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The Interaction Between a Neutron and a Proton and the Structure of H'
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Suppose that the interaction between a neutron and a
proton depends on their distance apart so as to be negligible
above a certain small distance a, and yet is responsible for
the mass defect of H'. Suppose further that the interaction
between two neutrons and a proton may be compounded
in the usual way from that between a neutron and a
proton, the interaction between two neutrons being
neglected, while there is no prohibition of a wave function
symmetrical in the positions of two neutrons. Then it is
shown that the mass defect of H' is made arbitrarily large
by taking a small enough. The observed mass defect of H'

thus provides, on the above assumptions, a lower limit
for a; and in particular rules out the possibility that the
interaction may be regarded as arising from a singularity in
configuration space. We conclude, in effect, that: either
two neutrons repel one another by an amount not negligible
compared with the attraction between a neutron and a
proton; or that the wave function cannot be symmetrical
in their positions; or else that the interaction between a
neutron and a proton is not confined within a relative
distance very small compared with 10 "cm'.

THE EQUATION ASSUMED FOR A NEUTRON AND A PROTON

UPPOSE that the positional part P(ri, r2) of a wave function for a neutron (at ri) and a proton
(at ri) satisfies the equation

—(k'/Sir'rii) I y PP+~PP }+ V(r, 2) P EQ=O, —

where the effective potential energy U(r»), depending only on the distance apart, r», of the two
particles, is such that

V(r) (0, r &a;

Suppose that Eq. (1) has a solution of the form

V(r) =0, r) a.

such that (a)

so that

where

and

and (b)

p=e(ri2), E=EO(0,
47rfo"y (r) 'r'dr = 1,

y(r) =Ae ""/r,

(ii'/4ir'm) X' = —Eo,

4 A'ir'"e/2X &1.

4'f0'(d q /dr) 'r'dr &K/a

(3)

(4)

(~)

(6)

(&)

(8)

In the above, h is to be taken to be the usual Planck's constant, m the proton mass or the neutron
mass, and Zo the energy of the normal state of a deuteron.

Assumption (b) is probably not necessary for the result 'that will be obtained, but is necessary
for the proof that will be given. It is true if V(r) and p(r) are everywhere finite, and remains true,
K approaching a limit, if we suppose that, Eo remaining unaltered, a tends to zero while U(r) ap-
proaches a definite form,

I.e., U(r) -a 'f(r/a)

The modifications required in the proof when the potential energy V(r) is replaced by a singularity
of P in the configuration space as r+0 will be considered later.

' Such a lower limit to a cannot be deduced from the observations of neutron-proton scattering until these are known
more accurately. (See E. Wigner, Zeits, f. Physik 83, 253 (1933).)
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THF EgUATioN AssUMED rom. Two NEUmows AND A PRoTow

Suppose that the positional part P(r&, ro, ro) of a wave function for two neutrons (at r~ and ro)
and a proton (at ro), symmetrical in the positions of the two neutrons, satis6es the equation

—(h'/Sar'm) I ~g'f+v oof+vo'f }+V(r&o) f+ V(roo) P —&/ =0, (10)

where V(r~o) and V{roo) represent the effective potential energies of interaction of the neutrons and
the proton, depending only on their distances apart r~3 and rg3, and are of the form 2 above: the
interaction between two neutrons is neglected, but it cannot affect the result that will be obtained
unless it gives rise to a repulsion of the same order of magnitude as the attraction between a neutron
and a proton.

If f=p(sg, so), where Sr = &i —&3~

(10) becomes

—(h'/4m'ng) I p'~'P+(~~ p'o)f+~o'P}+ V(sg)f+ V(so)f ZQ=O—

and the algebraically least value B~ of E, if it exists, for which a continuous diA'erentiable function
P(s~, so) can be found to satisfy (12), must obey the inequality

fJ'L(h'/4~'~) }(&~0)'+(&4'&oW)+(&oW)'}+V(~i)0'+ V(~o)0'3dsAso

ffg ikgdso
(13)

where f is any continuous function of s& and so, differentiabie almost everywhere, for which the
integrates exist, dvj and dv2 being volume elements in s~ and 82 space.

Put s'= (4/3)(sP —(s& s&)+soo),

THE CHorcE oF A FUNcnoN

tan O, =3&s,/Is, —2s, l, tan Oo ——3&so/
l so —2s~ l. (14)

satisfies the equation

1 ~/2 —Og vr/2 —
Oo

P =—Ko(ps) +
s' sin HI cos 8~ sin 02 cos 02

&Pl+(&i &o)4'+&oV=uV~

(15)

where Eo is Macdonald's Bessel function of order zero. '

For if sg+ 2so =3'v,

V i'P+(V i V o) %+Vo'P= V.%+V.V, —

and if I=s sin 0~, v=S cos 8j,

while

O'f 2 Op O'P 2 Of O'f 5 Of (cot Og
—tan Og) Of 1 O' f+ + + — + +2 +——

BQ2 s BQ Bv~ v 8v 8$2 s 8$ $R

d A+8O d' A+8O 4(A+8O)
2(cot O —tan O)— +

de sin 0 cos 8 de'. sin 0 cos 0 sin 0 cos 0

d' Ko(ps) 5 d Ko(ys) 4 Ko(ps)
+—— +-

ds s s dS s s s

Ko(p~)

' Watson, Theory of Bessel Functions, p. 78.



STRUCTURE OF H'

From the function given bv (15) we build up one continuous, and differentiable almost everywhere,
as follows: Let l&&a.

In iegion (i), s&l, s sin 8»a, s sin Oo&a, let

1 ir/2 —Oi ir/2 —Oo

}t (sl, so) =—Ko(i{{s) +
s sin 8~ cos 0I sin 82cos Og

in region (ii) s &I, s sin Oq &a, s sin Oo &a, let

}r/2 —Oo 2o'
P(s}, so) =—Kp(}is) C(s) oo(s sin Oi)+

$ sin 82 cos 82 3&

in region (iii), s&l, s sin Oi&a, s sin Ho &a, let

1 }r/2 —Oi 2}r
P(s}, so) =—Ko(ps) ——+C(s) y(s sin Oo)

s' sin 0~ cos 0~ 3&
(20)

where
e-"' ~/2 —sin-'({}/s) 2ir mrs 2}r

C(s)A +—=—+——1+0(a/s), a«s,
a a/s(1 —a'/s') l 31 2a

(21)

and oo is given by (3); in region (iv), s &I, let

(22)

In the sequel f will stand for the function given by (18), (19), (20) and (22).

As a/E —+0 and pl—}0,
THE BOUND FOR THE ENERGY

1 }r/2 8} E/2 —Oo'

J p dv}dvo~jl J Ko(ps) — +
s sin 8~ cos 0~ sin 82 cos 02

dvIdv2 =G, saY,

a convergent integral of which the value lies between twice and four times

1 v/2 —Oi ' 3'* 3t 1

J' J
—Ko(ps) dv}dvo =—16}r s IKo(ps) }'ds

}
8 } dO — 16}r —, (24)

s sin 8] cos Oy 0 o (2 ) 2' 2}{{'24

i.e., between 3lo'/4y, ' and 3l}r'/2}{'.Let

I (V}p) +(V}f' Vol/) +(Vo'}t') }+ j U(sl) lp + U(so)l/i } dv}dvo
~ J h~

I{i}+I{ii}+1{iii}+1{iv}~(25)

where the integration is extended through region (i) in I{;},and so on.
In region (i), U(si) =0 and U(so) =0 by (2), and, in virtue of (16),

I{}=fI(I}.IVA+kVo4 })+(Io }kV@+Vol })}d~ I '{}ff4'—dv}d»

=+{i}}++{iii}+J{iv} }{{i}ff0' dv}dvos
(26)
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where the surface integral is extended over the boundary between (i) and (ii) in I&;;&, between (i)
and (iii) in I&;;;&, and between (i) and (iv) in I&; &. 1& and l~ are the direction cosines in the directions
s& and sm of the normal to the five-dimensional boundary region outward from (i).

The volume integral in (26) gives in the limit the term —p'G.
The surface integral J(;;~ reduces to

—ffs&(» p{V A+ 2V24'})d~&dv21

where the inner integral is taken over all solid angle in s~ space for s~=a and s~= s''+-,'-s~, and then
the outer integration over s2' space for s 2)-,'(P a')—No.w as s&/s2 —+0, so that s& sH&,

f= (1/s')Xo(ps) [v/20& —1+2~/3'*+0(0&) g and (s& {V~/+ ', V 2f })-= —(1/s')XD(»&s) [v/20&+0(&&&) 7,

so that the inner integral becomes

4vZO'(ps) [~'/4s'a+ &r/2 {2 v /3l —1 }1/s'+0(a/s") g

(terms of order 1/s' in the parenthesis arising from the difference between s2 and s2' vanishing on
integration) and

I&;;& ———f4 v%0'(ps) [v-'/4s'a+ &r/2 {2&r/3I —1 }1/s'+0(a/s') gdv2, (27)

integrated over s& space for s= 2s2/3'*)l.
The volume-integral I(;;~ reduces, in like manner, first to

ff[(V&y(s&) ) '+ (4v'm/h') U(s&) rp'( )s)&dv & {(1/s') Zo(ps) C(s) } '[1+0(a'/s') 7dv~,

where the inner integral is over s& space for s&(a, and the outer over s2 space for s=2s~/3l)l;
(U(s2) vanishing in this region, and terms arising from (V&/ V2$) and V2$, as well as from the
term (v-/2 —&&2)/sin &&2 cos 02 —(2&r/3l)(~0) in the expression for f, of order a/s compared with terms
retained, vanishing on integration over s& space, leaving only terms of order a'/s'). Now, from (1),
(3) and (5),

q, &~f[(v&p(s&)) + (4&r m/lr ) { U(s&) Ep }p(s&) gdv& = q, =af (s&' v&+(s&)) p(s&)s&d&0&

= —47rA ' {1/a+ X }
e-'"~

The term involving Eo, X', ,&,.f p(s&)'dv&, tends to zero by (4) and (6), and, with the expression for
C(s), (21),

I&;;& ——f4vÃ '(ps) [&r'/4s'a+ (v-'/4s') X+2 (v /2) (27r/3' —1) + 0(a/s4) ]dv2, (28)

integrated over s~ space for s=2 /3s2i)l.
From (27) and (28),

I&;;&+I&;;&= —,~&f4'-Xo'(ps) {(~'/4s') X+&r/2(2&r/3l —1)(1/s')+0(a/s') }dv2

= —16&r'(3'*/2') f&"Xo'(ps) {&r'X+ v-/2s(2&r/3i —1)+0(a/s') }ds

= —16&r'(3l/2') (&r/2) (2&r/3l —1) )
log pl

~

' {1+0(1/( log pl ( )+0(a/l) }

as a/1~0 and pl~0, since

Xo(ps) = —{log -',-ps+y} {1+0(ps)} as ps~0.

1(tit) +~(1ii) = 1(ii)+~(ii)

(29)

(30)

(31)

The surface integral J(; ) over part of the five-dimensional surface s= 3 gives in the limit a similar
integral to that for G (23), s"(1 /s)X —(0p)s( &&B/s)(1/s')Xo(ps) replacing fo"sXO(ps)ds, so that
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I&;,& =0(i log pl i ') as pl~0.

907

(32)

The volume integral I&; &
consists of terms in V(s)) and V(s2) that are always negative and the

volume integral throughout the six-dimensional region inside the surface s=l of (in terms of the
coordinates u and v of 17), (V„(s/l)P&, =)&)'+ (V, (s/l)P&, =)&)', which reduces to the surface integral
over s=l of

1/6 I P'/l'+ (~„))t')'+(~„P)'—(&7P/(7s)'},

which, in virtue of (8) and (30), is of order X(l/o)
i
log pl

i
2. Thus

I&;.& &O(Z(i/~) Ilog )di').

Thus, combining (25), (26), (29), (31), (32) and (33),

I=I(;)+I(;;)+I(;;;)+I(;.) ((I(;;)+I(;;))+(I(;;;)+I(;;;))+I(;,)+I(;.)

(33)

(—32~'(3*)r/2'2) (2m/3t —1)
i
log Ijl

i

'
I 1+0(X/(()/1) i

log pl
i
)+0(()/l) } (34)

and from (34), (13), (6) and (24),

E) 24(2~/3' —1) )(' ( X—iiog ,ii 1 +o } +0(a/l)
Eo m X' (, (c/I) ilog pli)

(33)

Now put l=a/e, p= (1/a) ee "x", where e is chosen so that e and Ee' are small, and we obtain

E)/Eo) (1 6/()9, ')e " "/X'e'I i+0(e) }. (36)

In order to obtain a numerical result from this it would be necessary first to take a value for X.
If V(r) is of the form given by (9) and (2), this can be done. Secondly it would be necessary to
know how small e must be taken, which would involve estimates of a number of complicated integrals.
For the observed ratio E)/ED=4, a lower bound of (), as a definite fraction of 1/X, =7)/2~(mEO)'*
=6 10 "cm would be obtained. The value so obtained would be a rather poor one, for there is no
reason why the function P chosen should (if al( is not very small) be at all a good approximation
to the solution of (12); moreover the introduction of X into (36) came from I(; &

in which negative
terms in V(r») and V(r23) were left out; if these could be taken into account, and if P were chosen
suitably in region (iv), this could probably be avoided.

However, it is seen that u cannot be very small compared with 10 " cm. A, closer limit could
perhaps best be obtained by numerical approximation to E) for particular forms of V(r).

THE A.SSUMPTIONS %HEN THE POTENTIAL ENERGY IS, REPLACED BY A SINGULARITY3

Suppose that the positional part P(r), r2) of a wave function for a neutron (at r2) and a proton
(at r)) satisfies the equation

—(7)'/8~'m) I ~ PP+~g'P }—EP =0 (37)

but is not continuous at r»= 0, satisfying, however, the boundary condition

P(r), r2) —A (1/r» —X)~0 as r»~0. (38)

(37) has a solution of the form

4 = ( (r)2), &=&o(0, (39)

I owe to Professor E. signer the remark that this case does not immediately follow from the above, as the integralI does not converge.



such that

where

and

L. H. THOMAS

4v f0"
q (r) 'r'dr = 1,

q(r)=Ae ""/r,

(h'/4~'m) X' = Eo-

4xA' =2X.

(40)

(41)

(42)

(43)

Suppose that the positional part p(r~, r2, r3) of a wave function for two neutrons (at r& and r2)
and a proton at (r,), symmetrical in the positions of the two neutrons, satisfies the equation

—(h'/8v'm) {V '&+V '&+V 'P } &P=—0

but is not continuous as r»~0 or F3~0, although functions f(r~, r3) and f(r2, r~) exist such that

(44)

and
f(r&, r2, r3) f(rq,—r3) {1/r23—X}~0 as r»~0 for fixed r~

P(r~, r2, r3) f(r2,—r3) {1/r~3—X }
—+0 as r~3~0 for fixed r2

(45)

(while if A(ra) exists such that

$(r„r2, r,) —A(r, )(1/r» —X)(1/r» —X)—+0 as (r», r23)~(0, 0), (46)

no boundary condition at (r», r») = (0, 0) would be violated: another requirement at (r», r») = (0, 0)
would correspond to the limit of an equation of type (10) with potential energy V(r&, r2, ra) not of
the form V(r»)+ V(r»)); as before, interaction between the two neutrons is neglected.

If P=P(s~, s2), where

(44) becomes

Sy= fy —f3, S2= I'2 I'3

(0 /41I' m) {V 1 lp+ (V 1 ' V2) f+V 2 0 }

(47)

(48)

subject to the condition that f(s&) exists such that

f(s~, s2) —f(s,) (1/s2 —X)~0 as s2~0,

P(s~, s2) f(s~) (1/s| —X)~0 as s~—&0
(49)

(while if A exists such that

P(s~, s2) —A (1/s2 —X) (1/s~ —X)~0 as (s„s,)~(0, 0),

no boundary condition at (s&, sm) = (0, 0) would be violated).
The algebraically least value 8& of E, if it exists, for which a continuous twice differentiable

function P(s&, s2) can be found to satisfy (48) and (49) must obey the inequality

+I& (&'/4m) rfj{V&'0+ (v & v 2)4 +V 2'P }fdv, dvp/f fPdv, dv,

where f is any continuous differentiable function of s& and sm, twice differentiable almost everywhere,
except as s&~0 and sm

—+0, where it must satisfy (49). A form like (13) cannot be used here because
the integral does not converge.

UNDER THE SINGULARITY ASSUMPTION THERE IS NO ALGEBRAICALLY LEAST ENERGY

As we wish to use the same function P(s&, s&) as above, except that p(r) is now to be given by
(41) everywhere, which is not differentiable at s=l, r&

——a, and r2= a, (50) must be modified to take
account of this: to the volume integral in the numerator must be added the difference of surface
integrals

Ilf {(I~ {&14'+2»4'})+(12{-'&if+»0})}Id~I (51)
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over all five-dimensional surfaces of discontinuity of the first derivatives of P, li and 12 being the
direction cosines in the directions s& and s2 of the normal to the hve-dimensional boundary region
from region 1 to region 2. A function with continuous first derivatives and near P will have a value
for (50) nearly equal to that for P with this addition.

We can now write (50) in the form

E&((k'/4s'm) II(;)+I(;;)+I(;;;)+I(;&+J(;;)+J(;;;)+J(;„)}/fjg'dr&, &Ev2 (52)

where I~;), I(;;), I(;;;), and I(; ), are the values of the volume integral extended over the regions

(i), (ii), (iii) and (iv), and J&;;&, J&;;;& and J&;„&, are the values of the surface integral (51) over the
regions s~ =a, s2 =a, and s = l.

By (16), I(;)=0.

I&;;& can be expressed as in (28) as an integration over si space followed by one over s2 space.
Terms of order 1/s&' and 1/s&' which would make the inner integral diverge do not occur, on account
of (41), and the terms that remain give rise to terms of order a// in the result compared to the
principal terms from J(;;).

The two integrals in J&;;& now combine like (27) and (28) to give (as before)

while

I(")+I("&= —16~'(3'~/2'2) (2~/3' —1)
I
log»

I

' I1+0(1/I log» I)+0(~/i) }

I(iii)+ J(&ii) I(ii)+J(ii)

(54)

(55)

The integral over the side s)l of s=l in J&; &
is as before, (32). The integral over the side s(l

of s=/ reduces to the integral of P/1 over s= f, and so gives a result of order
~
log»~'.

The volume integral I&; &
reduces (in terms of u and v of (17)) to the surface integral over a=l of

&I l I 5 (&f/1' &7&/l&—)s) + 6 (&1&//l&7s+ }V '&+V 'P a'P/&7s'} ) }—. (56)

I('-)+J('.) =0(llog»l'). (57)

The terms in (33) which required (8) now do not occur, terms in V„'/+V, 'f that would make the
integral diverge not occurring on account of (41), and no term gives a result larger than of order

~
log pl

~

': i.e. ,

Thus, combining (53), (54), (55) and (57), with (50), (42) and (24),

E& 24(2&r/3i —1)»' ( 1
&

(a'&—) — —(log»(' 1+0} }+0
Ep m. &~log»~) (ii (58)

where we may let &M have any value, »—&0, and a/f —+0, so that 8& cannot exist.
My thanks are due to Professor Uhlenbeck for suggesting this problem to me and to Professor

Wigner for helpful discussion. 4

II/ote added in Proof: No change is made in the above argument if the force assumed between a
neutron and a proton is of Majorana' type, for the wave function used is symmetrical in their
positions wherever the potential energy differs from zero.

4 Some remarks on the H8 problem may be found in E. Wigner, Phys. Rev. 43, 252 {1933).' Majorana, Zeits. f. Physik 82, 137 {1932).


