shows (his Eq. (12)) that his
values « and 8 give for the NaCl lattice

s1.= 0.585—%=—0.082
S12.=—1.248—%2=—-1.915
S112= 0081—%——— —0.586
S122= 2255—%“—— 1588

s11.and sy, are in fair agreement with our values,
but s11. and s12. are not. Since Poisson’s equation
requires Si;;= —2S11, and Sp2,= —25y,, Herz-
feld’s values of s, and s;2, must be wrong.!?
Herzfeld’s calculation is marred only by a
numerical error, whereas Banerjee’s method con-
tains a fundamental error which is discussed in
the next section.

BRrRAGG's THEORY OF THE LORENTZ-LORENZ
Force

Bragg’s method is based on the classical pro-
cedure of H. A. Lorentz. One considers a spherical
or cubical boundary around the chosen atom.
The solid outside the boundary is considered

elastic constants, complicate our problem considerably.
They lead to Lixy 0. We neglect this effect, because the
magnitude of the displacements is not known.

19 The relation between s;; and «, 8 was communicated
to the writer by Professor Herzfeld. Professor Herzfeld
agrees that his values, —0.081 and 2.255, are incorrect.
He has asked me to call attention to the following correc-
tions to his paper (J. Opt. Soc. Am. 17, 26 (1928)): The
first formula on p. 31 has the wrong sign and is incomplete.
(The corresponding equation in the appendix is almost
correct.) The factor 3 in the next formula should be
omitted. In the second equation in the appendix, (3+1)
should be replaced by (3+1%) and, in the first formula on
p. 36 some coefficients are wrong. A recalculation, carried
out by Dr. M. Goeppert-Mayer, gives, for stress parallel
to the field, «=—0.590 and B=1.276. Using Poisson’s
equation, this gives for stress normal to the field & = —.706,
B=—1.638. These new values give s11,=0.039, 515, =0.971,
sne=—0.077, s,5.,=—1.943. They are in good agreement
with our values, which have an accuracy of +0.01.
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continuous matter, and one adds to the field of
this polarized continuum the field of the dipoles
within the boundary. Banerjee® applies this
method in the following manner. He considers a
cubical boundary. The field of the continuum is
then 47P/3 and the field of the dipoles within
the cube is F,)=3>_uix?/7.°— > piz/7:8. In the
undeformed state the latter vanishes for D
lattices. Deformation due to a strain z, changes
the coordinates of each dipole from x;, v;, 2; to
xi, Vi, 2i(142.) and the field of the dipoles
within the boundary can be developed in powers
of z.. In first approximation

Frl =233 1282 /13— 15 pion 22 /7],
F/ =232 piy22/r— 152 piyyita?/ri],
le =zz[9z,uizzi2/7,-5— 152/11';21‘4/7’57].

Banerjee calculates these sums for the NaCl and
CaF, lattice. His results can be written Fp,/
=82,A" [ Biizp1:+Biospaz ], where the By, are
the numerical values of the finite lattice sums.
Since these sums contain only the coordinates of
the atoms in the undeformed state, Banerjee
extends the summations over a cube. But this is
wrong. The atoms which are within a cube in
the deformed state, are not within a cube in the
original state. In other words, Banerjee does not
calculate the field of the atoms contained in a
cube of the deformed crystal, but of the atoms
within a rectangular box with the dimensions
A, A,: A.,=1:1:(1432,). Hence the field of
the continuum is not F’=47P/3 but

F) =4P, sin™! {24,4,4 (A2+A2+A42}/
(A24+42-(A2+42)1.

This gives, in first approximation

F.'=4xP,/34+4P, 3z,
F.)'=4xP,/3—8P .37},

and the Lorentz-Lorenz forces are therefore
Fiz=E.+Fi/+F."
=E,+47A7 Y i,
X [3+2.(2Biom 713717,
Fi.=E,+F./+F,
=E,+47A7YY npug.
X[34+2.2Bau.mn 1 =2 X374 1) ],

MUELLER

Comparison with (16) gives
Sikz= 2Bikz/7rnk+3h%7r—l,
Sie=2Bu./mny—2 X3t 1

and we can calculate s;, from Banerjee’s value of
Bii.. For NaCl we get, since ny=n,=4

S11.= —2511,=1.9005/27 — 2 X 3~ tr~1= —0.0651,
S12:= —2512,= —9.9613/27 —2 X 3~¥x!
= —1.9529.

For CaF,, where n;=4, n,=38,
S11.= —0.0651,
S22.= — 2529,

= —8.0608/47—2X 3 r"1=—1.0090,
S12.= —28512,=16.4904 /47— 2 X 373 7r~1=0.9447.

In Banerjee’s paper the terms 2X3 #zr~! are
neglected.?®

The agreement between these and our previous
results shows that the Ewald-Born and the
Lorentz-Bragg methods are equivalent.

THE ANISOTROPY OF THE COULOMB FORCES

In an ionic lattice the potential of an atom %
due to the charges zie of all the other ions is
Vi=2;e¢(0)+e> 'zi¥(ra) € is the positive value
of the electronic charge and z; is the valence of
the ions k. The equilibrium condition demands
(grad V;)o=0.

Under the influence of a light wave oscillating
in the x direction the atom ¢ becomes an oscil-
lator. With Born? we make the assumption that
the oscillator can be considered as a vibrating
“electron” with the charge —fie. The forces
acting on this electron are the binding force of
the atom %, the Lorentz force of the light wave,
and the Coulomb forces of all other ions. If the
electron has a displacement #;, from its rest
position, the Coulomb field is

Fi 6= — (32 V,,/ax?)o Uiz=
— e [2:(0%/0x) o+ L 2:(929/95),,].
ik

20 It is surprising that, in spite of this large error,
Banerjee finds reasonable results. This is probably due to
his questionable method for calculating the refractive
index (Banerjee's Eq. (6) and (8)). We have not succeeded
in correcting his calculations for shear.
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In a D lattice it follows from (15) that (82¢/dx?),
= (0%/09x%),,=4m/3Aand hence Fi,*= — eu;, 4w/
3A-2 %=0 because of the neutrality condition.
Hence the Coulomb forces do not influence the
refraction of D lattices.

In an elastically deformed D lattice, we get,
using (13) and (14) Fi°= —47weu;:A™'Y 2 Liks.
Since —#;.fie=uir, 2.2=0, this can also be
written

Fit =402, (fid) ™12 21748 ik o (18)

Analogous equations hold for F¢;,, F¢;,r= — F¢;,..
In amorphous’ solids all s;,=1/15, sy.= —2/15
and hence, since >_n;2,=0, Coulomb forces have
no influence.

INFLUENCE OF HYDROSTATIC PRESSURE

Hydrostatic pressure does not change the
symmetry of cubic crystals. Since x,=vy,=z. it
follows from (15) that the Lorentz factor is 1/3

and the Coulomb forces have no influence. This"

supports our previous statement that, in cubic
crystals, the change of refraction is.not due to
the Coulomb forces, but is caused by a change
in the binding force of the optical electrons.

The Lorentz-Lorenz equation must therefore
be valid for hydrostatic pressure and should
determine the change of the index of refraction »
with the density p. Pockels!® has calculated
dn/dp from photoelastic data, using (3), and
has shown that for NaCl, CaF,, and probably
also for KCl, it has practically the same value as
—1/a-dn/dt, where a is the coefficient of tem-
perature expansion. But the observed increase
of » with density is considerably smaller than
the value given by the Lorentz-Lorenz equation.
This equation can only be reconciled with the
observations if we assume that a compression
reduces the polarizabilities of the atoms. We
must assume that a change of volume AV in-
creases all refractions R/=R;(1+\;AV) and
get then

953
prdn/dp=(n*—1)(n*+2)(1—No)/6n 10
)\():Z)\,,’ﬂzR,/Z'ﬂ,R; )

The data in Table III show that )\, has, within

TasLE III.

CRYSTAL pdn/dp —~(1/a)dn/dt (n2—1)(n>+2)/6n o
NaCl 0.304 0.305 0.656 0.536
KCl .30 576 .48
CaFa 251 22 .498 .50

the accuracy of the data, the same value for
NaCl, KCI, and CaF,, and differs but little
from the value’ 0.4 found for glasses.

OPTICAL ANISOTROPY OF THE ATOMS

It is natural to assume that in unstrained D
lattices all atoms are optically isotopic. Since a
hydrostatic pressure alters the refractions, a
strain will produce optical anisotropy of the
atoms. A distortion of the lattice produces a
deformation of the atoms. We must assume a
linear change of the molar refractions Ry, or
the polarizabilities ay, with the strain. If 4 is
Avogadro’s number, we have

ka=47rAalcr/3 =Rky=Rlc(1 +xk.tzz)1

20)
sz=47rAC¥kz/3 =Rk(1+}\k,z,),

For a shear we must assume
Rlc:c’ =Rk(1 +xkr’le)y Rky’=Rlc(1 +xky’xx,);

The change of the refraction due to hydrostatic
pressure is determined by N;=3(N\;.+2\:2).

CALCULATION OF THE PHOTOELASTIC CONSTANTS

Under the influence of the Lorentz and
Coulomb forces the atoms ¢ acquire the dipole
moments p;,= ai(Fio+ Fi.f), where a;, is the
polarizability for the frequency of the lightwave.
Introducing the expressions from Eqgs. (16), (18)
and (20), we get a set of linear equations for
the moments u;,

Mi:=3Ri(1 +xizzz)A_l[Ez/47r+A—1an#kx(%+sika:zz) +,uig.zz(fiA>_lsznk5ikx]-

From their solutions we determine

(n,2—1)/4r=P,/Eo=Y nuus/Es.  (21)

For z,=0, one finds the Lorentz-Lorenz equation
(n*—1)/(n*+2)=>"mR:/AA. Differentiation of
(21) gives, according to (4), p., and in the same
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way one determines p. and p.-. In differentiating
we must take into account the fact that a strain
2, changes the volume A of the elementary cell.
The final result can be written

pz=P0+P1L+po+P2A;

pe=potp.t+ptpA, (22)

P = protpoatpis.

po is due to the change of the density
po=(n242)/3(n*—1). (23)

This term is responsible for the fact that pi; and
P12 always have positive values. p.* is due to
the anisotropy of the Lorentz force

pl=—Y samR iR/ (X nRe)?, (24)
ik

p.° gives the effect produced by the Coulomb
field of the ions

0= — 2 R2n:fi Y mmsas/ onmRe): (25)
k

If the refraction of the atoms ¢ is represented by
a set of oscillators with the refractions R;, and
strengths f;, one must substitute R2/f;= > R;?/
fie; Ri=2_Ri. p,* is the contribution of the
optical anisotropy of the atoms due to strains
p2A=—(7L2+2))\x/3(7L2—‘1), (26)
Ne= 2N iRi/ > niRs.
Equations analogous to (24), (25), (26) give
p.E, pte, ete. Finally we write

p=p.—p.=p"+p°+p*,

where

(27)

where, since for all D lattices s .= —2Sxz P*
= —3p.", pr=—3p.5, pt=—Nu?+2)/3(n*—1);
A=\.—\s. Ao, which determines the change of
refraction due to hydrostatic pressure, is

No=3(N:12N0). (28)

p=(Ri+R2)~2[0.09(R2+ Ry +5.82R Ro+2.823(Ry2/ f1— Ro?/ f2) ] = N(n2+4-2) /3(n2 —1),
' = (Ri+Rs)2[0.60(R2+ Rs?) —2.52R,Ro — 1.862(R1?/ f1 — Ra?/ f2) 1= N (n2+2) /3(n?—1).

21 Pockels’ data verify these relations, but Banerjee's
data give slightly different results. According to our
theory we must expect deviations from Pockels’ theory,
because the \;; are not components of a simple tensor.
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The shear constant of photoelasticity is given
by

p=p"p (29)

where
PE=p o= pias p = =N (0242)/3(n2—1);
N= Z%O‘iz' _)\iy’)niRz/ZniRi,

Egs. (27) and (29) represent our final result.
They give p and p’, which, according to (4), are
proportional to the elasto-optical constants.

CoMPARISON WITH EXPERIMENTAL RESULTS

In the experiments the accidental birefringence
is measured as a function of the applied pressure.
If C is the difference in optical path of the
ordinary and extraordinary ray produced by a
pressure of 1 dyne/cm? directed normal to the
light path of 1 cm length, then

pr1—p12=2NC1/83(s11—512) ;
P44 = 2)\02/113544.

Here N is the wavelength of the light, s; are
Voigt’s elastic moduli, and C; and C, refer
to pressure normal to the cube and octahedral
faces, respectively. If the pressure is normal
to a dodecahedral face, one gets®® Cs;=C,, Ci
=1(C,+ (), where C3and C,are for light normal
to dodecahedral and cubic faces, respectively.
Only determinations of C for small pressures
have a physical significance. Large pressures
produce translation gliding and lead to irre-
versible effects.?

Reliable determinations of all the quantities
C;, s# and n are available only for NaCl, KCI
and CaF,.2® They refer to sodium light and give
for NaCl p=—0.124, p'=—0.065; for KCI
$=0.179, p'= —0.182 and for CaF, p= —0.653,
'=0.179. '

For crystals of the type NaCl the theory
gives

(30)
(31)

22 The results of Maris, J. Opt. Soc. Am. 15, 194 (1927)
are probably due to this effect. This is shown by Ritzel,
Zeits. f. Krist. 52, 275 (1912).

23 The values for NaCl are averages calculated from the



PHOTOELASTIC EFFECT OF CUBIC CRYSTALS

The index 1 refers to the negative ion, and z is
the valence of both ions.

Under a pressure normal to a cube face the
NaCl lattice approaches the structure of a chain
lattice. Consequently the influence of the Lorentz
force given by the first two terms of (30) pro-
duces positive birefringence. The next terms are
due to the Coulomb forces. The negative ions
give a positive contribution because they are
surrounded by positive ions which attract the
optical electron. A pressure increases this attrac-
tion in the direction of the stress, and hence this
gives rise to positive birefringence. For the
positive ions this effect is reversed, but, since in
most cases R, > R», the net effect of the Coulomb
forces is a positive double refraction. Hence in
every case the Born-Ewald theory gives positive
birefringence for any NaCl lattice compressed
normal to a cube face. The fact that sodium
chloride shows negative birefringence shows
clearly the importance of the optical anisotropy
of the atoms due to pressure. We conclude that
p is the difference between two large terms of
equal magnitude, and this explains why it is
always small for NaCl lattices, and why it can
be positive or negative.

For pressure normal to an octahedral face the
Lorentz force gives either a small positive or a
negative effect. But the Coulomb forces and the
anisotropy produce negative birefringence, and
hence p’ is always negative for NaCl lattices.

A quantitative test of the theory requires the
values of R and f. The ionic refractions are
known with a satisfactory degree of accuracy.
However, very little is known concerning the
strengths f; of the oscillators. Herzfeld and
Wolf?** have shown that for ions f probably has
the same values as for the corresponding inert
gases. We shall base our calculation on this
assumption, but we are aware that this may be
incorrect. From the point of view of the quantum
theory of dispersion there is even some doubt

data of F. Pockels, Ann. d. Physik 39, 440 (1890), and of
K. Banerjee, Ind. J. Phys. 2, 195 (1927). Their results
differ by about 8 percent. Pockels’ results for KCl are
corrected by using Forsterling’s values of the elastic
constants (Zeits. f. Physik 2, 172 (1920)). CaF. was
measured by Pockels, Ann. d. Physik 37, 372 (1889).
Many other investigators have verified the signs and order
of magnitude of the six constants.
24 Herzfeld and Wolf, Ann. d. Physik 78, 35 (1925).
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whether our f values are identical with the
strength of the oscillators.?

If we use for NaCl and KCI the values given
by Herzfeld and Wolf, we get

for NaCl p=0.40140.597 —1.055\; §’
=0.392—0.394—1.055\;

for KCl p=1.00840.426—1.152\; p’
=0.005—0.282—1.152\".

To get agreement with the experimental results,
we must have for NaCl, A=1.06, N’=0.06; for
KCl, A=1.08, A= —0.09.

These results are very satisfactory for the
following three reasons:

(1) The order of magnitude of the values of \
is the same as for glasses. For glasses” we calcu-
lated L*~0.6, and this represents an average
value between X\ and N'. From (28) and the data
in Table IT we get for NaCl, A\,=1.24, A,=0.18;
for KCI, A\,=1.20, A\,=0.11. This leads to the
same conclusions as in our first paper. A strain
of 1 percent increases the refractions parallel to
the strain by about 1.2 percent. Moreover, it
increases slightly the refractions perpendicular
to the strain.

(2) Although they have different photoelastic
properties, both crystals lead to almost identical
values of all factors . This agrees with the fact
that the refraction of NaCl and KCl is largely
due to the Cl ions.

(3) In both crystals the anisotropy produced
by a strain z, is much larger than the anisotropy
produced by a shear. A strain alters the distance
between nearest neighboring atoms. For a shear,
however, the NaCl distance remains unchanged.
Hence A>\'. The optical anisotropy due to a
shear is .caused by the change of the CI-Cl
distance. In NaCl the Cl ions are in contact with
each other because the Na ions are smaller than
the Cl ions. In KCI the CI-Cl distance is larger;
hence Nnaci>Nker. A negative value of N is
improbable and can be avoided by choosing
slightly different values of R; and f;.

If, as in KCIl, the anion and cation are almost
equal in size and structure, it is reasonable to
assume N'=0 and fi=f,. The shear constant of
photoelasticity is then determined by the Ewald-
Born theory, and this offers a unique method

25 Herzfeld and Lee, Phys. Rev. 44, 623 (1933) conclude
that f is probably larger than the strength of the oscillator.
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for the determination of the ratio r=R;/R, of
the ionic refractions. Namely, it follows then
from (31)

(147)2'=0.60(1472) —2.527 —1.86(r2— 1) /7.

Assuming fx=fc1=f4,=4.58 leads to r=5.12,
and since Rx+Rci=Rxc1=10.85 we get Rey
=9.07, Rx=1.78. R is in very good agreement
with the value given by Born and Heisenberg.?
Ry is somewhat smaller than the accepted value
for the free ion, Rx=2.23. Agreement with the
values of Fajans and Joos® and Pauling? can be
reached by choosing f=5.9, or by assuming a
30 percent larger experimental value. The latter
alternative is not excluded because Pockels and
Voigt report that their KCl crystals were
optically and elastically imperfect.

For CaF, the theory gives, if we introduce
Ry=2.5, Rc,=1.35, fg=2.37, fc,=4.58, p=0.46
—0.73—1.28\; p'=0.35+0.48—1.28\". For a
pressure normal to a cube face the Lorentz
force again produces positive birefringence, but
this is compensated by the negative contribution
of the Coulomb forces. Hence CaF; becomes
negatively birefringent. For a pressure normal
to an octahedral face the Lorentz and Coulomb
forces produce positive birefringence which
cannot be compensated by the relatively small
anisotropy due to shear. Qualitatively the theory
explains the photoelastic properties of fluorite.
Quantitatively, however, we find A=0.3, which
is certainly too small, and N'=0.5, which is too
large. By choosing fy=35, much more sensible
values, A=0.61, \’=0.06, are obtained. An in-

vestigation of the dispersion of the photo- .

elastic effect should determine the proper choice
of the f values. It is doubtful whether the inner
displacements would change the result.

For diamond Wertheim?® observed a negative
stress optical constant, but he does not state the
direction of pressure. The fact that the photo-
elastic effect can be observed even in small
crystals in spite of the large elastic constants of
diamond, indicates that either p or p’ must have
an unusually large negative value. The theory
confirms that p= —0.66—A(n2+2)/3(n2—1) is

26 Born and Heisenberg, Zeits. f. Physik 23, 388 (1924).
27 L, Pauling, Proc. Roy. Soc. A114, 181 (1927).
28 Wertheim, Pogg. Ann. 86, 321 (1852).
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negative and at least ten to twenty times larger
than for NaCl. Since the index of refraction of
diamond increases with temperature,® N\ is
probably also unusually large.

PHOTOELASTICITY AND CRYSTAL STRUCTURE

Pockels!® has classified the cubic crystals in
four groups according to the signs of (p11—pi2)
and pu4, or, what is equivalent, of p and p’.

Group P p’ Example
I + + none
II - - NaCl
111 - + CaF,
1AY + - KCl

Observations with crossed nicols of the inter-
ference colors produced by pressure decide to
which group a crystal belongs.

In general the theory is not able to predict the
sign of p and p’. Negative values are assured if
the Lorentz and Coulomb forces produce nega-
tive birefringence, because the anisotropy will
always give a negative effect. If p* and p°
together give a positive value, the result depends
on whether or not (p+p°) is large enough to
compensate the effect of the anisotropy of the
atoms. Since the magnitude of the latter cannot
be predicted, no definite answer can be given.
Our results on glasses, NaCl and KCl indicate
that p4 has for most substances nearly the same
value. Hence we expect a positive value of p if
(p¥+p°) >1. For shear the anisotropy produces a
smaller effect and hence p’ will be positive if
(p'*+'°)>0.3. The choice of these limits is
somewhat arbitrary, and in border cases our
conclusions will not always be justified.

Using these critical values we are now able to
predict certain correlations between Pockels’
groups and the various cubic lattice types. For
monoatomic crystals we have p°=0, pL=3s11,,
and p'*= —s;1,. From the values in Table I we
conclude that simple cubic lattices belong to
group IV, face- and body-centered and diamond
lattices to group III or eventually to group II.
Experimental verification is only possible for
diamond.

For the diatomic ionic lattice types, NaCl,

CsCl and ZnS, the results depend on the ratio

29 A, Sella, Rend. Acc. Lincei 7, 300 (1891).
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r=R_/R,, the values of f_, f. and the valency z.
For all three types we have

PE+po=3511.+3(512:—S112)

X(A+r)=2-[2r+ (2= f_/f)2/f-],
PP = =St (5110 —S1207)

X472 [2r+ (2= f_/fr)z/f-].

Fig. 3 shows the variation of p¥~+p° and p'*+p’°
with 7. The dotted curves give p* and p'". We
have ‘assumed® f_/f,=1, and have used the
values 2/f_=0.2 and z/f_=0.4. For most crystals
z/f— will be between these limits. For lattices of
the type CaF, we get two sets of curves, one
corresponding to CaF,, BaF,, etc., the other to
Li,O, Na,O, etc. The curves in Fig. 3 are calcu-
lated for' f_=3 and f_=6, f_/fi=1.

Fig. 3 shows that, whenever pr+p° is large,
p'P4p° is small or negative, and vice versa.
Consequently, none of the lattice types con-
sidered corresponds to Pockels’ group I. No
crystal belonging to this group has ever been
found.

For the lattice type NaCl p’ is always negative;
hence these crystals belong either to group II or
IV. They belong to group IV if <10 or if z/f_ is
large. This is the case for all K-, Rb-, Cs- and
NH,-halides, and for the bivalent salts, BaO,
CaO,. etc. The Na- and Li-halides, however,
belong to group II. According to Fig. 3 no other
lattice type belongs to group IV. This fact can
therefore be used for the determination or
verification of crystal structures.

The CsCl structures can belong to group II
or III, but, since group II requires r>10, all
the Cs- and NHghalides will have the photo-
elastic properties of group III. No observations
on these crystals have been made. Measurements

% 1In all cases where f_/f, differs much from unity the
ratio 7 is so large that the value of f_/f, is immaterial.
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F16. 3. Variation of photoelastic constants with ionic
refraction (#=R_/R,).

on the ammonium-halides would furnish an
interesting test of the theory because the two
modifications of these crystals should show
different photoelastic properties.

Crystals of the type CaF, behave like CsCl
and all known crystals belong to group III.

All crystals of the types ZnS and Na;O should
belong to group III irrespective of whether the
binding is homopolar or ionic. For ionic crystals
an unusually large. effect would have to be
expected.

All these conclusions agree with the known
facts. The number of reliable®' observations is
very limited, and we hope to present soon
further verification of the theory. An extension
of the theory to more complicated lattices re-
quires the calculation of intricate lattice sums.

3t Many observers do not realize that in cubic crystals
the photoelastic effect depends on the direction of pressure
and observation, and their results cannot be used since
they neglect to state these directions.



